Unconventional Material from In Vitro Plant Cell Cultures: Vitis labrusca var. Isabella Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Callus Cell Line Establishment
2.3. Preliminary Colourimetric Assays
2.4. Quali-Quantitative Analyses
2.5. Nutritional Analyses
2.5.1. Elemental Analysis and Protein Content During the Growth Cycle
2.5.2. Nutritional Label
2.6. Statistical Analysis
3. Results and Discussion
3.1. Callus Cell Lines Establishment
3.2. Preliminary Colourimetric Essays
3.3. Quali-Quantitative Analyses
3.4. Nutritional Analysis
3.4.1. Elemental Analysis and Protein Content During the Growth Cycle
3.4.2. Nutritional Label
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toaldo, I.M.; Cruz, F.A.; Alves, T.D.L.; De Gois, J.S.; Borges, D.L.G.; Cunha, H.P.; Da Silva, E.L.; Bordignon-Luiz, M.T. Bioactive Potential of Vitis labrusca L. Grape Juices from the Southern Region of Brazil: Phenolic and Elemental Composition and Effect on Lipid Peroxidation in Healthy Subjects. Food Chem. 2015, 173, 527–535. [Google Scholar] [CrossRef]
- Pacifico, S.; D’Abrosca, B.; Scognamiglio, M.; Gallicchio, M.; Potenza, N.; Piccolella, S.; Russo, A.; Monaco, P.; Fiorentino, A. Metabolic Profiling of Strawberry Grape (Vitis × Labruscana Cv. ‘Isabella’) Components by Nuclear Magnetic Resonance (NMR) and Evaluation of Their Antioxidant and Antiproliferative Properties. J. Agric. Food Chem. 2011, 59, 7679–7687. [Google Scholar] [CrossRef] [PubMed]
- Jagdale, Y.D.; Mahale, S.V.; Zohra, B.; Nayik, G.A.; Dar, A.H.; Khan, K.A.; Abdi, G.; Karabagias, I.K. Nutritional Profile and Potential Health Benefits of Super Foods: A Review. Sustainability 2021, 13, 9240. [Google Scholar] [CrossRef]
- Fernández-Ríos, A.; Laso, J.; Aldaco, R.; Margallo, M. Superfoods: A Super Impact on Health and the Environment? Curr. Opin. Environ. Sci. Health 2023, 31, 100410. [Google Scholar] [CrossRef]
- Keskin, N.; Bilir Ekbic, H.; Kaya, O.; Keskin, S. Antioxidant Activity and Biochemical Compounds of Vitis vinifera L. (Cv. ‘Katıkara’) and Vitis labrusca L. (Cv. ‘Isabella’) Grown in Black Sea Coast of Turkey. Erwerbs-Obstbau 2021, 63, 115–122. [Google Scholar] [CrossRef]
- Kavgacı, M.; Yukunc, G.O.; Keskin, M.; Can, Z.; Kolaylı, S. Comparison of Phenolic Profile and Antioxidant Properties of Pulp and Seeds of Two Different Grapes Types (Vitis vinifera L. and Vitis labrusca L.) Grown in Anatolia: The Amount of Resveratrol of Grape Samples. Chem. Afr. 2023, 6, 2463–2469. [Google Scholar] [CrossRef]
- Yamamoto, L.Y.; De Assis, A.M.; Roberto, S.R.; Bovolenta, Y.R.; Nixdorf, S.L.; García-Romero, E.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Application of Abscisic Acid (S-ABA) to Cv. Isabel Grapes (Vitis vinifera × Vitis labrusca) for Color Improvement: Effects on Color, Phenolic Composition and Antioxidant Capacity of Their Grape Juice. Food Res. Int. 2015, 77, 572–583. [Google Scholar] [CrossRef]
