Shear-Compression Failure Condition of Key Strata Under Elastic Support During Periodic Breakage
Abstract
1. Introduction
2. Periodic Breakages of a Key Stratum During Mining of the Working Face
2.1. Boundary Conditions During Periodic Breakages of a Key Stratum
2.2. Failure Characteristics of a Key Stratum
3. Key Strata’s Periodic Breakage Model via Timoshenko Beam Theory
3.1. Periodic Breakage Mechanical Model of Thick–Hard Roof
3.2. Timoshenko Beam on Winkler Foundation
4. Shear-Compression Failure Condition of Key Strata
4.1. Stress of the Key Stratum
4.2. Conditions for Shear-Compression Failure of a Key Stratum
5. Analysis of Factors Influencing Key Strata Shear Failure
5.1. Research Plans
5.2. Geometric Parameters
5.3. Elastic Foundation Stiffness
5.4. Intrinsic Mechanical Parameters
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akbaş, Ş.; Ersoy, H.; Akgöz, B.; Civalek, Ö. Dynamic Analysis of a Fiber-Reinforced Composite Beam under a Moving Load by the Ritz Method. Mathematics 2021, 9, 1048. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, C.; Yuan, Y.; Chen, Z.; Wang, W. Study on the Working Resistance of a Support under Shallowly Buried Gobs According to the Roof Structure during Periodic Weighting. Sustainability 2021, 13, 10652. [Google Scholar] [CrossRef]
- Fu, Y.; Shang, J.; Hu, Z.; Li, P.; Yang, K.; Chen, C.; Guo, J.; Yuan, D. Ground Fracture Development and Surface Fracture Evolution in N00 Method Shallowly Buried Thick Coal Seam Mining in an Arid Windy and Sandy Area: A Case Study of the Ningtiaota Mine (China). Energies 2021, 14, 7712. [Google Scholar] [CrossRef]
- Jia, H.; Pan, K.; Wang, L.; Liu, S.; Fu, M.; Ji, X. Evolution Law of Overburden Longitudinal Connected Fissures in a Shallowly Buried Coal Face with Thin Bedrock. Adv. Civ. Eng. 2019, 2019, 9430985. [Google Scholar] [CrossRef]
- Zhao, S.; Sui, Q.; Cao, C.; Wang, X.; Wang, C.; Zhao, D.; Wang, Y.; Zhao, Y. Mechanical model of lateral fracture for the overlying hard rock strata along coal mine goaf. Geomech. Eng. 2021, 27, 75–85. [Google Scholar] [CrossRef]
- Wu, Q.; Han, F.; Liang, S.; Sun, F.; Wan, D.; Su, H.; Ma, F.; Wu, Q. Development Law of Mining Fracture and Disaster Control Technology under Hard and Thick Magmatic Rock. Sustainability 2022, 14, 11140. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, Q.; Wu, Q.; Wang, P.; Xue, Y.; Kong, P.; Gong, B. Fracture failure analysis of hard and thick key layer and its dynamic response characteristics. Eng. Fail. Anal. 2019, 98, 118–130. [Google Scholar] [CrossRef]
- Yu, M.; Zuo, J.; Sun, Y.; Mi, C.; Li, Z. Investigation on fracture models and ground pressure distribution of thick hard rock strata including weak interlayer. Int. J. Min. Sci. Technol. 2022, 32, 137–153. [Google Scholar] [CrossRef]
- Guo, W.; Li, Y.; Yin, D.; Zhang, S.; Sun, X. Mechanisms of rock burst in hard and thick upper strata and rock-burst controlling technology. Arab. J. Geosci. 2016, 9, 561. [Google Scholar] [CrossRef]
- Chen, D.; Yang, J.; Kitipornchai, S. Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos. Struct. 2015, 133, 54–61. [Google Scholar] [CrossRef]
- Yin, W.; Bao, X.; Liu, H.; Zhang, Q. Research on overlying strata structure and ground control in transition area of fully mechanized mining working face. J. Min. Saf. Eng. 2018, 35, 86–93. [Google Scholar] [CrossRef]
- Wang, X.; Gao, M. Mechanical model of fracture mechanism of stope roof for working face with variable length. J. China Univ. Min. Technol. 2015, 44, 36–45. [Google Scholar]
