Model Predictive Impedance Control and Gait Optimization for High-Speed Quadrupedal Running
Abstract
1. Introduction
- Introducing MPIC to quadruped robots by reformulating it based on the SRBM and deriving linear constraints for the resulting equivalent wrench.
- Proposing a novel gait pattern that minimizes the effect of GRFs on the robot at high speeds.
- Performing simulations of high-speed quadrupedal running up to 12 m/s based on these two methods and demonstrating stability against repeated disturbances.
2. Model Predictive Impedance Control for Quadruped Robots
2.1. Dynamics with Conventional Impedance Control for Single Rigid Body Model
2.2. Model Predictive Impedance Control
3. Gait Optimization
3.1. Duty Factor Optimization
3.2. Relative Phase Optimization
4. Implementation Details
4.1. Reference Trajectory Design
4.2. Conversion of Equivalent Wrench to Torque
5. Result
5.1. Simulation Setup
- Comparison of optimal relative phase and reference gait patterns based on the reduced-order model described in Section 3.2;
- Evaluation of energy efficiency across different gait patterns;
- High-speed running simulation;
- High-speed running simulation under external disturbances.
5.2. Gait Pattern Comparison
5.3. High-Speed Running
- Using only a joint-level PD controller;
- Applying the proposed MPIC;
- Applying a conventional MPC;
- Applying a conventional impedance controller.
5.4. Running Under Disturbance
- An 80 N rightward disturbance lasting 0.1 s;
- An 80 N leftward disturbance lasting 0.1 s;
- Six rightward disturbances of 20 N, each lasting 1 s and applied every 3 s.
5.4.1. Running Under Single Disturbance
5.4.2. Running Under Repeated Disturbances
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Symbols
World coordinate system | |
Body-fixed coordinate system | |
m | Mass of the torso |
Inertia matrix of the torso expressed in the body-fixed coordinate system | |
Gravity acceleration vector | |
Position of the center of mass of the torso | |
Desired position of the center of mass of the torso | |
Orientation of the torso expressed in the Euler angles | |
Desired orientation of the torso expressed in the Euler angles | |
Angular velocity of the torso expressed in the body-fixed coordinate system | |
Desired angular velocity of the torso expressed in the body-fixed coordinate system | |
Set of foot indices | |
Position vector of the i-th foot | |
Ground reaction force at the i-th foot | |
R | Rotation matrix |
Equivalent wrench defined as Equation (2) | |
Desired equivalent wrench | |
Error vector: | |
Error vector: | |
Error vector: | |
Error vector: | |
Error vector: | |
Damping matrix for translational motion | |
Damping matrix for rotational motion | |
Stiffness matrix for translational motion | |
Stiffness matrix for rotational motion | |
State vector: | |
Desired state vector | |
State vector at discrete time step k | |
Prediction horizon length for the model predictive impedance control | |
Stacked state vector: | |
Stacked desired state vector | |
Input vector: | |
Desired input vector: | |
Input vector at discrete time step k | |
Stacked input vector: | |
Stacked desired input vector | |
E | Identity matrix |
System matrices for Equation (6) | |
Discretized system matrices corresponding to | |
Stacked system matrices corresponding to | |
L | Impedance control gain matrix: |
Stacked impedance control gain matrix | |
W | Weight matrix for optimal problem in Equations (10) and (24) |
Q | Matrix defined as for simplicity |
Coefficient matrix for inequality in Equation (23) | |
Vector defined as for simplicity | |
Constant vector for inequality in Equation (23) | |
Static friction coefficient | |
Maximum moment arm in the x-direction | |
Maximum moment arm in the y-direction | |
Maximum moment arm in the z-direction | |
Maximum moment arm in the radial direction | |
Coefficient: for simplicity | |
Coefficient: for simplicity | |
Coefficient: for simplicity | |
Duty factor defined as the ratio of the stance phase duration to the step period | |
Optimal duty factor derived from Equation (35) | |
Kinetic energy of the swing leg | |
Approximated mass of the leg | |
Average speed of the swing leg | |
v | Average speed of the robot |
T | Step period |
Duration of the swing phase | |
Duration of the stance phase | |
Duration of the flight phase | |
Step stride | |
Average vertical ground reaction force during the stance phase | |
Weighting parameter in Equation (32) | |
Weighting parameter: for simplicity | |
