Effects of Petrophysical Parameters on Sedimentary Rock Strength Prediction: Implications of Machine Learning Approaches
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Location and Data Collection and Preparation
2.2. Research Methodology
3. Results and Discussion
3.1. Datasets Patterns and Efficacy of Predictive Models
3.2. Effects of Petrophysical Parameters on UCS Prediction
3.3. Improved Model Development
4. Conclusions and Recommendations
- The ML-guided data-driven models of LSSVM-CSA and RF are proficient in precisely assessing the dynamic rock strength of UCS.
- The formation and GR are the two most significant petrophysical variables to obtain UCS, and they are verified and confirmed by the LSSVM and RF ML techniques.
- The rank of importance of petrophysical well log variables (higher to lower) is GR E , considering simulated results with data-driven predictive models for clastic sedimentary rocks.
- A new correlation is exhibited for forecasting dynamic UCS profiles of clastic sedimentary rock by implementing GR log to capture the radioactive property concentration and acoustic compressional wave intensity. This correlation was achieved with high precision, succeeding a coefficient of determination, 96% and minimal error.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACV | Aggregate crushing value |
ANFIS | Adaptive neuro fuzzy interference system |
ANN | Artificial neural network |
AIV | Aggregate impact value |
AI | Artificial intelligence |
BTS | Brazilian tensile strength |
CC | Coefficient of determination |
CSA | Coupled simulated annealing |
DT | Decision trees |
E | Modulus of elasticity |
GEP | Gene expression programming |
GR | Gamma-ray |
Slake durability index | |
Point load index | |
LAAV | Los Angeles abrasion value |
LSSVM | Least-squares support vector machine |
ML | Machine learning |
PLS | Point load strength |
RF | Random forest |
R2 | Squared Pearson’s correlation coefficient |
Schmidt hammer rebound number | |
SVM | Support vector machine |
uw | Unit weight |
P-wave velocity in solid part of the sample | |
Compressional wave velocity | |
Shear wave velocity | |
Shale volume | |
wa | Water absorption |
wc | Water content |
Formation bulk density | |
Weight factor | |
Rock porosity |
References
- Miah, M.I. Predictive models and feature ranking in reservoir geomechanics: A critical review and research guidelines. J. Nat. Gas Sci. Eng. 2020, 82, 103493. [Google Scholar] [CrossRef]
- Miller, R.P. Engineering Classification and Index Properties for Intact Rock. Ph.D. Thesis, University of Illinois, Champaign, IL, USA, 1965; p. 6604243. [Google Scholar]
- ASTM D 7012-07; Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens Under Varying States of Stress and Temperatures. American Society for Testing Materials: West Conshohocken, PA, USA, 2010.
- Hoek, E.; Brown, E.T. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Miah, M.I.; Ahmed, S.; Zendehboudi, S.; Butt, S. Machine Learning Approach to Model Rock Strength: Prediction and Variable Selection with Aid of Log Data. Rock Mech. Rock Eng. 2020, 53, 4691–4715. [Google Scholar] [CrossRef]
- Miah, M.I. Improved prediction of shear wave velocity for clastic sedimentary rocks using hybrid model with core data. J. Rock Mech. Geotech. Eng. 2021, 13, 1466–1477. [Google Scholar] [CrossRef]
- Luo, T.; Wang, J.; Chen, L.; Sun, C.; Liu, Q.; Wang, F. Quantitative characterization of the brittleness of deep shales by integrating mineral content, elastic parameters, in situ stress conditions and logging analysis. Int. J. Coal Sci. Technol. 2024, 11, 10. [Google Scholar] [CrossRef]
- Rana, M.R.; Miah, M.I.; Abir, M.A.N. Experimental Study on Rock Strength Parameters for Brittleness Index Evaluation: A Case Study of the Sitakunda Anticline Area, Bengal Basin. J. Pet. Min. Eng. 2025, 26, 87–97. [Google Scholar] [CrossRef]
- Raaen, A.M.; Hovem, K.A.; Joranson, H.; Fjaer, E. FORMEL: A step forward in strength logging. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, Colorado, 6–9 October 1996; Society of Petroleum Engineers: Richardson, TA, USA, 1996. Available online: https://www.osti.gov/biblio/471916 (accessed on 16 June 2025).
