Evaluation of Surface Properties in Biosilica-Reinforced Biobased Polyester Nanocomposites
Abstract
1. Introduction
- Sustainability performance and environmental impact (recycled PET as matrix and a renewable source as reinforcement); it means eco-conscious innovation with added agricultural waste as a solution for biomass utilization,
- Scientific advancement (surface optimization and mechanical reinforcement effect). It demonstrates how chemical surface modifications of nanosilica particles with three silanes (MEMO, VINYL, AMBD) dramatically enhance the wettability and roughness properties of the designed composite, which are critical for adhesion and mechanical performance. Through microhardness and creep tests, it proves how biosilica reinforcement improves long-term stability under load (creep) and how a small part of a second hard segment into the main soft segment of the matrix improves microhardness.
- Industrial aspect—this composite is a dimensional stable material with tailored wettability and durability, and with excellent mechanical properties, suitable for smart packaging or construction materials, but not ideal for moisture-resistant applications. This supports local economies and creates opportunities for green jobs in recycling and bio-refining.
- Economic aspect—this study used low-cost starting material. From the perspective of local economic development, the cost of transporting raw materials for production is minimal.
- ESG criteria—incorporating recycled PET diverts plastic waste from landfills and oceans. Companies adopting these composites can leverage ESG credentials to attract investment and meet regulatory incentives. Life-cycle assessments of the UPR-based composite show a positive reduction in CO2 emissions, compared to fossil-based resins. Another advantage of bio-based thermoset composites such as UPR silica is its end-of-life recyclability and small negative impact on climate change (reduction in CO2). Its social impact is reflected in green job creation with health and safety goals for employees and such solutions are encouraged by the government in many countries.
2. Materials and Methods
2.1. Materials
2.1.1. Preparation and Modification of Biosilica Particles
2.1.2. Preparation of b-UPR Composites
2.2. Methods of Characterization of the Specimens
3. Results and Discussion
3.1. Morphology and Topography of Composite Samples
3.2. Microhardness
3.3. Indentation Creep
3.4. Correlations of Yield Strength and Tensile Strength with Indentation Dwell Time for UPR/Silica-Based Composite
3.5. Contact Angles and Wetting Properties of b-UPR/Silica Composite
4. Conclusions
- As silica concentration rises, particles can disrupt the matrix continuity, leading to microscale texture and increased roughness parameters (Sa, Sq, Sz). Nonmodified silica tends to agglomerate, creating peaks and valleys that elevate surface roughness. Vinyl groups improve compatibility with b-UPR, leading to more uniform distribution and reduced roughness, while AMBD increases roughness. If the surface roughness of the UPR/silica is observed on a macroscale, roughness parameters increase with filler loading, but on the microscale, chemical modification of silica particles (like vinyl) can locally reduce roughness by minimizing agglomerates.
- Higher concentrations of silica particles in b-UPR matrix improve microhardness, because silica particles are inherently hard and adding it to the b-UPR matrix creates a rigid filler network that resists indentation. Modified silica particles with vinyl bond more effectively with the b-UPR matrix, reducing interfacial slippage under load and have maximal microhardness (383.7 ± 10.1 MPa with optimal concentration at 2.5 wt.%).
- For each sample, the tensile strength decreases with increasing indentation time. It is also clear that the silica change has an influence. The pure b-UPR matrix has the lowest strength, while the sample with the vinyl modification of silica particles has the highest strength.
- The creep resistance follows this trend: b-UPR/SiO2-V > b-UPR/SiO2-M > b-UPR/SiO2-AMBD > b-UPR/SiO2 > b-UPR.
- The addition and surface modification of silica particles significantly increase the free surface energy and adhesion of b-UPR composites due to the introduction of silica functionalities and adjusting the surface roughness.