Weighting parameter: for simplicity | |
x, y, and z components of the ground reaction force for the i-foot in the relative phase optimization, respectively | |
Relative phase of the i-th foot | |
Number of contact feet | |
x, y, and z components of the moment in the relative relative phase optimization, respectively | |
x, y, and z components of the moment arm for i-th foot in the relative phase optimization, respectively | |
Position of the first joint of the i-th leg in the x and y directions, respectively | |
Vertical component of the linear momentum in the relative phase optimization | |
x and y components of the angular momentum in the relative phase optimization, respectively | |
State vector: | |
Input vector: | |
System matrices for Equation (40) | |
Gravitational vector for Equation (40) | |
Number of discretized time steps for relative phase optimization in Equations (41) and (42) | |
Weight matrices for relative phase optimization in Equations (41) and (42) | |
Current and previous duty factors during optimization process in Equation (42) | |
Previously optimized relatvie phase during optimization process in Equation (42) | |
Position vector from the center of mass of the body to the first joint of the i-th leg | |
Leg trajectory vector from the first joint to the foot for the i-th leg | |
Position vector expressed in the body-fixed coordinate system | |
Leg trajectory vector of the i-th leg expressed in the body-fixed coordinate system | |
Target forward speed of the robot | |
Target lateral speed of the robot | |
Target yaw rate of the robot | |
Maximum leg trajectory velocity | |
Maximum allowable stride | |
Threshold speed for | |
Vector for ground reaction forces defined as | |
Moment arm vector defined as | |
Components of optimal equivalent wrench | |
Matrix defined as for simplicity | |
Vector defined as for simplicity | |
Moore-Penrose pseudoinverse of | |
Approximated PD control effect on ground reaction force at i-th foot | |
Control torque of the i-th leg for model predictive impedance control | |
Jacobian matrix of the i-th leg |
References
- Park, H.W.; Wensing, P.M.; Kim, S. High-speed bounding with the MIT Cheetah 2: Control design and experiments. Int. J. Robot. Res. 2017, 36, 167–192. [Google Scholar] [CrossRef]
- Kim, D.; Park, J.H. Reduced Model Predictive Control Toward Highly Dynamic Quadruped Locomotion. IEEE Access 2024, 12, 20003–20018. [Google Scholar] [CrossRef]
- Pratt, J.E.; Pratt, G.A. Virtual model control of a biped walking robot. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Albuquerque, NM, USA, 20–25 April 1997; IEEE: Piscataway, NJ, USA, 1997; pp. 193–198. [Google Scholar]
- Park, J.H. Impedance control for biped robot locomotion. IEEE Trans. Robot. Autom. 2001, 17, 870–882. [Google Scholar] [CrossRef]
- Lim, H.O.; Setiawan, S.A.; Takanishi, A. Balance and impedance control for biped humanoid robot locomotion. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, HI, USA, 29 October–3 November 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 1, pp. 494–499. [Google Scholar]
- Focchi, M.; Boaventura, T.; Semini, C.; Frigerio, M.; Buchli, J.; Caldwell, D.G. Torque-control based compliant actuation of a quadruped robot. In Proceedings of the 2012 12th IEEE International Workshop on Advanced Motion Control (AMC), Sarajevo, Bosnia and Herzegovina, 25–27 March 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–6. [Google Scholar]
- Boaventura, T.; Medrano-Cerda, G.A.; Semini, C.; Buchli, J.; Caldwell, D.G. Stability and performance of the compliance controller of the quadruped robot HyQ. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1458–1464. [Google Scholar]
- Boaventura, T.; Buchli, J.; Semini, C.; Caldwell, D.G. Model-based hydraulic impedance control for dynamic robots. IEEE Trans. Robot. 2015, 31, 1324–1336. [Google Scholar] [CrossRef]
- Semini, C.; Barasuol, V.; Boaventura, T.; Frigerio, M.; Focchi, M.; Caldwell, D.G.; Buchli, J. Towards versatile legged robots through active impedance control. Int. J. Robot. Res. 2015, 34, 1003–1020. [Google Scholar] [CrossRef]
- Hyun, D.J.; Seok, S.; Lee, J.; Kim, S. High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah. Int. J. Robot. Res. 2014, 33, 1417–1445. [Google Scholar] [CrossRef]
- Lee, J.; Hyun, D.J.; Ahn, J.; Kim, S.; Hogan, N. On the dynamics of a quadruped robot model with impedance control: Self-stabilizing high speed trot-running and period-doubling bifurcations. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 4907–4913. [Google Scholar]