- Moos, D.; Zoback, M.D.; Bailey, L. Feasibility study of the stability of openhole multilaterals, Cook Inlet, Alaska. SPE Drill. Complet. 2001, 16, 140–145. [Google Scholar] [CrossRef]
- Chang, C.; Zoback, M.D.; Khaksar, A. Empirical relations between rock strength and physical properties in sedimentary rocks. J. Pet. Sci. Eng. 2006, 51, 223–237. [Google Scholar] [CrossRef]
- Fjær, E.; Holt, R.M.; Raaen, A.M.; Risnes, R.; Horsrud, P. Petroleum related rock mechanics (Vol. 53). In Developments in Petroleum Science; Elsevier: Amsterdam, The Netherlands, 2008; Volume 53. [Google Scholar]
- Zhou, H.; Liu, Z.; Shen, W.; Feng, T.; Zhang, G. Mechanical property and thermal degradation mechanism of granite in thermal-mechanical coupled triaxial compression. Int. J. Rock Mech. Min. Sci. 2022, 160, 105270. [Google Scholar] [CrossRef]
- Huang, F.; Xiong, H.; Chen, S.; Lv, Z.; Huang, J.; Chang, Z.; Catani, F. Slope stability prediction based on a long short-term memory neural network: Comparisons with convolutional neural networks, support vector machines and random forest models. Int. J. Coal Sci. Technol. 2023, 10, 18. [Google Scholar] [CrossRef]
- Wu, W.; Wang, T.; Bai, J.; Liu, J.; Wang, X.; Xu, H.; Feng, G. Failure characteristics and cooperative control strategies for gob-side entry driving near an advancing working face: A case study. Processes 2024, 12, 1398. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, H.; Tan, Q.; Mao, M.; Zhou, B.; Zhang, Y. A generalized early warning criterion for the landslide risk assessment: Deformation probability index (DPI). Acta Geotech. 2024, 19, 2607–2627. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Lin, C.; Yang, Q.; Hamdi, E. Non-monotonic effect of differential stress and temperature on mechanical property and rockburst proneness of granite under high-temperature true triaxial compression. Geomech. Geophys. Geo-Energy Geo-Resour. 2024, 10, 162. [Google Scholar] [CrossRef]
- Liu, G.; Kang, J.; Zhong, Z.; Bo, W.; Fan, H.; Yang, C. Laboratory Experiments and 3D DDA Numerical Simulations on Rockfall Movement Characteristics: G. Liu et al. Rock Mech. Rock Eng. 2025, 58, 9747–9769. [Google Scholar] [CrossRef]
- Miah, M.I.; Ahmed, S.; Zendehboudi, S. Model development for shear sonic velocity using petrophysical log data: Sensitivity analysis and statistical assessment. J. Nat. Gas Sci. Eng. 2021, 88, 103778. [Google Scholar] [CrossRef]
- Hsieh, B.Z.; Wang, C.W.; Lin, Z.S. Estimation of formation strength index of aquifer from neural networks. Comput. Geosci. 2009, 35, 1933–1939. [Google Scholar] [CrossRef]
- Moussas, V.C.; Diamantis, K. Predicting uniaxial compressive strength of serpentinites through physical, dynamic and mechanical properties using neural networks. J. Rock Mech. Geotech. Eng. 2021, 13, 167–175. [Google Scholar] [CrossRef]
- Anemangely, M.; Ramezanzadeh, A.; Behboud, M.M. Geomechanical parameter estimation from mechanical specific energy using artificial intelligence. J. Pet. Sci. Eng. 2019, 175, 407–429. [Google Scholar] [CrossRef]