- Cao, A.; Wang, C.; Dou, L.; Li, Y.; Dong, J.; Gu, Y. Dynamic manifestation mechanism of mining on the island coalface along fault and dynamic pre-warning of seismic waves with seismic tomography. J. Min. Saf. Eng. 2017, 34, 411–417. [Google Scholar] [CrossRef]
- Wang, J.-A.; Jiao, J.-L.; Cheng, W.-D.; Yun, D.-F.; Xie, J.-W.; Shangguan, K.-F. Roles of arc segment in controlling the support stability in longwall fully mechanized top coal caving mining face of steeply inclined coal seam. J. China Coal Soc. 2015, 40, 2361–2369. [Google Scholar] [CrossRef]
- Zhou, N.; Li, Z.; Zhang, J.; Li, B.; Yan, H. Energy evolution and backfilling weakening mechanism of hard rock strata causing dynamic disasters in coal mining district. J. Min. Saf. Eng. 2023, 40, 1078–1091. [Google Scholar] [CrossRef]
- Xie, S.; Chen, D.; Gao, M.; Sun, Y.; Wu, J.; Zhang, T. Fracture regularity of thin plate model of main roof with elastic foundation boundary for backfill mining. J. China Coal Soc. 2017, 42, 2270–2279. [Google Scholar] [CrossRef]
- Xie, S.-R.; Chen, D.-D.; Sun, Y.-D.; Gao, M.-M.; Sun, Y.-J.; Shi, W. Analysis on thin plate model of basic roof at elastic foundation boundary(I): First breaking. J. China Coal Soc. 2016, 41, 1360–1368. [Google Scholar] [CrossRef]
- He, F.; Chen, D.; Xie, S. The kDL effect on the first fracture of main roof with elastic foundation boundary. Chin. J. Rock Mech. Eng. 2017, 36, 1384–1399. [Google Scholar] [CrossRef]
- Chen, D.; Xie, S.; He, F.; Pan, H.; Song, H.; Zeng, J. Fracture rule of main roof thin plate with the elastic foundation boundary and long side coal pillar. J. Min. Saf. Eng. 2018, 35, 1191–1199. [Google Scholar] [CrossRef]
- Zuo, J.; Yu, M.; Sun, Y.; Wu, G. Analysis of fracture mode transformation mechanism and mechanical model of rock strata with different thicknesses. J. China Coal Soc. 2023, 48, 1449–1463. [Google Scholar] [CrossRef]
- Shi, H.; Jiang, F. Mechanical analysis of rupture regularity of hard and massive overlying strata of longwall face. Chin. J. Rock Mech. Eng. 2004, 23, 3066–3069. [Google Scholar]
- Rahmani, O.; Pedram, O. Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int. J. Eng. Sci. 2014, 77, 55–70. [Google Scholar] [CrossRef]
- Xu, B.; Xu, W.; Zhang, Y. Experimental Study on the Characteristics of Overlying Rock Movement in Mining Area. Geotech. Geol. Eng. 2024, 42, 1779–1791. [Google Scholar] [CrossRef]
- Yang, A.-W.; Yang, S.-P.; Lang, R.-Q.; Chen, Z.-H. Three-dimensional mechanical properties of light solidified saline soil. Rock Soil Mech. 2021, 42, 593–600. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, G.; Zhang, K.; Yang, L. Study on Characteristics of Mining Earthquake in Multicoal Seam Mining under Thick and Hard Strata in High Position. Shock Vib. 2021, 2021, 6675089. [Google Scholar] [CrossRef]
- Zhang, G.; Zhou, G.; Wang, L.; Li, Y.; Gu, Y.; Qu, Z.; Zhao, X.; Yin, M.; Wang, F.; Zhang, L. Study on the mechanism and response law of fracture movement on the super-high position hard-thick strata. Sci. Rep. 2023, 13, 22938. [Google Scholar] [CrossRef]
- Zhang, M.; Li, D.; Liu, J.; Zhang, D.; Zhang, Y.; Cui, K. The modification of Mohr-Coulomb criteria based on shape function and determination method of undetermined parameters. Mech. Mater. 2023, 185, 104772. [Google Scholar] [CrossRef]