- Kurt-Celebi, A.; Colak, N.; Hayirlioglu-Ayaz, S.; Kostadinović Veličkovska, S.; Ilieva, F.; Esatbeyoglu, T.; Ayaz, F.A. Accumulation of Phenolic Compounds and Antioxidant Capacity during Berry Development in Black ‘Isabel’ Grape (Vitis vinifera L. × Vitis labrusca L.). Molecules 2020, 25, 3845. [Google Scholar] [CrossRef]
- Ozkan, K.; Karadag, A.; Sagdic, O.; Ozcan, F.S.; Ozer, H. The Effects of Different Drying Methods on the Sugar, Organic Acid, Volatile Composition, and Textural Properties of Black ‘Isabel’ Grape. Food Meas. 2023, 17, 1852–1861. [Google Scholar] [CrossRef]
- Spinelli, F.R.; André, J.A.; Celso, P.G.; Vicenzi, M.S.; Kinast, E.J.; Lamb, C.R.C.; Bertoldo, G. Soluble Solids Profile of Brazilian Vitis labrusca and Hybrid Grape Musts, from the 2012–2022 Harvest. J. Food Compos. Anal. 2024, 125, 105797. [Google Scholar] [CrossRef]
- Colak, N.; Bengu, A.S. Ripening-Related Changes in the Nutritional Profile of a Little-Known Red ‘Isabel’ Grape (Vitis vinifera L. × Vitis labrusca L.). Appl. Fruit Sci. 2024, 66, 1877–1889. [Google Scholar] [CrossRef]
- Santos, L.P.; Morais, D.R.; Souza, N.E.; Cottica, S.M.; Boroski, M.; Visentainer, J.V. Phenolic Compounds and Fatty Acids in Different Parts of Vitis labrusca and V. vinifera Grapes. Food Res. Int. 2011, 44, 1414–1418. [Google Scholar] [CrossRef]
- Magrach, A.; Sanz, M.J. Environmental and Social Consequences of the Increase in the Demand for ‘Superfoods’ World-wide. People Nat. 2020, 2, 267–278. [Google Scholar] [CrossRef]
- Oluyemi, G.F.; Afolabi, R.O.; Zamora, S.C.; Li, Y.; McElroy, D. Environmental Impact Assessment of a Plant Cell-Based Bio-Manufacturing Process for Producing Plant Natural Product Ingredients. Sustainability 2024, 16, 8515. [Google Scholar] [CrossRef]
- Nordlund, E.; Lille, M.; Silventoinen, P.; Nygren, H.; Seppänen-Laakso, T.; Mikkelson, A.; Aura, A.-M.; Heiniö, R.-L.; Nohynek, L.; Puupponen-Pimiä, R.; et al. Plant Cells as Food—A Concept Taking Shape. Food Res. Int. 2018, 107, 297–305. [Google Scholar] [CrossRef]
- FAO. How to Feed the World in 2050. World Summit on Food Security. Rome 16–18 November 2009. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (accessed on 2 July 2025).
- Department of Economic and Social Affairs—Population Division. World Population Prospects. The 2017 Revision Volume I: Comprehensive Tables. United Nations, New York, 2017. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Jan/un_2017_world_population_prospects-2017_revision_volume-i_comprehensive-tables.pdf (accessed on 2 July 2025).
