Numerical Simulation of Deep Bed Cooling Drying Process of Pellet Feed Based on Non-Equilibrium Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Development of Model Equation
- Dry air is an ideal gas mixture;
- The air flow is of the plug type;
- During the drying process, the shrinkage of particles can be ignored with the change in moisture and temperature;
- The temperature gradient in a single particle can be ignored;
- The heat conduction between particles can be ignored;
- The specific heat of wet air and pellet feed is constant in a short time;
- The wall of the cooler is insulated, and the heat capacity can be ignored.
2.1.1. Moisture Balance Equation
2.1.2. Enthalpy Balance Equation of Pellet Feed
2.1.3. Enthalpy Balance Equation of Air
2.1.4. Thin Layer Drying Model
2.1.5. Equilibrium Moisture Content of Feed
2.2. Parameters of the Model
2.2.1. Physical Parameters Related to Pellet Feed
2.2.2. Physical Parameters Related to Air
2.3. Numerical Solution
2.4. Experimental Apparatus and Procedure
2.4.1. Preliminary Verification of the Model
2.4.2. Model Validation Experiment
2.4.3. Experimental Materials
3. Results and Discussion
3.1. Preliminary Verification and Improvement of the Model
3.2. Results and Analysis of Verification Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
wb | Wet basis |
MR | Moisture ratio |
GDW | Generalized D’Arcy and Watt model |
RH | Relative humidity of air |
References
- Khan, M.d.I.H.; Sablani, S.S.; Joardder, M.U.H.; Karim, M.A. Application of machine learning-based approach in food drying: Opportunities and challenges. Dry. Technol. 2022, 40, 1051–1067. [Google Scholar] [CrossRef]
- Sablani, S.S.; Kasapis, S.; Rahman, M.S. Evaluating water activity and glass transition concepts for food stability. J. Food Eng. 2007, 78, 266–271. [Google Scholar] [CrossRef]
- da Silva, M.U.; Sato, J.; Ribeiro, P.M.; Janeiro, V.; Ribeiro, L.B.; Vasconcellos, R.S. Modeling moisture adsorption isotherms for extruded dry pet foods. Anim. Feed Sci. Technol. 2022, 290, 115318. [Google Scholar] [CrossRef]
- Baidhe, E.; Clementson, C.L. A review of the application of modeling and simulation to drying systems for improved grain and seed quality. Comput. Electron. Agric. 2024, 222, 109094. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Wang, L.; Ma, S. Characteristic analysis of deep-bed cooling and drying of pelleted feed based on non-equilibrium model. In Proceedings of the 2025 ASABE Annual International Meeting, Toronto, ON, Canada, 13–16 July 2025; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2025. [Google Scholar] [CrossRef]
- Carvalho, R.d.O.; de Figueirêdo, R.M.F.; Queiroz, A.J.d.M.; dos Santos, F.S.; Gregório, M.G.; Amadeu, L.T.S.; Moura, H.V.; Junior, N.d.M.A.; Andrade, F.S.; Cruz, E.B.C.; et al. Dynamic Modeling of Convective Drying of Pineapple Peels: Bioactive, Physical, and Thermal Properties. Agriculture 2025, 15, 609. [Google Scholar] [CrossRef]
- Chen, C.; Pan, Z. An overview of progress, challenges, needs and trends in mathematical modeling approaches in food drying. Dry. Technol. 2023, 41, 2586–2605. [Google Scholar] [CrossRef]