- Khan, N.M.; Cao, K.; Yuan, Q.; Bin Mohd Hashim, M.H.; Rehman, H.; Hussain, S.; Emad, M.Z.; Ullah, B.; Shah, K.S.; Khan, S. Application of machine learning and multivariate statistics to predict uniaxial compressive strength and static Young’s modulus using physical properties under different thermal conditions. Sustainability 2022, 14, 9901. [Google Scholar] [CrossRef]
- Jan, M.S.; Hussain, S.; e Zahra, R.; Emad, M.Z.; Khan, N.M.; Rehman, Z.U.; Cao, K.; Alarifi, S.S.; Raza, S.; Sherin, S.; et al. Appraisal of different artificial intelligence techniques for the prediction of marble strength. Sustainability 2023, 15, 8835. [Google Scholar] [CrossRef]
- Kilic, K.; Ikeda, H.; Adachi, T.; Kawamura, Y. Soft ground tunnel lithology classification using clustering-guided light gradient boosting machine. J. Rock Mech. Geotech. Eng. 2023, 15, 2857–2867. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, C.; Tang, H.; Wen, T.; Tannant, D.D.; Zhang, B. Input-parameter optimization using a SVR based ensemble model to predict landslide displacements in a reservoir area–A comparative study. Appl. Soft Comput. 2024, 150, 111107. [Google Scholar] [CrossRef]
- Davoodi, S.; Mehrad, M.; Wood, D.A.; Rukavishnikov, V.S.; Bajolvand, M. Predicting uniaxial compressive strength from drilling variables aided by hybrid machine learning. Int. J. Rock Mech. Min. Sci. 2023, 170, 105546. [Google Scholar] [CrossRef]
- Arachchilage, C.B.; Fan, C.; Zhao, J.; Huang, G.; Liu, W.V. A machine learning model to predict unconfined compressive strength of alkali-activated slag-based cemented paste backfill. J. Rock Mech. Geotech. Eng. 2023, 15, 2803–2815. [Google Scholar] [CrossRef]
- Bahmed, I.T.; Khatti, J.; Grover, K.S. Hybrid soft computing models for predicting unconfined compressive strength of lime stabilized soil using strength property of virgin cohesive soil. Bull. Eng. Geol. Environ. 2024, 83, 46. [Google Scholar] [CrossRef]
- Deressa, G.W.; Choudhary, B.S. Evaluating Productivity in Opencast Mines: A Machine Learning Analysis of Drill-Blast and Surface Miner Operations. Nat. Resour. Res. 2025, 34, 215–251. [Google Scholar] [CrossRef]
- Sharma, M.R.; O’Regan, M.; Baxter, C.D.P.; Moran, K.; Vaziri, H.; Narayanasamy, R. Empirical relationship between strength and petrophysical properties for weakly cemented formations. J. Pet. Sci. Eng. 2010, 72, 134–142. [Google Scholar] [CrossRef]
- Rabbani, E.; Sharif, F.; Salooki, M.K.; Moradzadeh, A. Application of neural network technique for prediction of uniaxial compressive strength using reservoir formation properties. Int. J. Rock Mech. Min. Sci. 2012, 56, 100–111. [Google Scholar] [CrossRef]
- Yagiz, S.; Sezer, E.A.; Gokceoglu, C. Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. Int. J. Numer. Anal. Methods Geomech. 2012, 36, 1636–1650. [Google Scholar] [CrossRef]
- Ceryan, N.; Okkan, U.; Kesimal, A. Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks. Environ. Earth Sci. 2013, 68, 807–819. [Google Scholar] [CrossRef]
- Momeni, E.; Jahed Armaghani, D.; Hajihassani, M.; Amin, M.F.M. Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 2015, 60, 50–63. [Google Scholar] [CrossRef]
- Mohamad, E.T.; Armaghani, D.J.; Momeni, E.; Abad, S.V.A.N.K. Prediction of the unconfined compressive strength of soft rocks: A PSO-based ANN approach. Bull. Eng. Geol. Environ. 2015, 74, 745–757. [Google Scholar] [CrossRef]