- Molotoks, A.; Stehfest, E.; Doelman, J.; Albanito, F.; Fitton, N.; Dawson, T.P.; Smith, P. Global Projections of Future Cropland Expansion to 2050 and Direct Impacts on Biodiversity and Carbon Storage. Glob. Change Biol. 2018, 24, 5895–5908. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kärkkäinen, E.; Häkkinen, S.T.; Nohynek, L.; Ritala, A.; Rischer, H.; Tuomisto, H.L. Life Cycle Assessment of Plant Cell Cultures. Sci. Total Environ. 2022, 808, 151990. [Google Scholar] [CrossRef] [PubMed]
- Errico, S.; Mastrobuono, V.; Pagliarello, R.; Bennici, E.; Tavazza, R.; Verardi, A.; Presenti, O.; Panozzo, M.; Sangiorgio, P.; Massa, S. Consumer Acceptance of Edible Hydrogels Obtained by Plant Cell Culture Technology and By-Products Valorization: An Italian Case Study for Future Innovation of the Plate. Innov. Food Sci. Emerg. Technol. 2025, 100, 103893. [Google Scholar] [CrossRef]
- Krasteva, G.; Georgiev, V.; Pavlov, A. Recent Applications of Plant Cell Culture Technology in Cosmetics and Foods. Eng. Life Sci. 2021, 21, 68–76. [Google Scholar] [CrossRef]
- Davies, K.M.; Deroles, S.C. Prospects for the Use of Plant Cell Cultures in Food Biotechnology. Curr. Opin. Biotechnol. 2014, 26, 133–140. [Google Scholar] [CrossRef]
- Eibl, R.; Senn, Y.; Gubser, G.; Jossen, V.; Van Den Bos, C.; Eibl, D. Cellular Agriculture: Opportunities and Challenges. Annu. Rev. Food Sci. Technol. 2021, 12, 51–73. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Experimental Cell Research. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Li, H.B.; Cheng, K.W.; Wong, C.C.; Fan, K.X.; Chen, F.; Jiang, Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007, 102, 771–776. [Google Scholar] [CrossRef]
- Suriyaprom, S.; Kaewkod, T.; Promputtha, I.; Desvaux, M.; Tragoolpua, Y. Evaluation of Antioxidant and Antibacterial Activities of White Mulberry (Morus alba L.) Fruit Extracts. Plants 2021, 10, 2736. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.B. Factors for Converting Percentages of Nitrogen in Foods and Feeds into Percentages of Proteins. Circular 1931, 183, 1–16. [Google Scholar]
- Baldini, M.; Fabietti, F.; Giammaroli, S.; Onori, R.; Orefice, L.; Stacchini, A. Methods of analysis for the chemical control of foods. In ISTISAN 96/34; Istituto Superiore di Sanità: Rome, Italy, 1996. [Google Scholar]
- ISO 1871:2009; Food and Feed Products. ISO: Geneva, Switzerland, 2009.
- AOAC 985.29-1986; Total Dietary Fiber in Foods. Enzymatic-Gravimetric Method. Association of Official Agricultural Chemists: Gaithersburg, MA, USA, 2003.
- Dixon, R.A. (Ed.) Isolation and Maintenance of Callus and Cell Suspension Cultures. In Plant Cell Culture—A Pratical Approach; IRL Press: Washington, DC, USA, 1985. [Google Scholar]
- Moriguchi, T.; Kozaki, I.; Matsuta, N.; Yamaki, S. Plant Regeneration from Grape Callus Stored under a Combination of Low Temperature and Silicone Treatment. Plant Cell Tiss. Organ Cult. 1988, 15, 67–71. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Wen, P.-F.; Kong, W.-F.; Pan, Q.-H.; Zhan, J.-C.; Li, J.-M.; Wan, S.-B.; Huang, W.-D. Effect of Salicylic Acid on Phenylpropanoids and Phenylalanine Ammonia-Lyase in Harvested Grape Berries. Postharvest Biol. Technol. 2006, 40, 64–72. [Google Scholar] [CrossRef]
- Santamaria, A.R.; Mulinacci, N.; Valletta, A.; Innocenti, M.; Pasqua, G. Effects of Elicitors on the Production of Resveratrol and Viniferins in Cell Cultures of Vitis vinifera L. Cv Italia. J. Agric. Food Chem. 2011, 59, 9094–9101. [Google Scholar] [CrossRef]
- Taurino, M.; Ingrosso, I.; D’amico, L.; De Domenico, S.; Nicoletti, I.; Corradini, D.; Santino, A.; Giovinazzo, G. Jasmonates Elicit Different Sets of Stilbenes in Vitis vinifera Cv. Negramaro Cell Cultures. SpringerPlus 2015, 4, 49. [Google Scholar] [CrossRef]
- Lambert, C.; Lemaire, J.; Auger, H.; Guilleret, A.; Reynaud, R.; Clément, C.; Courot, E.; Taidi, B. Optimize, Modulate, and Scale-up Resveratrol and Resveratrol Dimers Bioproduction in Vitis labrusca L. Cell Suspension from Flasks to 20 L Bioreactor. Plants 2019, 8, 567. [Google Scholar] [CrossRef] [PubMed]
- Jeandet, P.; Clément, C.; Tisserant, L.-P.; Crouzet, J.; Courot, É. Use of Grapevine Cell Cultures for the Production of Phytostilbenes of Cosmetic Interest. Comptes Rendus Chim. 2016, 19, 1062–1070. [Google Scholar] [CrossRef]
- Gray, D.J.; Trigiano, R.N. Introducing to Plant Tissue Culture. In Plant Tissue Culture Concepts and Laboratory Exercises; Trigiano, R.N., Gray, D.J., Eds.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Chen, J.; Hall, D.E.; Murata, J.; De Luca, V. L-Alanine Induces Programmed Cell Death in V. labrusca Cell Suspension Cultures. Plant Sci. 2006, 171, 734–744. [Google Scholar] [CrossRef]
- Plant Tissue Culture for Biotechnology. In Plant Biotechnology and Agriculture; Elsevier: Amsterdam, The Netherlands, 2012; pp. 131–138. ISBN 978-0-12-381466-1.
