Design and Testing of an Electrically Driven Precision Soybean Seeder Based an OGWO-Fuzzy PID Control Strategy
Abstract
1. Introduction
2. Materials and Methods
2.1. Overall System Introduction
2.1.1. Selection and Verification
2.1.2. Circuit Design of Seeding System
2.2. Mathematical Relationship Between Tractor Speed and Seeder Revolution Speed
2.3. Control Strategy Design of Electric-Drive Soybean Seeder
2.3.1. Fuzzy PID Controller Design
2.3.2. Introduction of GWO Algorithm
2.4. GWO-Fuzzy PID Controller Design
2.5. Optimization of Grey Wolf Algorithm Based on Ternary Plot Approach
2.6. Bench Test Verification and Comparison
3. Results
3.1. Optimization Results of Optimal Weight Ratio of Ternary Plot Approach
3.2. Establishment of Simulink Simulation Model
3.3. Algorithm Step Response Comparison
3.4. Bench Test Results and Comparison
3.4.1. Seed-Metering Device Speed Response Accuracy Test and Comparison
3.4.2. Soybean Planting Spacing Accuracy Test and Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GWO | Grey Wolf Optimization |
OGWO | Optimized Grey Wolf Optimization |
References
- Zheng, J.; Liao, Y.T.; Liao, Q.X.; Sun, M. Trend analysis and prospects of seed metering technologies. Trans. Chin. Soc. Agric. Eng. 2022, 38, 1–13. [Google Scholar]
- Wang, Y.J.; Li, H.; Feng, X.B. Research Progress on Agricultual Equipments for Precision Planting and Harvesting. Agriculture 2025, 15, 1513. [Google Scholar] [CrossRef]
- Xing, H.; Wan, Y.K.; Zhong, P.; Lin, J.J.; Huang, M.T.; Yang, R. Design and experimental analysis of real-time detection system for The seeding accuracy of rice pneumatic seed metering device based on the improved YOLOv5n. Comput. Electron. Agric. 2024, 227 Pt 2, 109614. [Google Scholar] [CrossRef]
- Du, Z.H.; Yang, L.; Zhang, D.X.; Cui, T.; He, X.T.; Xiao, T.P.; Xing, S.L.; Xie, C.J. Development and testing of a motor drive and control unit based on the field-oriented control algorithm for the seed-metering device. Comput. Electron. Agric. 2023, 211, 108024. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Li, Z.D.; Wang, W.W.; Zhang, C.L.; Chen, L.Q.; Wan, L. Multi-objective optimization design of wheat centralized seed feeding device based on particle swarm optimization(PSO) algorithm. Int. J. Agric. Biol. Eng. 2020, 13, 76–84. [Google Scholar] [CrossRef]
- Li, H.L.; Liu, X.L.; Zhang, H.; Li, H.; Jia, S.Y.; Sun, W.; Wang, G.P.; Feng, Q.; Yang, S.; Xing, W. Research and Experiment on Miss-Seeding Detection of Potato Planter Based on Improved YOLOv5s. Agriculture 2024, 14, 1905. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.P.; Wen, C.M.; Li, K.H. Design of An Elctrically Driven Sugarane Seeding System Based on GNSS-RTK Receiver and SAPSO-LADRC Algorithm. Sugar Tech 2025, 27, 832–843. [Google Scholar] [CrossRef]
- Xing, H.; Zang, Y.; Wang, M.Z.; Luo, W.X.; Zhang, H.M.; Fang, Y.L. Design and experimental analysis of a stirring device for a pneumatic precision rice seed metering device. Trans. ASABE 2020, 63, 99–808. [Google Scholar] [CrossRef]
- Zhao, X.S.; Zhao, H.P.; Wang, Z.H.; Li, J.C.; Yu, H.L.; Yan, Q. Electronic control seed-metering system for precision seeding maize based on fuzzy PID. Int. J. Agric. Biol. Eng. 2024, 17, 217–226. [Google Scholar] [CrossRef]