- Barzegar, R.; Sattarpour, M.; Nikudel, M.R.; Moghaddam, A.A. Comparative evaluation of artificial intelligence models for prediction of uniaxial compressive strength of travertine rocks, case study: Azarshahr area, NW Iran. Model. Earth Syst. Environ. 2016, 2, 76. [Google Scholar] [CrossRef]
- Behnia, D.; Behnia, M.; Shahriar, K.; Goshtasbi, K. A new predictive model for rock strength parameters utilizing GEP method. Procedia Eng. 2017, 191, 591–599. [Google Scholar] [CrossRef]
- Tariq, Z.; Elkatatny, S.; Mahmoud, M.; Ali, A.Z.; Abdulraheem, A. A new technique to develop rock strength correlation using artificial intelligence tools. In Proceedings of the SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, United Arab Emirates, 8–10 May 2017; Society of Petroleum Engineers: Richardson, TA, USA, 2017. [Google Scholar] [CrossRef]
- Onalo, D.; Adedigba, S.; Khan, F.; James, L.A.; Butt, S. Data driven model for sonic well log prediction. J. Pet. Sci. Eng. 2018, 170, 1022–1037. [Google Scholar] [CrossRef]
- Abdi, Y.; Garavand, A.T.; Sahamieh, R.Z. Prediction of strength parameters of sedimentary rocks using artificial neural networks and regression analysis. Arab. J. Geosci. 2018, 11, 587. [Google Scholar] [CrossRef]
- Liu, Z.; Li, D.; Liu, Y.; Yang, B.; Zhang, Z.X. Prediction of uniaxial compressive strength of rock based on lithology using stacking models. Rock Mech. Bull. 2023, 2, 100081. [Google Scholar] [CrossRef]
- Afolagboye, L.O.; Ajayi, D.E.; Afolabi, I.O. Machine learning models for predicting unconfined compressive strength: A case study for Precambrian basement complex rocks from Ado-Ekiti, Southwestern Nigeria. Sci. Afr. 2023, 20, 01715. [Google Scholar] [CrossRef]
- Malkawi, D.A.; Rabab’ah, S.R.; Sharo, A.A.; Aldeeky, H.; Al-Souliman, G.K.; Saleh, H.O. Enhancing of uniaxial compressive strength of travertine rock prediction through machine learning and multivariate analysis. Results Eng. 2023, 20, 101593. [Google Scholar] [CrossRef]
- Zhao, J.; Li, D.; Jiang, J.; Luo, P. Uniaxial compressive strength prediction for rock material in deep mine using Boosting-Based machine learning methods and optimization algorithms. Comput. Model. Eng. Sci. 2024, 140, 275–304. [Google Scholar] [CrossRef]
- Amiri, M.; Amiri, M.; Karrari, S.S.; Moradi, S. Predicting uniaxial compressive strength of different rocks using principal component analysis and deep neural network. J. Geomine 2024, 2, 78–89. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Miah, M.I. Data-driven resilient model development and feature selection for rock compressive strength prediction using machine learning and transformer techniques. Earth Sci. Inform. 2025, 18, 293. [Google Scholar] [CrossRef]
- Cao, W. A comparative study of hybrid adaptive neuro-fuzzy inference systems to predict the unconfined compressive strength of rocks. J. Eng. Appl. Sci. 2025, 72, 3. [Google Scholar] [CrossRef]
- Miah, M.I.; Ovi, M.A. Log Data-Driven Prediction of Rock Strength Using Least-Square Support Vector Machine Approach: Case Study of a Gas Well Reservoir. J. Chem. Eng. IEB 2024, ChE 32, 8–15. Available online: https://www.iebbd.org/upload/journal/20240419_1517749758_330116784.PDF (accessed on 22 June 2025).