- Hazrati, R.; Zare, N.; Asghari-Zakaria, R.; Sheikhzadeh, P.; Johari-Ahar, M. Factors Affecting the Growth, Antioxidant Potential, and Secondary Metabolites Production in Hazel Callus Cultures. AMB Expr. 2022, 12, 1–16. [Google Scholar] [CrossRef]
- Orcan, P.; Orcan, M.Y. Insights into Total Phenolic, Flavonoid, and Antioxidant Activity of Callus Subculture Frequency in Rare Endemic Ajuga xylorrhiza Kit Tan. Sci. Rep. 2024, 14, 31720. [Google Scholar] [CrossRef]
- Loyola-Vargas, V.M.; Ochoa-Alejo, N. (Eds.) Plant Cell Culture Protocols; Methods in Molecular Biology; Springer New York: New York, NY, USA, 2018; Volume 1815, ISBN 978-1-4939-8593-7. [Google Scholar]
- Efferth, T. Biotechnology Applications of Plant Callus Cultures. Engineering 2019, 5, 50–59. [Google Scholar] [CrossRef]
- Prashant, S.P.; Bhawana, M. An Update on Biotechnological Intervention Mediated by Plant Tissue Culture to Boost Secondary Metabolite Production in Medicinal and Aromatic Plants. Physiol. Plant. 2024, 176, e14400. [Google Scholar] [CrossRef]
- Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of Plant Secondary Metabolites: A Historical Perspective. Plant Sci. 2001, 161, 839–851. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Farkya, S.; Srivastava, A.K.; Bisaria, V.S. Bioprocess Considerations for Production of Secondary Metabolites by Plant Cell Suspension Cultures. Biotechnol. Bioprocess Eng. 2002, 7, 138–149. [Google Scholar] [CrossRef]
- Pan, Y.; Li, L.; Xiao, S.; Chen, Z.; Sarsaiya, S.; Zhang, S.; ShangGuan, Y.; Liu, H.; Xu, D. Callus Growth Kinetics and Accumulation of Secondary Metabolites of Bletilla striata Rchb.f. Using a Callus Suspension Culture. PLoS ONE 2020, 15, e0220084. [Google Scholar] [CrossRef]
- Gomulski, J.; Krzemińska, M.; Jochymek, M.; Kiss, A.K.; Grzegorczyk-Karolak, I. The Influence of Basal Medium on Polyphenol Accumulation in Shoot Cultures of Clerodendrum trichotomum and Clerodendrum colebrookianum. Molecules 2024, 29, 5983. [Google Scholar] [CrossRef]
- Krasteva, G. Effect of Basal Medium on Growth and Polyphenols Accumulation by Gardenia jasminoides Ellis Cell Suspension. BIO Web Conf. 2022, 45, 02006. [Google Scholar] [CrossRef]
- Wilson, S.A.; Roberts, S.C. Recent Advances towards Development and Commercialization of Plant Cell Culture Processes for the Synthesis of Biomolecules. Plant Biotechnol. J. 2012, 10, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Chandran, H.; Meena, M.; Barupal, T.; Sharma, K. Plant Tissue Culture as a Perpetual Source for Production of Industrially Important Bioactive Compounds. Biotechnol. Rep. 2020, 26, e00450. [Google Scholar] [CrossRef]