- Guo, W.; Tong, L.; Yang, L.; Zhao, S.; Yin, S.; Liu, C.; Wang, L. A thick-layer drying kinetic model and drying characteristics of moisture-containing porous materials. Int. Commun. Heat Mass Transf. 2023, 149, 107133. [Google Scholar] [CrossRef]
- Subrot Panigrahi, S.; Singh, C.B.; Fielke, J.; Zare, D. Modeling of heat and mass transfer within the grain storage ecosystem using numerical methods: A review. Dry. Technol. 2020, 38, 1677–1697. [Google Scholar] [CrossRef]
- Epstein, A.; Lubitz, W.; Dineen, G.; Dyck, J. Performance evaluation of a non-equilibrium model for low temperature grain drying and simulation of seasonal dryer operation. Dry. Technol. 2022, 40, 835–851. [Google Scholar] [CrossRef]
- Ahmed, S.; Mozumder, M.S.I.; Zzaman, W.; Yasin, M.; Das, S. Integrated drying model of lychee as a function of temperature and relative humidity. Heliyon 2024, 10, e28590. [Google Scholar] [CrossRef] [PubMed]
- Jian, F.; Liu, J.; Jayas, D.S. A new mathematical model to simulate sorption, desorption and hysteresis of stored canola during aeration. Dry. Technol. 2020, 38, 2190–2201. [Google Scholar] [CrossRef]
- Ju, H.-Y.; Vidyarthi, S.K.; Karim, M.A.; Yu, X.-L.; Zhang, W.-P.; Xiao, H.-W. Drying quality and energy consumption efficient improvements in hot air drying of papaya slices by step-down relative humidity based on heat and mass transfer characteristics and 3D simulation. Dry. Technol. 2023, 41, 460–476. [Google Scholar] [CrossRef]
- Abedi, F.; Kumar, S.; Kumar, N.; Kumar, D.; Takhar, P.S. Moisture transport and stress development in rice during drying, a Hybrid Mixture Theory-based model. Dry. Technol. 2023, 41, 2119–2142. [Google Scholar] [CrossRef]
- Li, X.; Yang, K.; Wang, Y.; Du, X. Simulation study on coupled heat and moisture transfer in grain drying process based on discrete element and finite element method. Dry. Technol. 2023, 41, 2027–2041. [Google Scholar] [CrossRef]
- Kumar, D.; Mishra, A.; Prasad, M.; Pyare, R.; Majhi, M.R. Performance analysis of deep bed drying of canola seeds using numerical technique. J. Stored Prod. Res. 2021, 94, 101891. [Google Scholar] [CrossRef]
- Naghavi, Z.; Moheb, A.; Ziaei-Rad, S. Numerical simulation of rough rice drying in a deep-bed dryer using non-equilibrium model. Energy Convers. Manag. 2010, 51, 258–264. [Google Scholar] [CrossRef]
- Zuo, Y.; Jibril, A.N.; Yan, J.; Xia, Y.; Liu, R.; Chen, K. Optimization of Online Moisture Prediction Model for Paddy in Low-Temperature Circulating Heat Pump Drying System with Artificial Neural Network. Sensors 2025, 25, 2308. [Google Scholar] [CrossRef]
- Joo, Y.; Chang, S.; Kim, S.; Oh, S. Effect of drying kinetics model on energy efficiency of drying systems. Energy 2024, 291, 130390. [Google Scholar] [CrossRef]
- Zare, D.; Jayas, D.S.; Singh, C.B. A Generalized Dimensionless Model for Deep Bed Drying of Paddy. Dry. Technol. 2012, 30, 44–51. [Google Scholar] [CrossRef]
- Raghavan, G.S.V.; Kurian, J. Enhancement of heat and mass transfer in drying systems for bio-economy and sustainable development. Dry. Technol. 2024, 42, 576–586. [Google Scholar] [CrossRef]