- Yu, Y.; Hu, Y.R.; Shang, S.Q.; Diao, L.S.; Ge, R.C.; Zhang, X. Design of motor-driven precision seed-metering device with improved fuzzy PID controller for small peanut planters. Int. J. Agric. Biol. Eng. 2023, 16, 136–144. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Xia, J.F.; Liu, G.Y.; Cheng, J.; Wei, Y.S.; Xie, D.Y. Design and Analysis of apneumatic Automatic Compensation System for Miss-Seeding Based on Speed Synchronization. Agriculture 2023, 13, 1232. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, B.; Yi, S.J.; Zhao, X.; Liu, Z.Q.; Sun, Y. Electric-driven Mung Bean Precision Seeder Control System Based on IGWO-LADRC. Trans. CSAE 2022, 53, 87–98. [Google Scholar]
- Ding, Y.C.; Zhang, C.H.; Dong, W.J.; Zhan, Z.Y.; Wei, S.; Nong, F. Design and Test of Seeding Measurement and Control System for Cotton Precision Directing Machine Based on Radar Speed Measurement. Trans. Chin. Soc. Agric. Mach. 2025, 56, 59–70. [Google Scholar]
- Yang, J.L.; Wu, H.L.; Guo, A.F.; Rugerinyange, R.; Liu, C.; Zhao, Z.Y.; Han, W.C.; Yin, L. Performance Optimization and Simulation Test of No-Tillage Corn Precision Planter Based on Discrete Element Method(DEM). Machines 2024, 12, 465. [Google Scholar] [CrossRef]
- Li, Z.D.; Wu, J.J.; Du, J.H.; Duan, D.L.; Zhang, T.; Chen, Y.X. Experimenting and Optimizing Design Parameters for a Pneumatic Hill-Drop Rapeseed Metering Device. Agrnonomy 2023, 13, 141. [Google Scholar] [CrossRef]
- He, X.; Cui, T.; Zhang, D.; Wei, J.; Wang, M.; Yu, Y.; Liu, Q.; Yan, B.; Zhao, D.; Yang, L. Development of an electric-driven control system for a precision planter based on a closed-loop PID algorithm. Comput. Electron. Agric. 2017, 136, 184–192. [Google Scholar] [CrossRef]
- Li, Y.H.; Zhao, S.; Yang, L.; Song, Q.; Li, B.G.; Yang, F.Z. Design and Test of High-speed Precision Seeder of Independent Fractionated Soybean Double-row Brush. Trans. Chin. Soc. Agric. Mach. 2024, 55, 101–110. [Google Scholar]
- Zhao, H.H.; Zhang, D.X.; Li, Y.; Cui, T.; Song, W.; He, X.T.; Wu, H.L.; Dong, J.Q. Optimal Design and Experiment of Critical Components of Hand-Pushing Corn Plot Precision Planter. Agriculture 2022, 12, 2103. [Google Scholar] [CrossRef]
- Mahapatra, J.; Tiwari, P.S.; Singh, K.P.; Nandede, B.M.; Sahni, R.K.; Pagare, V.; Singh, J.; Shrinivasa, D.J.; Mandal, S. An Adjustable Pneumatic Planter with Reduced Source Vibration for Better Precision in Field Seeding. Sensor 2024, 24, 3399. [Google Scholar] [CrossRef]
- Chen, L.Q.; Xie, B.B.; Li, Z.D.; Yang, L.; Chen, Y.X. Design of control system of maize precision seeding based on double closed loop PID fuzzy algorithm. Trans. CSAE 2018, 34, 33–41. [Google Scholar]
- Ding, Y.C.; Li, H.P.; Dong, W.J.; Zhang, D.J.; Xu, C.B. Design and Experiment of Precise Variable Fertilization Control System for Oilseed Rape Based on Prescription Maps. Trans. Chin. Soc. Agric. Mach. 2025, 56, 256–266. [Google Scholar]
- Rana, K.P.S.; Kumar, V.; Sehgal, N.; George, S. A novel dp/di feedback based control scheme using gwo tuned pid controller for efficient mppt of pem fuel cell. ISA Trans. 2019, 93, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.F.; Chen, X.G.; Ji, C.; Chen, J.C.; Zhang, H.; Pan, F. Design and experiments of the single driver for maize precision seeders based on fuzzy PID control. Trans. CSAE 2022, 38, 12–21. [Google Scholar]