- Wawrosch, C.; Zotchev, S.B. Production of Bioactive Plant Secondary Metabolites through in Vitro Technologies—Status and Outlook. Appl. Microbiol. Biotechnol. 2021, 105, 6649–6668. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Román, J.; Soliz-Rueda, J.R.; Bravo, F.I.; Aragonès, G.; Suárez, M.; Arola-Arnal, A.; Mulero, M.; Salvadó, M.-J.; Arola, L.; Torres-Fuentes, C.; et al. Phenolic Compounds and Biological Rhythms: Who Takes the Lead? Trends Food Sci. Technol. 2021, 113, 77–85. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; et al. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules 2021, 27, 233. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Therapeutic Potential of Phenolic Compounds in Medicinal Plants—Natural Health Products for Human Health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhao, W.; Yang, Z.; Subbiah, V.; Suleria, H.A.R. Extraction and Characterization of Phenolic Compounds and Their Potential Antioxidant Activities. Environ. Sci. Pollut. Res. 2022, 29, 81112–81129. [Google Scholar] [CrossRef]
- Oluwole, O.; Fernando, W.B.; Lumanlan, J.; Ademuyiwa, O.; Jayasena, V. Role of Phenolic Acid, Tannins, Stilbenes, Lignans and Flavonoids in Human Health—A Review. Int. J. Food Sci. Tech. 2022, 57, 6326–6335. [Google Scholar] [CrossRef]
- Cazarin, C.B.B.; Correa, L.C.; Furlan, P.B.; Biasoto, A.C.T.; Pereira, G.E.; Rybka, A.C.P.; Junior, M.R.M. Tropical Isabella Grape Juices: Bioactive Compounds and Antioxidant Power Depends on Harvest Season. J. Food Sci. Eng. 2013, 3, 64–70. [Google Scholar]
- Da Silva, J.K.; Cazarin, C.B.B.; Correa, L.C.; Batista, Â.G.; Furlan, C.P.B.; Biasoto, A.C.T.; Pereira, G.E.; De Camargo, A.C.; Maróstica Junior, M.R. Bioactive Compounds of Juices from Two Brazilian Grape Cultivars. J. Sci. Food Agric. 2016, 96, 1990–1996. [Google Scholar] [CrossRef]
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Yang, Y.; Jin, Z.; Li, B. Classification and Antioxidant Assays of Polyphenols: A Review. J. Future Foods 2024, 4, 193–204. [Google Scholar] [CrossRef]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef]
- Moss, R.; Mao, Q.; Taylor, D.; Saucier, C. Investigation of Monomeric and Oligomeric Wine Stilbenoids in Red Wines by Ultra-high-performance Liquid Chromatography/Electrospray Ionization Quadrupole Time-of-flight Mass Spectrometry. Rapid Comm. Mass Spectrom. 2013, 27, 1815–1827. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Avello, D.; Lozano-Castellón, J.; Mardones, C.; Pérez, A.J.; Saéz, V.; Riquelme, S.; Von Baer, D.; Vallverdú-Queralt, A. Phenolic Profile of Grape Canes: Novel Compounds Identified by LC-ESI-LTQ-Orbitrap-MS. Molecules 2019, 24, 3763. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Sharma, A.R.; Aniemena, C.; Roedel, K.; Henry, F.; Moussou, P.; Samuga, A.; Medina-Bolivar, F. Elicitation of Stilbenes and Benzofuran Derivatives in Hairy Root Cultures of White Mulberry (Morus alba). Plants 2022, 12, 175. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Valls-Fonayet, J.; Richard, T.; Cantos-Villar, E. A Rapid Quantification of Stilbene Content in Wine by Ultra-High Pressure Liquid Chromatography–Mass Spectrometry. Food Control 2020, 108, 106821. [Google Scholar] [CrossRef]