- Adjei, S.; Gowida, A.; Elkatatny, S.; Oleka, J.O. Optimized Gradient Boosting Models for Adaptive Prediction of Uniaxial Compressive Strength in Carbonate Rocks Using Drilling Data. ACS Omega 2025, 10, 11016–11026. [Google Scholar] [CrossRef]
- Komadja, G.C.; Westman, E.; Rana, A.; Vitalis, A. Predicting rock mass strength from drilling data using synergistic unsupervised and supervised machine learning approaches. Earth Sci. Inform. 2025, 18, 1–15. [Google Scholar] [CrossRef]
- Khatti, J.; Grover, K.S. Estimation of Uniaxial Strength of Rock: A Comparison between Bayesian-Optimized Machine Learning Models. Min. Metall. Explor. 2025, 42, 133–154. [Google Scholar] [CrossRef]
- Miah, M.I.; Howlader, M.F. Prediction of formation water resistivity from Rwa analysis of Titas gas field using wireline log data. J. Pet. Gas Explor. Res. (JPGER) 2012, 2, 57–60. [Google Scholar]
- Miah, M.I. Porosity assessment of gas reservoir using wireline log data: A case study of bokabil formation, Bangladesh. Procedia Eng. 2014, 90, 663–668. [Google Scholar] [CrossRef]
- Roy, A.B.; Chatterjee, A. Tectonic framework and evolutionary history of the Bengal Basin in the Indian subcontinent. Curr. Sci. 2015, 109, 271–279. Available online: www.jstor.org/stable/24905853 (accessed on 15 June 2025).
- Hossain, M.S.; Xiao, W.; Khan, M.S.H.; Chowdhury, K.R.; Ao, S. Geodynamic model and tectono-structural framework of the Bengal Basin and its surroundings. J. Maps 2020, 16, 445–458. [Google Scholar] [CrossRef]
- Miah, M.I.; Abir, M.A.N.; Shuvo, M.A.I. Improved model development and feature ranking for rock permeability prediction by coupling petrophysical log data and ensemble machine learning techniques. Earth Sci. Inform. 2025, 18, 93. [Google Scholar] [CrossRef]
- Suykens, J.A.; De Brabanter, J.; Lukas, L.; Vandewalle, J. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing 2002, 48, 85–105. [Google Scholar] [CrossRef]
- Xavier-de-Souza, S.; Suykens, J.A.; Vandewalle, J.; Bollé, D. Coupled simulated annealing. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2009, 40, 320–335. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
Investigator (s) | Input Variables | ML Approach | Features Selections |
---|---|---|---|
Sharma et al. [31] | , Vsh, Vp, Vs | ANN | No |
Rabbani et al. [32] | , , | ANN | No |
Yagiz et al. [33] | , , Id, Vp, uw | ANN | No |
Ceryan et al. [34] | , Vp, Vm | ANN | No |
Momeni et al. [35] | , Vp | ANN | No |
Mohamad et al. [36] | , , BTS, Vp | ANN | No |
Barzegar et al. [37] | , , Vp | ANN, ANFIS, SVM | No |
Behnia et al. [38] | , quartz content | GEP | No |
Tariq et al. [39] | E, , Vs, Vp | ANN, ANFIS, SVM | No |
Onalo et al. [40] | GR, , Vsh | ANN | No |
Abdi et al. [41] | , , wa, Vp | ANN | No |
Liu et al. [42] | Vp, PLS, | Extreme Tree | Yes |
Afolagboye et al. [43] | , AIV, ACV, LAAV | ANN, RF, RVM, SVM | Yes |
Malkawi et al. [44] | , , PLS | ANN, KNN, Extreme Tree | Yes |
Zhao et al. [45] | , ,Vp | AdaBoost-ABC, XGB-ABC | No |
Amiri et al. [46] | , Vp, , BTS, wa | DNN | No |