- Liu, S.X.; Chai, Y.; Li, S.; Miao, H.; Han, F. Optimal design and test of precision seed arranger based on Kalman filter PID control. J. Chin. Agric. Mech. 2022, 43, 1–8. [Google Scholar]
- Liao, Q.X.; Luo, Z.C.; Yang, H.; Li, M.L.; Shen, W.H.; Wang, L. Variable-rate Seeding Control System Based on RTK Speed Measurement for Rapeseed Direct Seeder. Trans. Chin. Soc. Agric. Mach. 2024, 55, 65–74. [Google Scholar]
- Feng, Z.H.; Yi, S.J.; Li, Y.F.; Chen, T.; Zhang, D.M. Experimental Study on Performance of Air Suction Electric Drive High Speed Precision Metering Device for Corn. Res. Agric. Mech. 2022, 44, 192–198. [Google Scholar]
- Jia, H.L.; Zhang, S.W.; Chen, T.Y.; Zhao, J.L.; Guo, M.Z.; Yuan, H.F. Design and Experiment of Self-suction Mung Bean Precision Seed Metering Device. Trans. Chin. Soc. Agric. Mach. 2020, 51, 51–60. [Google Scholar]
- Dizaji, H.Z.; Taheri, M.R.Y.; Minaei, S. Air-jet Seed Knockout Device for Pneumatic Precision Planters. AMA-Agric. Mech. ASIA Afr. Lat. Am. 2010, 41, 45–50. [Google Scholar]
- Gao, J.; Zhang, F.; Zhang, J.X.; Zhou, H.; Yuan, T. Development and field performance evaluation of hole-fertilizing planter and dynamic alignment control system for precision planting of corn. Precis. Agric. 2023, 24, 1241–1260. [Google Scholar] [CrossRef]
- Yin, Y.X.; Chen, L.P.; Meng, Z.J.; Li, B.; Luo, C.H.; Fu, W.Q.; Mei, H.B.; Qin, W.C. Design and evaluation of a maize monitoring system for precision planting. Int. J. Agric. Biol. Eng. 2018, 11, 186–192. [Google Scholar] [CrossRef]
- Wang, Y.X.; Zhang, W.X.; Qi, B.; Ding, Y.Q.; Xia, Q.Q. Research on Control System of Corn Planter Based on Radar Speed Measurement. Agronomy 2024, 14, 1043. [Google Scholar] [CrossRef]
- Zhao, X.G.; Chen, L.P.; Gao, Y.Y.; Yang, S.; Zhai, C.Y. Optimization method for accurate positioning seeding based on sowing decision. Int. J. Agric. Biol. Eng. 2021, 14, 171–180. [Google Scholar] [CrossRef]
NB | NM | NS | ZO | PS | PM | PB | |
---|---|---|---|---|---|---|---|
NB | PB | PB | PM | PM | PM | PB | PB |
NM | PB | PB | PM | PM | PM | PB | PB |
NS | PM | PS | PS | ZO | PS | PM | PM |
ZO | PM | PS | PS | ZO | PS | PM | PM |
PS | PM | PM | PS | PS | PS | PM | PM |
PM | PB | PB | PM | PM | PM | PM | PB |
PB | PB | PB | PM | PM | PM | PB | PB |
NB | NM | NS | ZO | PS | PM | PB | |
---|---|---|---|---|---|---|---|
NB | NS | NS | NM | NM | NM | NS | NS |
NM | NS | NS | NM | NM | NM | NS | NS |
NS | NM | NM | NS | NS | NS | NM | NM |
ZO | NM | NM | NS | NS | NS | NM | NM |
PS | NM | NM | NS | NS | NS | NM | NM |
PM | NS | NS | NM | NM | NM | NS | NS |
PB | NS | NS | NM | NM | NM | NS | NS |
NB | NM | NS | ZO | PS | PM | PB | |
---|---|---|---|---|---|---|---|
NB | PB | PB | PM | PM | PM | PB | PB |
NM | PB | PM | PS | PS | PS | PM | PB |
NS | PM | PS | ZO | ZO | ZO | PS | PM |
ZO | PM | PS | ZO | ZO | ZO | PS | PM |
PS | PM | PS | ZO | ZO | ZO | PS | PM |
PM | PB | PM | PS | PS | PM | PM | PB |
PB | PB | PB | PM | PM | PM | PB | PB |
Input/Output Variable | |||||
---|---|---|---|---|---|
Linguistic variable | |||||
Fuzzy domain | [−6 6] | [−6 6] | [−2 2] | [−0.5 0.5] | [−1 1] |