- By selecting appropriate types and amounts of modification (e.g., MEMO, VYNIL, AMBD), it is possible to balance hydrophilicity and hydrophobicity, optimize wettability, and enhance the mechanical properties of the final material.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
b-UPR | Bio-based unsaturated polyester resin |
PET | Polyethylene terephthalate |
RH | Rice husk |
PMMA | Polymethyl methacrylate |
MEMO | 3-trimethoxysilylpropyl methacrylate |
VYNIL | Trimethoxyvinylsilane |
APTES | 3-aminopropyltrimethoxysilane |
AMBD | 3-aminopropyltrimethoxysilane + biodiesel |
ESG | Environmental, social and governance |
AFM | Atomic force microscopy |
FE-SEM | Field emission scanning electron microscope |
TEM | Transmission electron microscope |
MEKP | Methyl ethyl ketone peroxide |
ISE | Indentation size effect |
WCA | Water contact angle |
GCA | Glycerin contact angle |
WA | Work of adhesion |
References
- Salas, N.S.; Gutiérrez, F.O.; Murillo, L.D.M.; Ureña, Y.C.; Johnson, S.; Baudrit, J.V.; González-Paz, R.J. Synthesis and Reinforcement of Thermostable Polymers Using Renewable Resources. J. Renew. Mater. 2017, 5, 313–322. [Google Scholar] [CrossRef]
- Song, J.H.; Murphy, R.J.; Narayan, R.; Davies, G.B.H. Biodegradable and Compostable Alternatives to Conventional Plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2127–2139. [Google Scholar] [CrossRef]
- Ismail, M.S.; Waliuddin, A.M. Effect of Rice Husk Ash on High Strength Concrete. Constr. Build. Mater. 1996, 10, 521–526. [Google Scholar] [CrossRef]
- Siot, A.; Léger, R.; Longuet, C.; Otazaghine, B.; Caro-Bretelle, A.S.; Azéma, N. Dispersion Control of Raw and Modified Silica Particles in PMMA. Impact on Mechanical Properties, from Experiments to Modelling. Compos. Part B Eng. 2019, 157, 163–172. [Google Scholar] [CrossRef]
- Engidaw, A.C.; Betelie, A.A.; Redda, D.T. Extraction and Characterization of Nano-Silica Particles to Enhance Mechanical Properties of General-Purpose Unsaturated Polyester Resin. Sci. Eng. Compos. Mater. 2024, 31, 20240001. [Google Scholar] [CrossRef]
- Mekonen, B.A.; Bogale, T.M. Experimental Investigation of Tensile, Flexural and Hardness Properties of Polyester Resin Echinatus Fiber Reinforced Composite Material. Eng. Solid Mech. 2023, 11, 151–162. [Google Scholar] [CrossRef]
- Chae, G.-S.; Park, H.-W.; Kwon, K.; Shin, S. Comparative Study of the Impact Wedge-Peel Performance of Epoxy Structural Adhesives Modified with Functionalized Silica Nanoparticles. Polymers 2021, 13, 469. [Google Scholar] [CrossRef]
- Abera Betelie, A.; Nicholas Sinclair, A.; Kortschot, M.; Li, Y.; Tilahun Redda, D. Mechanical Properties of Sisal-Epoxy Composites as Functions of Fiber-to-Epoxy Ratio. AIMS Mater. Sci. 2019, 6, 985–996. [Google Scholar] [CrossRef]
- Hossain, S.S.; Bae, C.-J.; Roy, P.K. Recent Progress of Wastes Derived Nano-Silica: Synthesis, Properties, and Applications. J. Clean. Prod. 2022, 377, 134418. [Google Scholar] [CrossRef]