- Bottari, A.; Braccia, L. Optimal Control Structure Selection Based on Economics for Continuous Cross-Flow Grain Dryer. Dry. Technol. 2023, 41, 1605–1619. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.; Jin, N.; Wang, H.; Wang, L.; Wu, J. Thin-Layer Drying Model, Drying Rate, and Effective Water Diffusion Coefficient of Pelleted Feed. Int. J. Chem. Eng. 2024, 2024, 7092556. [Google Scholar] [CrossRef]
- Lambert, C.; Goujot, D.; Romdhana, H.; Courtois, F. Toward a generic approach to build up air drying models. Dry. Technol. 2016, 34, 346–359. [Google Scholar] [CrossRef]
- Lambert, C.; Cartailler, J.; Rouchouse, S.; Almeida, G.; Courtois, F. Characterization and modeling of cooling and drying of pellets for animal feed. Dry. Technol. 2018, 36, 255–266. [Google Scholar] [CrossRef]
- Teleken, J.T.; Amorim, S.M.; Rodrigues, S.S.S.; de Souza, T.W.P.; Ferreira, J.P.; Carciofi, B.A.M. Heat and Mass Transfer in Shrimp Hot-Air Drying: Experimental Evaluation and Numerical Simulation. Foods 2025, 14, 428. [Google Scholar] [CrossRef]
- de Mattos, R.; Garreiro, J.M.; Meghirditchian, G.; Ferrari, A.; Zecchi, B. Effect of modeling simplifications on behavior and computational cost for simulation of fixed bed wheat drying process. Dry. Technol. 2022, 40, 1338–1355. [Google Scholar] [CrossRef]
- Lambert, C.; Romdhana, H.; Courtois, F. Reverse Methodology to Identify Moisture Diffusivity During Air-Drying of Foodstuffs. Dry. Technol. 2015, 33, 1076–1085. [Google Scholar] [CrossRef]
- Chapuis, A.; Lancement, C.; Giraldo, F.; Precoppe, M.; Moreno, M.; Dufour, D.; Tran, T. Extensive experimental validation of a model for pneumatic drying of cassava starch. Dry. Technol. 2023, 41, 122–136. [Google Scholar] [CrossRef]
- Chen, P.; Fan, M.; Zhu, W.; Liu, Y.; Jiang, M.; Wang, Y.; Wang, X. Numerical simulation of hot air drying of wheat grain piles based on CFD-DEM and experimental research. Dry. Technol. 2024, 42, 199–211. [Google Scholar] [CrossRef]
- Furmaniak, S.; Terzyk, A.P.; Gauden, P.A.; Rychlicki, G. Applicability of the generalised D’Arcy and Watt model to description of water sorption on pineapple and other foodstuffs. J. Food Eng. 2007, 79, 718–723. [Google Scholar] [CrossRef]
- Furmaniak, S.; Terzyk, A.P.; Gołembiewski, R.; Gauden, P.A.; Czepirski, L. Searching the most optimal model of water sorption on foodstuffs in the whole range of relative humidity. Food Res. Int. 2009, 42, 1203–1214. [Google Scholar] [CrossRef]
- Li, B.; Liu, C.; Li, Z.; Liu, Y.; Zhang, H.; Zhang, X.; Lv, C.; Zeng, Z. Experimental and Numerical Study on Dynamic Porosity of the Flow Layer During the Paddy Grain Convective Drying Process. AgriEngineering 2025, 7, 164. [Google Scholar] [CrossRef]
- Barker, J.J. Heat Transfer in Packed Beds. Ind. Eng. Chem. 1965, 57, 43–51. [Google Scholar] [CrossRef]
- Panza, O.; Del Nobile, M.A.; Conte, A. The Optimization of the Dehydration Temperature of Peels from Prickly Pears. Foods 2025, 14, 811. [Google Scholar] [CrossRef]
- Rubi, R.V.; Jajurie, M.A.; Javier, K.A.; Mesina, C.E.; Pascual, M.A.; Soriano, A.; Eguico, C. A Comprehensive Review on Drying Kinetics of Common Corn (Zea mays) Crops in the Philippines. Eng. Proc. 2025, 87, 84. [Google Scholar] [CrossRef]