- El Khawand, T.; Courtois, A.; Valls, J.; Richard, T.; Krisa, S. A Review of Dietary Stilbenes: Sources and Bioavailability. Phytochem. Rev. 2018, 17, 1007–1029. [Google Scholar] [CrossRef]
- Teka, T.; Zhang, L.; Ge, X.; Li, Y.; Han, L.; Yan, X. Stilbenes: Source Plants, Chemistry, Biosynthesis, Pharmacology, Application and Problems Related to Their Clinical Application-A Comprehensive Review. Phytochemistry 2022, 197, 113128. [Google Scholar] [CrossRef] [PubMed]
- Duta-Bratu, C.-G.; Nitulescu, G.M.; Mihai, D.P.; Olaru, O.T. Resveratrol and Other Natural Oligomeric Stilbenoid Compounds and Their Therapeutic Applications. Plants 2023, 12, 2935. [Google Scholar] [CrossRef]
- Valletta, A.; Iozia, L.M.; Leonelli, F. Impact of Environmental Factors on Stilbene Biosynthesis. Plants 2021, 10, 90. [Google Scholar] [CrossRef]
- Kiselev, K.V.; Dubrovina, A.S. Overexpression of Stilbene Synthase Genes to Modulate the Properties of Plants and Plant Cell Cultures. Biotech. App. Biochem. 2021, 68, 13–19. [Google Scholar] [CrossRef]
- Hasan, M.; Bae, H. An Overview of Stress-Induced Resveratrol Synthesis in Grapes: Perspectives for Resveratrol-Enriched Grape Products. Molecules 2017, 22, 294. [Google Scholar] [CrossRef]
- Donnez, D.; Kim, K.-H.; Antoine, S.; Conreux, A.; De Luca, V.; Jeandet, P.; Clément, C.; Courot, E. Bioproduction of Resveratrol and Viniferins by an Elicited Grapevine Cell Culture in a 2 L Stirred Bioreactor. Process Biochem. 2011, 46, 1056–1062. [Google Scholar] [CrossRef]
- Vuong, T.V.; Franco, C.; Zhang, W. Treatment Strategies for High Resveratrol Induction in Vitis vinifera L. Cell Suspension Culture. Biotechnol. Rep. 2014, 1–2, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Jeandet, P.; Clément, C.; Courot, E. Resveratrol Production at Large Scale Using Plant Cell Suspensions. Eng. Life Sci. 2014, 14, 622–632. [Google Scholar] [CrossRef]
- Bonello, M.; Gašić, U.; Tešić, Ž.; Attard, E. Production of Stilbenes in Callus Cultures of the Maltese Indigenous Grapevine Variety, Ġellewża. Molecules 2019, 24, 2112. [Google Scholar] [CrossRef]
- Sae-Lee, N.; Kerdchoechuen, O.; Laohakunjit, N. Enhancement of Phenolics, Resveratrol and Antioxidant Activity by Nitrogen Enrichment in Cell Suspension Culture of Vitis vinifera. Molecules 2014, 19, 7901–7912. [Google Scholar] [CrossRef]
- Pasternak, T.P.; Steinmacher, D. Plant Growth Regulation in Cell and Tissue Culture In Vitro. Plants 2024, 13, 327. [Google Scholar] [CrossRef]
- Shimoda, K.; Kubota, N.; Uesugi, D.; Kobayashi, Y.; Hamada, H.; Hamada, H. Glycosylation of Stilbene Compounds by Cultured Plant Cells. Molecules 2020, 25, 1437. [Google Scholar] [CrossRef]