- Singh, A.; Rao, K.S.; Ayothiraman, R. Study on Mohr–Coulomb-based three-dimensional strength criteria and its application in the stability analysis of vertical borehole. Arab. J. Geosci. 2019, 12, 578. [Google Scholar] [CrossRef]
- Yu, B.; Peng, M.; Tai, Y.; Guo, S. Assessment and control of the mine tremor disaster induced by the energy accumulation and dispersion of thick-hard roofs. Int. J. Min. Sci. Technol. 2024, 34, 925–941. [Google Scholar] [CrossRef]
Mine | Rock Property | Thickness/m | Breaking Step Distance/m | Rock Structure | Thickness-to-Span Ratio |
---|---|---|---|---|---|
Bulianta Coal Mine 22303 Workface | Coarse-grained sandstone | 10.10 | 25.70 | Masonry beam | 0.40 |
Xinyuan Mine 3108 Workface | Fine-grained sandstone | 2.00 | 8.00 | Masonry beam | 0.25 |
Haragou Coal Mine 12 Upper 101 Workface | Fine-grained sandstone | 2.98 | 8.00 | Masonry beam | 0.37 |
Tashan Mine 8108 Workface | Medium-grained sandstone | 11.00 | 52.75 | Masonry beam | 0.21 |
Daliuta Mine 20604 Workface | Sandstone | 16.00 | 14.60 | Stepped rock beam | 1.10 |
Daliuta Mine C202 Workface | Sandstone | 17.30 | 9.00 | Stepped rock beam | 1.92 |
Wulanmulun 12307 Workface | Siltstone | 14.82 | 13.00 | Stepped rock beam | 1.14 |
Huojitu Mine 21305 Workface | Medium-grained sandstone | 11.60 | 12.40 | Stepped rock beam | 0.94 |
Rongda Coal Mine No. 6 coal heading working face | Medium-grained sandstone | 18.22 | 18.90 | Stepped rock beam | 0.96 |
Rongda Coal Mine No. 6 coal heading Workface | Fine-grained sandstone | 7.88 | 6.88 | Stepped rock beam | 1.15 |
Ningtiaota Mine N1200 Workface | Coarse-grained sandstone | 15.00 | 11.78 | Stepped rock beam | 1.25 |
Ningtiaota Mine N1208 Workface | Coarse-grained sandstone | 13.87 | 15.80 | Stepped rock beam | 0.88 |
Ningtiaota Mine N1200-1 Workface | Medium-grained sandstone and Siltstone | 18.00 | 18.00 | Stepped rock beam | 1.00 |
Ningtiaota Mine N1212 Workface | Coarse-grained sandstone and Siltstone | 15.60 | 14.28 | Stepped rock beam | 1.09 |
No. | Cantilever Length L and Thickness h | Elastic Modulus E and Shear Modulus G | Cohesive Strength c and Internal Friction Angle φ | Elastic Foundation Stiffness k/GN/m |
---|---|---|---|---|
Plan I | L = 0~150 m, h = 0~150 m | E = 4 GPa, G = 1.67 GPa | φ = 30°, c = 6 MPa | 1.00 |
Plan II | L = 0~150 m, h = 0~150 m | E = 4 GPa, G = 1.67 GPa | φ = 30°, c = 6 MPa | 0.25, 0.50, 0.75, 1.00 |
Plan III | L = 50 m, h = 20 m | E = 4 GPa, G = 1.67 GPa | φ = 0~90°, c = 0~10 MPa | 0.75 |
Plan IV | L = 50 m, h = 20 m | E = 0~90 GPa, G = 0~45 GPa | φ = 30°, c = 6 MPa | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Peng, M.; Tai, Y.; Ding, J. Shear-Compression Failure Condition of Key Strata Under Elastic Support During Periodic Breakage. Appl. Sci. 2025, 15, 9297. https://doi.org/10.3390/app15179297
Liu H, Peng M, Tai Y, Ding J. Shear-Compression Failure Condition of Key Strata Under Elastic Support During Periodic Breakage. Applied Sciences. 2025; 15(17):9297. https://doi.org/10.3390/app15179297
Chicago/Turabian StyleLiu, Hongjie, Mingxian Peng, Yang Tai, and Jun Ding. 2025. "Shear-Compression Failure Condition of Key Strata Under Elastic Support During Periodic Breakage" Applied Sciences 15, no. 17: 9297. https://doi.org/10.3390/app15179297
APA StyleLiu, H., Peng, M., Tai, Y., & Ding, J. (2025). Shear-Compression Failure Condition of Key Strata Under Elastic Support During Periodic Breakage. Applied Sciences, 15(17), 9297. https://doi.org/10.3390/app15179297