- Indrayani, N.L.; Sadiana, R.; Ramdani, D. Optimization of Unsaturated Polyester Resin Matrix Composite Materials Reinforced Banana (Musa balbisiana) Fronds Composition Towards Tensile Test. E3S Web Conf. 2024, 500, 03014. [Google Scholar] [CrossRef]
- Martínez-López, Á.; Martínez-Barrera, G.; Vigueras-Santiago, E.; Martínez-López, M.; Gencel, O. Mechanical Improvement of Polymer Concrete by Using Aged Polyester Resin, Nanosilica and Gamma Rays. J. Build. Eng. 2022, 58, 105083. [Google Scholar] [CrossRef]
- Ren, K.; Tsai, Y. Thermal Hazard Characteristics of Unsaturated Polyester Resin Mixed with Hardeners. Polymers 2021, 13, 522. [Google Scholar] [CrossRef]
- Embirsh, H.S.A.; Stajčić, I.; Gržetić, J.; Mladenović, I.O.; Anđelković, B.; Marinković, A.; Vuksanović, M.M. Synthesis, Characterization and Application of Biobased Unsaturated Polyester Resin Reinforced with Unmodified/Modified Biosilica Nanoparticles. Polymers 2023, 15, 3756. [Google Scholar] [CrossRef]
- Di Credico, B.; Manzini, E.; Viganò, L.; Canevali, C.; D’Arienzo, M.; Mostoni, S.; Nisticò, R.; Scotti, R. Silica Nanoparticles Self-Assembly Process in Polymer Composites: Towards Advanced Materials. Ceram. Int. 2023, 49, 26165–26181. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, Y.; Rao, Y.; Jiang, A.; Zhang, K.; Lu, T.; Chen, X. Evaluating the Effects of Nanosilica on Mechanical and Tribological Properties of Polyvinyl Alcohol/Polyacrylamide Polymer Composites for Artificial Cartilage from an Atomic Level. Polymers 2019, 11, 76. [Google Scholar] [CrossRef]
- Krishnan, M.R.; Omar, H.; Almohsin, A.; Alsharaeh, E.H. An Overview on Nanosilica–Polymer Composites as High-Performance Functional Materials in Oil Fields. Polym. Bull. 2024, 81, 3883–3933. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, S.; Chen, G.; Wu, L. Preparation and Characterization of Polyester/Silica Nanocomposite Resins. Prog. Org. Coatings 2005, 54, 120–126. [Google Scholar] [CrossRef]
- Suratwala, T.I.; Hanna, M.L.; Miller, E.L.; Whitman, P.K.; Thomas, I.M.; Ehrmann, P.R.; Maxwell, R.S.; Burnham, A.K. Surface Chemistry and Trimethylsilyl Functionalization of Stöber Silica Sols. J. Non. Cryst. Solids 2003, 316, 349–363. [Google Scholar] [CrossRef]
- Young, S.; Gemeinhardt, G.; Sherman, J.; Storey, R.; Mauritz, K.; Schiraldi, D.; Polyakova, A.; Hiltner, A.; Baer, E. Covalent and Non-Covalently Coupled Polyester–Inorganic Composite Materials. Polymer 2002, 43, 6101–6114. [Google Scholar] [CrossRef]
- Bauer, F.; Gläsel, H.-J.; Decker, U.; Ernst, H.; Freyer, A.; Hartmann, E.; Sauerland, V.; Mehnert, R. Trialkoxysilane Grafting onto Nanoparticles for the Preparation of Clear Coat Polyacrylate Systems with Excellent Scratch Performance. Prog. Org. Coat. 2003, 47, 147–153. [Google Scholar] [CrossRef]