Fuzzy subset | [NB NM NS ZO PS PM PB] |
Grey Wolf Type | Weight Value Range | Grey Wolf Level |
---|---|---|
[3.33, 10] | Optimal solution | |
[0, 5] | Suboptimal solution | |
[0, 5] | The third most optimal solution |
Control Strategy | Settling Time (s) | Overshoot (%) | Steady-State Error (r) | Interference Fluctuation Peak (r/min) | Fitness |
---|---|---|---|---|---|
PID | 0.72 | 26.67 | 0.051 | 64.85 | |
Fuzzy PID | 0.64 | 12.58 | 0.038 | 64.12 | |
GWO-Fuzzy PID | 0.39 | 7.17 | 0.021 | 61.34 | 2.4657 |
OGWO-Fuzzy PID | 0.17 | 0 | 0.009 | 60.18 | 0.8153 |
Tractor Speed Change (km/h) | 0 to 5 | 5 to 7 | 5 to 9 | 5 to 11 | 5 to 13 | 5 to 15 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control Strategy | OGWO-Fuzzy PID | 0.18 | 23.2 | 0.13 | 32.5 | 0.19 | 41.9 | 0.23 | 51.2 | 0.27 | 60.7 | 0.35 | 70.1 |
GWO-Fuzzy PID | 0.23 | 23.7 | 0.17 | 33.2 | 0.25 | 45.7 | 0.32 | 51.7 | 0.43 | 61.3 | 0.56 | 71.5 | |
Fuzzy PID | 0.32 | 24.5 | 0.21 | 34.1 | 0.33 | 43.2 | 0.39 | 53.6 | 0.51 | 63.2 | 0.67 | 73.8 |
Control Strategy | Working Speed/ (km/h) | Qualification Index/% | Replay Index/% | Missed Seeding Index/% | Coefficient of Variation/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
130 mm | 210 mm | 290 mm | 130 mm | 210 mm | 290 mm | 130 mm | 210 mm | 290 mm | 130 mm | 210 mm | 290 mm | ||
GWO-Fuzzy PID | 8 | 90.46 | 92.97 | 95.41 | 4.51 | 5.19 | 3.27 | 5.03 | 1.84 | 1.32 | 12.48 | 10.75 | 7.24 |
10 | 89.17 | 90.31 | 93.76 | 6.78 | 7.33 | 3.76 | 4.05 | 2.36 | 2.48 | 13.61 | 11.29 | 9.08 | |
12 | 87.61 | 88.45 | 90.43 | 5.71 | 6.08 | 5.13 | 6.68 | 5.47 | 4.44 | 15.73 | 13.06 | 10.34 | |
14 | 86.33 | 87.26 | 88.35 | 5.34 | 5.12 | 6.57 | 8.33 | 7.62 | 5.08 | 16.37 | 14.27 | 11.68 | |
OGWO-Fuzzy PID | 8 | 94.84 | 97.71 | 98.52 | 3.24 | 1.16 | 1.27 | 1.92 | 1.13 | 0.21 | 5.61 | 4.79 | 3.24 |
10 | 93.53 | 96.19 | 97.27 | 2.65 | 2.46 | 2.14 | 3.82 | 1.35 | 0.59 | 6.33 | 5.27 | 4.63 | |
12 | 93.17 | 96.56 | 96.34 | 2.71 | 2.23 | 3.29 | 4.12 | 1.21 | 0.37 | 7.25 | 6.29 | 6.04 | |
14 | 92.81 | 94.89 | 96.27 | 2.37 | 2.49 | 2.16 | 4.82 | 2.62 | 1.57 | 7.96 | 6.73 | 6.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, H.; Zhang, Z.; Jin, L.; Zhang, C.; Li, X.; Zhu, J.; Yang, Z. Design and Testing of an Electrically Driven Precision Soybean Seeder Based an OGWO-Fuzzy PID Control Strategy. Appl. Sci. 2025, 15, 9318. https://doi.org/10.3390/app15179318
Kang H, Zhang Z, Jin L, Zhang C, Li X, Zhu J, Yang Z. Design and Testing of an Electrically Driven Precision Soybean Seeder Based an OGWO-Fuzzy PID Control Strategy. Applied Sciences. 2025; 15(17):9318. https://doi.org/10.3390/app15179318
Chicago/Turabian StyleKang, Hongbin, Zongwang Zhang, Long Jin, Chao Zhang, Xiaohao Li, Juhong Zhu, and Zhiyong Yang. 2025. "Design and Testing of an Electrically Driven Precision Soybean Seeder Based an OGWO-Fuzzy PID Control Strategy" Applied Sciences 15, no. 17: 9318. https://doi.org/10.3390/app15179318
APA StyleKang, H., Zhang, Z., Jin, L., Zhang, C., Li, X., Zhu, J., & Yang, Z. (2025). Design and Testing of an Electrically Driven Precision Soybean Seeder Based an OGWO-Fuzzy PID Control Strategy. Applied Sciences, 15(17), 9318. https://doi.org/10.3390/app15179318