- Tohidi, M.; Sadeghi, M.; Torki-Harchegani, M. Energy and quality aspects for fixed deep bed drying of paddy. Renew. Sustain. Energy Rev. 2017, 70, 519–528. [Google Scholar] [CrossRef]
Ambient Air Temperature (°C) | Ambient Air Humidity |
---|---|
14.30 | 0.291 |
19.50 | 0.285 |
24.60 | 0.297 |
Batch | Wind Speed (m/s) | Initial Air Temperature (°C) | Initial Air Humidity | Initial Feed Temperature (°C) | Initial Feed Moisture | Height of Feed Bed (m) | Drying Time (s) |
---|---|---|---|---|---|---|---|
1 | 0.688 | 8.00 | 0.394 | 79.0 | 0.1580 | 0.70 | 868 |
2 | 0.688 | 9.00 | 0.432 | 78.0 | 0.1520 | 0.70 | 889 |
3 | 0.688 | 14.00 | 0.353 | 78.0 | 0.1560 | 0.70 | 868 |
4 | 0.592 | 14.00 | 0.353 | 78.0 | 0.1500 | 1.00 | 1200 |
5 | 0.688 | 17.00 | 0.359 | 78.0 | 0.1560 | 0.70 | 875 |
6 | 0.688 | 19.00 | 0.392 | 78.0 | 0.1550 | 0.70 | 847 |
7 | 0.688 | 23.00 | 0.348 | 79.0 | 0.1560 | 0.70 | 910 |
8 | 0.592 | 23.00 | 0.348 | 79.0 | 0.1520 | 1.00 | 1200 |
9 | 0.688 | 29.71 | 0.514 | 78.0 | 0.1481 | 0.70 | 826 |
10 | 0.688 | 30.84 | 0.493 | 75.0 | 0.1513 | 0.70 | 770 |
11 | 0.688 | 30.84 | 0.493 | 75.0 | 0.1455 | 0.70 | 833 |
12 | 0.688 | 33.38 | 0.537 | 79.9 | 0.1481 | 0.70 | 854 |
13 | 0.688 | 33.76 | 0.566 | 82.1 | 0.1538 | 0.70 | 868 |
14 | 0.688 | 34.82 | 0.524 | 81.2 | 0.1522 | 0.70 | 847 |
15 | 0.688 | 35.00 | 0.477 | 81.0 | 0.1498 | 0.70 | 840 |
Model Version | Ambient Air Humidity | |
---|---|---|
Feed Temperature | Feed Moisture | |
Original model | 6.6827 | 0.001779 |
Improved model | 0.3570 | 0.000756 |
Batch | Wind Speed (m/s) | Ambient Air Temperature (°C) | Ambient Air Humidity | Initial Feed Temperature (°C) | Initial Feed Moisture |
---|---|---|---|---|---|
1 | 0.5 | 14.30 | 0.291 | 69.9 | 0.1454 |
2 | 0.6 | 14.30 | 0.291 | 69.9 | 0.1455 |
3 | 0.7 | 14.30 | 0.291 | 69.9 | 0.1454 |
4 | 0.5 | 19.50 | 0.285 | 69.9 | 0.1455 |
5 | 0.6 | 19.50 | 0.285 | 69.9 | 0.1454 |
6 | 0.7 | 19.50 | 0.285 | 69.9 | 0.1454 |
7 | 0.5 | 24.60 | 0.297 | 70.0 | 0.1456 |
8 | 0.6 | 24.60 | 0.297 | 70.0 | 0.1454 |
9 | 0.7 | 24.60 | 0.297 | 70.0 | 0.1455 |
Data | Feed Temperature | Feed Moisture | Air Temperature | Air Humidity |
---|---|---|---|---|
RMSE | 0.134536 | 0.000141 | 0.137558 | 0.001161 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Wu, J.; Zou, F.; Wang, H.; Wang, L. Numerical Simulation of Deep Bed Cooling Drying Process of Pellet Feed Based on Non-Equilibrium Model. Appl. Sci. 2025, 15, 9445. https://doi.org/10.3390/app15179445
Wang W, Wu J, Zou F, Wang H, Wang L. Numerical Simulation of Deep Bed Cooling Drying Process of Pellet Feed Based on Non-Equilibrium Model. Applied Sciences. 2025; 15(17):9445. https://doi.org/10.3390/app15179445
Chicago/Turabian StyleWang, Wei, Junhua Wu, Fanglei Zou, Hongying Wang, and Liangju Wang. 2025. "Numerical Simulation of Deep Bed Cooling Drying Process of Pellet Feed Based on Non-Equilibrium Model" Applied Sciences 15, no. 17: 9445. https://doi.org/10.3390/app15179445
APA StyleWang, W., Wu, J., Zou, F., Wang, H., & Wang, L. (2025). Numerical Simulation of Deep Bed Cooling Drying Process of Pellet Feed Based on Non-Equilibrium Model. Applied Sciences, 15(17), 9445. https://doi.org/10.3390/app15179445