- Hu, Y.-H.; Chen, C.-Y.; Wang, C.-C. Viscoelastic Properties and Thermal Degradation Kinetics of Silica/PMMA Nanocomposites. Polym. Degrad. Stab. 2004, 84, 545–553. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Hsu, C.-Y.; Hsu, K.-Y. Poly(Methylmethacrylate)-Silica Nanocomposites Films from Surface-Functionalized Silica Nanoparticles. Polymer 2005, 46, 1851–1856. [Google Scholar] [CrossRef]
- Chan, C.-K.; Chu, I.-M. Phase Behavior and Molecular Chain Environment of Organic–Inorganic Hybrid Materials Based on Poly(n-Butyl Methacrylate-Co-(3-(Methacryloxypropyl)) Trimethoxysilane). Polymer 2001, 42, 6823–6831. [Google Scholar] [CrossRef]
- Tomić, N.Z.; Marinković, A.D.; Balanč, B.; Obradović, V.; Pavlović, V.; Manojlović, V.; Vuksanović, M.M. High-Performance Laminate Material Based on Polyurethane and Epoxide Reinforced by Silica Particles from Rice Husk Used for Intelligent Pedestrian Crossings. Iran. Polym. J. 2021, 30, 319–330. [Google Scholar] [CrossRef]
- Rusmirović, J.D.; Radoman, T.; Džunuzović, E.S.; Džunuzović, J.V.; Markovski, J.; Spasojević, P.; Marinković, A.D. Effect of the Modified Silica Nanofiller on the Mechanical Properties of Unsaturated Polyester Resins Based on Recycled Polyethylene Terephthalate. Polym. Compos. 2017, 38, 538–554. [Google Scholar] [CrossRef]
- Rusmirović, J.D.; Rančić, M.P.; Pavlović, V.B.; Rakić, V.M.; Stevanović, S.; Djonlagić, J.; Marinković, A.D. Cross-Linkable Modified Nanocellulose/Polyester Resin-Based Composites: Effect of Unsaturated Fatty Acid Nanocellulose Modification on Material Performances. Macromol. Mater. Eng. 2018, 303, 1700648. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, J.; Yu, Y.; Zhang, Q.; Chen, T.; Ni, L. Layer-by-Layer Assembled Diatomite Based on Chitosan and Ammonium Polyphosphate to Increase the Fire Safety of Unsaturated Polyester Resins. Powder Technol. 2020, 364, 36–48. [Google Scholar] [CrossRef]
- Sagar, R.; Gaur, M.S.; Kushwah, V.; Rathore, A.; Piliptsou, D.G.; Rogachev, A.A. Preparation, Characterization and Microhardness Measurements of Hybrid Nanocomposites Based on PMMA + P(VDF–TrFE) and Graphene Oxide. Polym. Bull. 2021, 78, 7279–7300. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, X.; Shentu, X.; Li, D. The Application and Development of Electron Microscopy for Three-Dimensional Reconstruction in Life Science: A Review. Cell Tissue Res. 2024, 396, 1–18. [Google Scholar] [CrossRef]
- Vinagre, A.; Barros, C.; Gonçalves, J.; Messias, A.; Oliveira, F.; Ramos, J. Surface Roughness Evaluation of Resin Composites after Finishing and Polishing Using 3D-Profilometry. Int. J. Dent. 2023, 2023, 4078788. [Google Scholar] [CrossRef]
- Knast, P.; Petrů, J.; Legutko, S.; Soos, L.; Pokusova, M. SEM Analysis of Surface Layers with Variable Ra Parameters for Tribological Optimization in Design Engineering. Manuf. Technol. 2025, 25, 185–201. [Google Scholar] [CrossRef]
- Kizu, R.; Misumi, I.; Hirai, A.; Gonda, S.; Takahashi, S. Developmental Framework of Line Edge Roughness Reference Standards for Next-Generation Functional Micro-/Nanostructures. Precis. Eng. 2023, 83, 152–158. [Google Scholar] [CrossRef]