- Pawlus, A.D.; Waffo-Téguo, P.; Shaver, J.; Mérillon, J.-M. Stilbenoid Chemistry from Wine and the Genus Vitis, a Review. OENO One 2012, 46, 57. [Google Scholar] [CrossRef]
- Dani, C.; Oliboni, L.S.; Agostini, F.; Funchal, C.; Serafini, L.; Henriques, J.A.; Salvador, M. Phenolic Content of Grapevine Leaves (Vitis labrusca Var. Bordo) and Its Neuroprotective Effect against Per-oxide Damage. Toxicol. Vitr. 2010, 24, 148–153. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Gonzaga, L.V.; Rizelio, V.M.; Gonçalves, A.E.D.S.S.; Genovese, M.I.; Fett, R. Phenolic Compounds and Antioxidant Activity of Seed and Skin Extracts of Red Grape (Vitis vinifera and Vitis labrusca) Pomace from Brazilian Winemaking. Food Res. Int. 2011, 44, 897–901. [Google Scholar] [CrossRef]
- Narayan, O.P.; Kumar, P.; Yadav, B.; Dua, M.; Johri, A.K. Sulfur Nutrition and Its Role in Plant Growth and Development. Plant Signal. Behav. 2023, 18, 2030082. [Google Scholar] [CrossRef]
- Häkkinen, S.T.; Nygren, H.; Nohynek, L.; Puupponen-Pimiä, R.; Heiniö, R.-L.; Maiorova, N.; Rischer, H.; Ritala, A. Plant Cell Cultures as Food—Aspects of Sustainability and Safety. Plant Cell Rep. 2020, 39, 1655–1668. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, O.; Hesami, M.; Pepe, M.; Dutta, A.; Jones, A.M.P. In Vitro Plant Tissue Culture as the Fifth Generation of Bioenergy. Sci. Rep. 2022, 12, 5038. [Google Scholar] [CrossRef]
- Ribeiro, L.F.; Ribani, R.H.; Francisco, T.M.G.; Soares, A.A.; Pontarolo, R.; Haminiuk, C.W.I. Profile of Bioactive Compounds from Grape Pomace (Vitis vinifera and Vitis labrusca) by Spectrophotometric, Chromatographic and Spectral Analyses. J. Chromatogr. B 2015, 1007, 72–80. [Google Scholar] [CrossRef]
- Ritala, A.; Heiniö, R.-L.; Häkkinen, S.T.; Lille, M.; Hyytiäinen-Pabst, T.; Rischer, H. Tailoring Sensory Properties of Plant Cell Cultures for Food Use. Food Res. Int. 2022, 157, 111440. [Google Scholar] [CrossRef]
- Eibl, R.; Meier, P.; Stutz, I.; Schildberger, D.; Hühn, T.; Eibl, D. Plant Cell Culture Technology in the Cosmetics and Food Industries: Current State and Future Trends. Appl. Microbiol. Biotechnol. 2018, 102, 8661–8675. [Google Scholar] [CrossRef]
- Gubser, G.; Vollenweider, S.; Eibl, D.; Eibl, R. Food Ingredients and Food Made with Plant Cell and Tissue Cultures: State-of-the Art and Future Trends. Eng. Life Sci. 2021, 21, 87–98. [Google Scholar] [CrossRef] [PubMed]
Harvesting Period (month/year) | Sterilisation (min) | ||
---|---|---|---|
EtOH | NaClO | ||
I | 05/2022 | 1 | 7 |
II | 06/2022 | 1 | 3 or 5 |
III | 07/2022 | 1 | 5 or 7 |
IV | 09/2022 | 1 | 7 |
RT | UV Max | [M-H]− m/z | Fragmentation | Tentative Compound | V MSA | V B5A | |
---|---|---|---|---|---|---|---|
1 | 15.4 | 196–322 | 777 | 323 | stilbenoid derivative | - | X |
2 | 17.8 | 198–322 | 777 | 615-453-411-359-265 | resveratrol dimer diglucoside | X | X |