Rahaman and Miah [47] | , , Vp, | ANN, CNN, TF, SVM | Yes |
Cao [48] | , , Vp, , BTS, wa | ANFIS | No |
Statistical Values | (API) | (gm/cm3) | (km/sec) | (km/sec) | (GPa) | (MPa) |
---|---|---|---|---|---|---|
Mean | 100.19 | 2.37 | 3.2893 | 1.7927 | 19.61 | 31.13 |
Maximum | 157.82 | 2.53 | 3.5506 | 1.9903 | 24.17 | 42.60 |
Minimum | 76.28 | 2.30 | 3.1294 | 1.6498 | 17.02 | 26.57 |
STD | 13.84 | 0.04 | 0.0862 | 0.0702 | 1.47 | 2.76 |
Standard error | 1.023 | 0.003 | 0.006 | 0.005 | 0.108 | 0.204 |
Kurtosis | 3.816 | 2.745 | 0.554 | 0.323 | 0.562 | 4.545 |
Skewness | 1.588 | 1.563 | 0.359 | -0.079 | 0.341 | 1.748 |
Confidence level (95%) | 2.018 | 0.006 | 0.013 | 0.010 | 0.214 | 0.402 |
Variables | GR | Vp | Vs | E | UCS | |
---|---|---|---|---|---|---|
GR | 1 | |||||
0.52 | 1 | |||||
Vp | 0.59 | 0.31 | 1 | |||
Vs | 0.43 | -0.034 | 0.94 | 1 | ||
E | 0.58 | 0.28 | 0.99 | 0.95 | 1 | |
UCS | 0.91 | 0.64 | 0.84 | 0.65 | 0.83 | 1 |
Model Scheme | Input Variables | Excluded Variable | CC (%) Train (Test) | AAPE (%) Train (Test) | MAPE (%) Train (Test) | Feature Ranking |
---|---|---|---|---|---|---|
A | , , , E | GR | 90.92 (89.64) | 1.97 (2.63) | 8.08 (8.47) | 1 |
B | GR, , , E | 98.31 (94.97) | 1.27 (1.32) | 2.79 (5.99) | 2 | |
C | GR, , , | E | 99.32 (95.42) | 0.64 (1.18) | 3.51 (5.36) | 3 |
D | GR, , , E | 99.36 (96.62) | 0.44 (1.09) | 3.24 (4.06) | 4 | |
E | GR, , , E | 1.00 (99.60) | 0.01 (0.02) | 2.02 (3.22) | 5 |
Model Scheme | Input Variables | Excluded Variable | CC (%) Train (Test) | AAPE (%) Train (Test) | MAPE (%) Train (Test) | Feature Ranking |
---|---|---|---|---|---|---|
A | , , , E | GR | 95.65 (83.46) | 1.19 (2.69) | 6.13 (9.26) | 1 |
B | GR, , , E | 98.31 (94.97) | 0.47 (1.22) | 2.69 (5.99) | 2 | |
C | GR, , , | E | 99.32 (95.42) | 0.44 (1.08) | 2.71 (5.36) | 3 |
D | GR, , , E | 99.26 (95.62) | 0.43 (1.09) | 2.24 (4.06) | 4 | |
E | GR, , , E | 99.915 (96.739) | 0.31 (0.98) | 1.19 (3.67) | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miah, M.I.; Elghoul, A.; Butt, S.D.; Wiens, T. Effects of Petrophysical Parameters on Sedimentary Rock Strength Prediction: Implications of Machine Learning Approaches. Appl. Sci. 2025, 15, 9158. https://doi.org/10.3390/app15169158
Miah MI, Elghoul A, Butt SD, Wiens T. Effects of Petrophysical Parameters on Sedimentary Rock Strength Prediction: Implications of Machine Learning Approaches. Applied Sciences. 2025; 15(16):9158. https://doi.org/10.3390/app15169158
Chicago/Turabian StyleMiah, Mohammad Islam, Ahmed Elghoul, Stephen D. Butt, and Travis Wiens. 2025. "Effects of Petrophysical Parameters on Sedimentary Rock Strength Prediction: Implications of Machine Learning Approaches" Applied Sciences 15, no. 16: 9158. https://doi.org/10.3390/app15169158
APA StyleMiah, M. I., Elghoul, A., Butt, S. D., & Wiens, T. (2025). Effects of Petrophysical Parameters on Sedimentary Rock Strength Prediction: Implications of Machine Learning Approaches. Applied Sciences, 15(16), 9158. https://doi.org/10.3390/app15169158