- Mallakpour, S.; Naghdi, M. Polymer/SiO2 Nanocomposites: Production and Applications. Prog. Mater. Sci. 2018, 97, 409–447. [Google Scholar] [CrossRef]
- Vuksanović, M.M.; Mladenović, I.O.; Stupar, S.; Marinković, A.; Heinemann, R.J. Microhardness Measurement Optimization in Green Derived Silica/Polyester Composites Using Response Surface Methodology. Polym. Polym. Compos. 2024, 32, 09673911241228092. [Google Scholar] [CrossRef]
- Price, R.B.; Sullivan, B. Effect of Indenter Load on Vickers Microhardness and Indentation Depth of One Resin Composite. Materials 2024, 17, 6156. [Google Scholar] [CrossRef]
- Abdelrahim, R.A.; Rahim, A.; Elbahrawy, E. The Indentation Size Effect and Its Role in Microhardness Measurements of Two Viscoelastic Materials under Different Loads and Times. Al-Azhar J. Dent. Sci. 2017, 20, 45–51. [Google Scholar] [CrossRef]
- Bokobza, L. Elastomer Nanocomposites: Effect of Filler–Matrix and Filler–Filler Interactions. Polymers 2023, 15, 2900. [Google Scholar] [CrossRef]
- Slouf, M.; Steinhart, M.; Nemecek, P.; Gajdosova, V.; Hodan, J. Correlations between Microscale Indentation Creep and Macroscale Tensile Creep of Polymers. Materials 2023, 16, 834. [Google Scholar] [CrossRef]
- Vuksanovic, M.; Mladenovic, I.; Tomic, N.; Petrovic, M.; Radojevic, V.; Marinkovic, A.; Jancic-Heinemann, R. Mechanical Properties of Biomass-Derived Silica Nanoparticles Reinforced PMMA Composite Material. Sci. Sinter. 2022, 54, 211–221. [Google Scholar] [CrossRef]
- Sargent, P.M.; Ashby, M.F. Indentation Creep. Mater. Sci. Technol. 1992, 8, 594–601. [Google Scholar] [CrossRef]
- Mladenović, I.O.; Lamovec, J.S.; Vasiljević Radović, D.G.; Radojević, V.J.; Nikolić, N.D. Mechanical Features of Copper Coatings Electrodeposited by the Pulsating Current (PC) Regime on Si (111) Substrate. Int. J. Electrochem. Sci. 2020, 15, 12173–12191. [Google Scholar] [CrossRef]
- Farhat, S.; Rekaby, M.; Awad, R. Vickers Microhardness and Indentation Creep Studies for Erbium-Doped ZnO Nanoparticles. SN Appl. Sci. 2019, 1, 546. [Google Scholar] [CrossRef]
- Yang, E.; Pressly, J.F.; Natarajan, B.; Colby, R.; Winey, K.I.; Riggleman, R.A. Understanding Creep Suppression Mechanisms in Polymer Nanocomposites through Machine Learning. Soft Matter 2023, 19, 7580–7590. [Google Scholar] [CrossRef]
- Cahoon, J.R.; Broughton, W.H.; Kutzak, A.R. The Determination of Yield Strength from Hardness Measurements. Metall. Trans. 1971, 2, 1979–1983. [Google Scholar] [CrossRef]
- Pavlina, E.J.; Van Tyne, C.J. Correlation of Yield Strength and Tensile Strength with Hardness for Steels. J. Mater. Eng. Perform. 2008, 17, 888–893. [Google Scholar] [CrossRef]
- Sudirman; Anggaravidya, M.; Budianto, E.; Gunawan, I. Synthesis and Characterization of Polyester-Based Nanocomposite. Procedia Chem. 2012, 4, 107–113. [Google Scholar] [CrossRef]