3 | 18.5 | 196-224-322 | 517 [M + HCOO]− | 471-377-349-255 | resveratrol oxidised dimer | - | X |
4 | 20.1 | 198-280 | 823 [M + HCOO]− | 777-615-453-227 | resveratrol dimer diglucoside | - | X |
5 | 22.9 | 226-310 | 823 [M + HCOO]− | 777-615-453 | resveratrol dimer diglucoside | - | X |
6 | 26.0 | 216-306 | 227 | 185-143 | trans-resveratrol | X | X |
7 | 26.8 | 214-284 | 227 | 185-143 | cis-resveratrol | X | X |
Cell Line | Growth Cycle (Days) | Total Stilbenoids (µg/mL of Juice) | Total Stilbenoids (µg/g of Fresh Callus) | Total Stilbenoids (µg/g of Dry Callus) |
---|---|---|---|---|
V MSA | 14 | 5.84 ± 0.17 c | 4.67 ± 0.06 c | 102.45 ± 1.30 c |
28 | 5.76 ± 0.17 c | 4.02 ± 0.15 c | 98.39 ± 3.77 c | |
V B5A | 14 | 18.24 ± 0.19 b | 14.10 ± 0.29 b | 297.86 ± 6.09 b |
28 | 23.24 ± 0.46 a | 18.73 ± 0.70 a | 512.33 ± 19.17 a |
Cell Line | Growth Cycle (Days) | C | N | H | S | Protein Content (N x 6.25) |
---|---|---|---|---|---|---|
V MSA | 14 | 39.98 ± 0.10 c | 4.44 ± 0.01 b | 6.42 ± 0.07 a | 0.31 ± 0.07 b | 27.75 ± 0.06 b |
28 | 39.25 ± 0.10 d | 4.35 ± 0.16 b | 5.59 ± 0.07 ab | 0.32 ± 0.09 b | 27.19 ± 1.00 b | |
42 | 40.13 ± 0.08 bc | 5.15 ± 0.10 a | 5.89 ± 0.44 ab | 0.30 ± 0.01 b | 32.19 ± 0.63 a | |
V B5A | 14 | 39.19 ± 0.03 d | 2.42 ± 0.03 d | 6.30 ± 0.09 a | 0.26 ± 0.03 b | 15.13 ± 0.19 d |
28 | 40.31 ± 0.02 b | 2.50 ± 0.18 d | 5.40 ± 0.19 b | 0.32 ± 0.02 b | 15.63 ± 1.13 d | |
42 | 41.64 ± 0.04 a | 3.30 ± 0.06 c | 5.32 ± 0.17 b | 0.60 ± 0.08 a | 20.59 ± 0.41 c |
V MSA | V B5A | |||
---|---|---|---|---|
FW | DW | FW | DW | |
% moisture | 96.1 | - | 95.9 | - |
% ashes | 0.07 | 1.8 | 0.05 | 1.2 |
% carbohydrates | 1.0 | 25.6 | 1.1 | 26.8 |
% fibre | 1.2 | 30.7 | 1.4 | 34.1 |
% proteins | 1.03 | 26.4 | 0.76 | 18.5 |
% fats | 0.6 | 15.4 | 0.8 | 19.5 |
% kcal | 16 | 410 | 17 | 415 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalla Costa, V.; Piovan, A.; Brun, P.; Filippini, R. Unconventional Material from In Vitro Plant Cell Cultures: Vitis labrusca var. Isabella Case Study. Appl. Sci. 2025, 15, 9139. https://doi.org/10.3390/app15169139
Dalla Costa V, Piovan A, Brun P, Filippini R. Unconventional Material from In Vitro Plant Cell Cultures: Vitis labrusca var. Isabella Case Study. Applied Sciences. 2025; 15(16):9139. https://doi.org/10.3390/app15169139
Chicago/Turabian StyleDalla Costa, Vanessa, Anna Piovan, Paola Brun, and Raffaella Filippini. 2025. "Unconventional Material from In Vitro Plant Cell Cultures: Vitis labrusca var. Isabella Case Study" Applied Sciences 15, no. 16: 9139. https://doi.org/10.3390/app15169139
APA StyleDalla Costa, V., Piovan, A., Brun, P., & Filippini, R. (2025). Unconventional Material from In Vitro Plant Cell Cultures: Vitis labrusca var. Isabella Case Study. Applied Sciences, 15(16), 9139. https://doi.org/10.3390/app15169139