- Nasution, H.; Harahap, H.; Pandia, S.; Wijaya, F. Comparison of Silica and Zeolite as Fillers on Unsaturated Polyester Resin (UPR) Composites: The Effect on Tensile Properties. In Proceedings of the International Conference of Science, Technology, Engineering, Environmental and Ramification Researches, Medan, Indonesia, 30–31 August 2018; SCITEPRESS-Science and Technology Publications: Lisbon, Portugal, 2018; pp. 227–231. [Google Scholar]
- Takamura, K.; Fischer, H.; Morrow, N.R. Physical Properties of Aqueous Glycerol Solutions. J. Pet. Sci. Eng. 2012, 98–99, 50–60. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Pączkowski, P.; Głogowska, K.; Romanuk, M.; Gawdzik, B. Eco-Friendly Composites Based on Unsaturated Polyester Resin With Casein. Polym. Adv. Technol. 2025, 36, e70229. [Google Scholar] [CrossRef]
- Cheng, F.; Hu, Y.; Li, L. Interfacial Properties of Glass Fiber/Unsaturated Polyester Resin/Poplar Wood Composites Prepared with the Prepreg/Press Process. Fibers Polym. 2015, 16, 911–917. [Google Scholar] [CrossRef]
- Narongdej, P.; Gomez, R.; Tseng, D.; Barjasteh, E.; Moghtadernejad, S. Characterization of Mechanical Properties and Surface Wettability of Epoxy Resin/Benzoxazine Composites in a Simulated Acid Rain Environment. Coatings 2024, 14, 1279. [Google Scholar] [CrossRef]
- Chen, W.; Yu, B.; Zhang, X.; Zhang, F.; Zan, X.; Li, T. Precisely Controlling the Surface Roughness of Silica Nanoparticles for Enhanced Functionalities and Applications. J. Colloid Interface Sci. 2023, 629, 173–181. [Google Scholar] [CrossRef]
- Cheng, Z.; Shan, H.; Sun, Y.; Zhang, L.; Jiang, H.; Li, C. Evolution Mechanism of Surface Hydroxyl Groups of Silica during Heat Treatment. Appl. Surf. Sci. 2020, 513, 145766. [Google Scholar] [CrossRef]
- Nayl, A.A.; Abd-Elhamid, A.I.; Aly, A.A.; Bräse, S. Recent Progress in the Applications of Silica-Based Nanoparticles. RSC Adv. 2022, 12, 13706–13726. [Google Scholar] [CrossRef]
- Adamczyk, A. The Influence of Organically Modified Derivatives of Silica on the Structure and the Wetting Angle Values of Silica Coatings. Coatings 2021, 11, 1058. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Zhou, Q.; Meng, Y.; Zhong, Y.; Xu, J.; Xiao, C.; Zhang, G.; Zhang, Y. Effects of Vinyl Functionalized Silica Particles on Thermal and Mechanical Properties of Liquid Silicone Rubber Nanocomposites. Polymers 2023, 15, 1224. [Google Scholar] [CrossRef]
- Rusen, E.; Diacon, A.; Mocanu, A.; Dumitrescu, A.M.; Dinescu, A. A Facile Approach towards Fabrication of Superhydrophobic PMMA Using Vinyl Functionalized Silica Nanoparticles. Polym. Technol. Mater. 2020, 59, 294–300. [Google Scholar] [CrossRef]
- Rebba, E.; Ivanchenko, P.; Bordignon, S.; Samrout, O.E.; Chierotti, M.R.; Cesano, F.; Berlier, G. Exploring Hydrophobic Surface Modifications in Silica and Alumina Nanomaterials✰. Surf. Interfaces 2024, 51, 104535. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Radovic, I.; Stajcic, A.; Radisavljevic, A.; Veljkovic, F.; Cebela, M.; Mitic, V.V.; Radojevic, V. Solvent effects on structural changes in self-healing epoxy composites. Mater. Chem. Phys. 2020, 256, 123761. [Google Scholar] [CrossRef]
- Zou, H.; Wu, S.; Shen, J. Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar] [CrossRef]
- Azat, S.; Korobeinyk, A.V.; Moustakas, K.; Inglezakis, V.J. Sustainable Production of Pure Silica from Rice Husk Waste in Kazakhstan. J. Clean. Prod. 2019, 217, 352–359. [Google Scholar] [CrossRef]
- Lee, H.; Abarghani, A.; Liu, B.; Shokouhimehr, M.; Ostadhassan, M. Molecular Weight Variations of Kerogen during Maturation with MALDI-TOF-MS. Fuel 2020, 269, 117452. [Google Scholar] [CrossRef]
- Janković, B.; Manić, N.; Radović, I.; Janković, M.; Rajačić, M. Model-Free and Model-Based Kinetics of the Combustion Process of Low Rank Coals with High Ash Contents Using TGA-DTG-DTA-MS and FTIR Techniques. Thermochim. Acta 2019, 679, 178337. [Google Scholar] [CrossRef]
- Rusmirovic, J.D.; Trifkovic, K.T.; Bugarski, B.; Pavlovic, V.B.; Dzunuzovic, J.; Tomic, M.; Marinkovic, A.D. High Performances Unsaturated Polyester Based Nanocomposites: Effect of Vinyl Modified Nanosilica on Mechanical Properties. Express Polym. Lett. 2016, 10, 139–159. [Google Scholar] [CrossRef]
- Lazouzi, G.A.; Vuksanović, M.M.; Tomić, N.; Petrović, M.; Spasojević, P.; Radojević, V.; Jančić Heinemann, R. Dimethyl Itaconate Modified PMMA—Alumina Fillers Composites With Improved Mechanical Properties. Polym. Compos. 2019, 40, 1691–1701. [Google Scholar] [CrossRef]
- Spasojević, P.M.; Panić, V.V.; Džunuzović, J.V.; Marinković, A.D.; Woortman, A.J.J.; Loos, K.; Popović, I.G. High Performance Alkyd Resins Synthesized from Postconsumer PET Bottles. RSC Adv. 2015, 5, 62273–62283. [Google Scholar] [CrossRef]
- Kirshanov, K.; Toms, R.; Melnikov, P.; Gervald, A. Unsaturated Polyester Resin Nanocomposites Based on Post-Consumer Polyethylene Terephthalate. Polymers 2022, 14, 1602. [Google Scholar] [CrossRef]
- Rusmirović, J.D.; Ivanović, J.Z.; Pavlović, V.B.; Rakić, V.M.; Rančić, M.P.; Djokić, V.; Marinković, A.D. Novel Modified Nanocellulose Applicable as Reinforcement in High-Performance Nanocomposites. Carbohydr. Polym. 2017, 164, 64–74. [Google Scholar] [CrossRef] [PubMed]
No. | Sq | Sa | Sp | Sv | Sz |
---|---|---|---|---|---|
b-UPR/SiO2 | 121.3 | 98.1 | 313 | 380 | 693 |
b-UPR/SiO2-AMBD | 223.4 | 159.8 | 1101 | 878 | 1979 |
b-UPR/SiO2-M | 152.3 | 125.6 | 609 | 364 | 974 |
b-UPR/SiO2-V | 120.9 | 83.7 | 909 | 257 | 1165 |
No. | Sq | Sa | Sp | Sv | Sz |
---|---|---|---|---|---|
b-UPR/SiO2 | 198.4 | 169.1 | 444 | 747 | 1192 |
b-UPR/SiO2-AMBD | 235.1 | 215.4 | 415 | 338 | 753 |
b-UPR/SiO2-M | 207.2 | 164.7 | 782 | 449 | 1231 |
b-UPR/SiO2-V | 157.2 | 120.6 | 372 | 706 | 1077 |
No. | Rq | Ra | Rp | Rz |
---|---|---|---|---|
b-UPR | 82.1 | 79.6 | 100 | 96.4 |
b-UPR/SiO2 | 86.3 | 88.7 | 119.0 | 113.4 |
b-UPR/SiO2-AMBD | 84.2 | 87.0 | 169.0 | 157.2 |
b-UPR/SiO2-M | 83.5 | 86.2 | 181.0 | 165.4 |
b-UPR/SiO2-V | 82.7 | 85.6 | 163.0 | 149.8 |
No./C (wt.%) | 1.0 wt.% | 2.5 wt.% | 5.0 wt.% |
---|---|---|---|
Microhardness, H (MPa) | |||
b-UPR/SiO2 | 217.1 ± 4.1 | 242.0 ± 7.3 | 290.4 ± 10.8 |
b-UPR/SiO2-AMBD | 236.3 ± 5.8 | 252.6 ± 8.2 | 299.5 ± 11.8 |
b-UPR/SiO2-M | 246.1 ± 6.1 | 280.1 ± 9.4 | 321.6 ± 12.8 |
b-UPR/SiO2-V | 355.2 ± 6.3 | 383.7 ± 10.1 | 359.7 ± 12.8 |
No. | Slope (k) | Intercept (n) | Regression Coefficient (R2) | Stress Exponent (m) | Modulus of Elasticity (E/MPa) |
---|---|---|---|---|---|
b-UPR | −0.3805 | −0.7882 | 0.9846 | 2.2681 | 276 |
b-UPR/SiO2 | −0.3029 | −0.7936 | 0.9983 | 3.3014 | 412 |
b-UPR/SiO2-AMBD | −0.3018 | −0.5833 | 0.9952 | 3.3134 | 490 |
b-UPR/SiO2-M | −0.2915 | −0.5189 | 0.9932 | 3.4305 | 558 |
b-UPR/SiO2-V | −0.2665 | −0.3308 | 0.9888 | 3.7523 | 607 |
Sample | Water WCA (°) | Glycerin GCA (°) | (mN/m) | (mN/m) | γs (mN/m) | WAwater (mN/m2) | WAglycerin (mN/m2) |
---|---|---|---|---|---|---|---|
b-UPR | 72.20 | 75.40 | 2.58 | 31.44 | 34.02 | 95.09 | 80.17 |
b-UPR + 1 wt.% SiO2 | 45.82 | 61.96 | 0.01 | 75.80 | 75.80 | 123.5 | 94.11 |
b-UPR + 2.5 wt.% SiO2 | 42.55 | 59.70 | 0.02 | 80.09 | 80.11 | 126.4 | 96.31 |
b-UPR + 5 wt.% SiO2 | 34.51 | 57.48 | 0.58 | 95.94 | 96.52 | 132.8 | 98.43 |
b-UPR + 1 wt.% SiO2-M | 47.65 | 61.78 | 0.03 | 73.89 | 73.92 | 121.9 | 94.29 |
b-UPR + 2.5 wt.% SiO2-M | 48.65 | 63.25 | 0.00 | 71.43 | 71.43 | 120.9 | 92.83 |
b-UPR + 5 wt.% SiO2-M | 51.80 | 68.00 | 0.28 | 70.76 | 71.07 | 117.8 | 88.01 |
b-UPR + 1 wt.%SiO2-AMBD | 58.40 | 67.5 | 0.57 | 52.92 | 53.49 | 110.9 | 88.52 |
b-UPR + 2.5 wt.%SiO2AMBD | 60.59 | 68.17 | 1.02 | 48.17 | 49.19 | 108.6 | 87.83 |
b-UPR + 5 wt.% SiO2-AMBD | 62.08 | 69.84 | 0.82 | 47.51 | 48.32 | 106.9 | 86.09 |
b-UPR + 1 wt.% SiO2-V | 49.54 | 64.73 | 0.03 | 72.46 | 72.49 | 120.1 | 91.35 |
b-UPR + 2.5 wt.% SiO2-V | 56.39 | 66.66 | 0.34 | 56.84 | 57.17 | 113.1 | 89.39 |
b-UPR + 5 wt.% SiO2-V | 59.46 | 69.29 | 0.29 | 53.81 | 54.09 | 109.8 | 86.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Embirsh, H.S.A.; Mladenović, I.O.; Radojević, V.; Marinković, A.; Vuksanović, M.M. Evaluation of Surface Properties in Biosilica-Reinforced Biobased Polyester Nanocomposites. Appl. Sci. 2025, 15, 9244. https://doi.org/10.3390/app15179244
Embirsh HSA, Mladenović IO, Radojević V, Marinković A, Vuksanović MM. Evaluation of Surface Properties in Biosilica-Reinforced Biobased Polyester Nanocomposites. Applied Sciences. 2025; 15(17):9244. https://doi.org/10.3390/app15179244
Chicago/Turabian StyleEmbirsh, Hifa Salah Adeen, Ivana O. Mladenović, Vesna Radojević, Aleksandar Marinković, and Marija M. Vuksanović. 2025. "Evaluation of Surface Properties in Biosilica-Reinforced Biobased Polyester Nanocomposites" Applied Sciences 15, no. 17: 9244. https://doi.org/10.3390/app15179244
APA StyleEmbirsh, H. S. A., Mladenović, I. O., Radojević, V., Marinković, A., & Vuksanović, M. M. (2025). Evaluation of Surface Properties in Biosilica-Reinforced Biobased Polyester Nanocomposites. Applied Sciences, 15(17), 9244. https://doi.org/10.3390/app15179244