- Bosworth, W.; Kim, S.; Hogan, N. The effect of leg impedance on stability and efficiency in quadrupedal trotting. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 4895–4900. [Google Scholar]
- Park, J.; Park, J.H. Impedance control of quadruped robot and its impedance characteristic modulation for trotting on irregular terrain. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal, 7–12 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 175–180. [Google Scholar]
- Ajallooeian, M.; Pouya, S.; Spröwitz, A.; Ijspeert, A.J. Central pattern generators augmented with virtual model control for quadruped rough terrain locomotion. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 3321–3328. [Google Scholar]
- Zhang, G.; Rong, X.; Hui, C.; Li, Y.; Li, B. Torso motion control and toe trajectory generation of a trotting quadruped robot based on virtual model control. Adv. Robot. 2016, 30, 284–297. [Google Scholar] [CrossRef]
- Chen, G.; Guo, S.; Hou, B.; Wang, J. Virtual model control for quadruped robots. IEEE Access 2020, 8, 140750–140763. [Google Scholar] [CrossRef]
- Angelini, F.; Xin, G.; Wolfslag, W.J.; Tiseo, C.; Mistry, M.; Garabini, M.; Bicchi, A.; Vijayakumar, S. Online optimal impedance planning for legged robots. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 6028–6035. [Google Scholar]
- Xin, G.; Wolfslag, W.; Lin, H.C.; Tiseo, C.; Mistry, M. An Optimization-Based Locomotion Controller for Quadruped Robots Leveraging Cartesian Impedance Control. Front. Robot. AI 2020, 7, 48. [Google Scholar] [CrossRef]
- Li, Q.; Qian, L.; Wang, S.; Sun, P.; Luo, X. Towards Generation and Transition of Diverse Gaits for Quadrupedal Robots Based on Trajectory Optimization and Whole-Body Impedance Control. IEEE Robot. Autom. Lett. 2023, 8, 2389–2396. [Google Scholar] [CrossRef]
- Pedro, G.D.G.; Bermudez, G.; Medeiros, V.S.; Cruz Neto, H.J.d.; Barros, L.G.D.d.; Pessin, G.; Becker, M.; Freitas, G.M.; Boaventura, T. Quadruped Robot Control: An Approach Using Body Planar Motion Control, Legs Impedance Control and Bézier Curves. Sensors 2024, 24, 3825. [Google Scholar] [CrossRef]
- Parosi, R.; Risiglione, M.; Caldwell, D.G.; Semini, C.; Barasuol, V. Kinematically-Decoupled Impedance Control for Fast Object Visual Servoing and Grasping on Quadruped Manipulators. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 6411–6418. [Google Scholar]
- Bellicoso, C.D.; Jenelten, F.; Fankhauser, P.; Gehring, C.; Hwangbo, J.; Hutter, M. Dynamic Locomotion and Whole-Body Control for Quadrupedal Robots. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 3359–3365. [Google Scholar]
- Bellicoso, C.D.; Jenelten, F.; Gehring, C.; Hutter, M. Dynamic locomotion through online nonlinear motion optimization for quadrupedal robots. IEEE Robot. Autom. Lett. 2018, 3, 2261–2268. [Google Scholar] [CrossRef]
- Liu, X.; Ma, H.; Lang, L.; An, H. Online Foot Location Planning for Gait Transitioning Using Model Predictive Control. Appl. Sci. 2021, 11, 7866. [Google Scholar] [CrossRef]
- Xin, S.; Orsolino, R.; Tsagarakis, N. Online Relative Footstep Optimization for Legged Robots Dynamic Walking Using Discrete-Time Model Predictive Control. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 513–520. [Google Scholar]
- Dini, N.; Majd, V.J. An MPC-based two-dimensional push recovery of a quadruped robot in trotting gait using its reduced virtual model. Mech. Mach. Theory 2020, 146, 103737. [Google Scholar] [CrossRef]
- Neunert, M.; Stäuble, M.; Giftthaler, M.; Bellicoso, C.D.; Carius, J.; Gehring, C.; Hutter, M.; Buchli, J. Whole-body nonlinear model predictive control through contacts for quadrupeds. IEEE Robot. Autom. Lett. 2018, 3, 1458–1465. [Google Scholar] [CrossRef]
- Li, H.; Frei, R.J.; Wensing, P.M. Model hierarchy predictive control of robotic systems. IEEE Robot. Autom. Lett. 2021, 6, 3373–3380. [Google Scholar] [CrossRef]
- Bledt, G.; Wensing, P.M.; Kim, S. Policy-regularized model predictive control to stabilize diverse quadrupedal gaits for the MIT cheetah. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 4102–4109. [Google Scholar]
- Farshidian, F.; Jelavic, E.; Satapathy, A.; Giftthaler, M.; Buchli, J. Real-time motion planning of legged robots: A model predictive control approach. In Proceedings of the 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), Birmingham, UK, 15–17 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 577–584. [Google Scholar]
- Bledt, G.; Kim, S. Extracting legged locomotion heuristics with regularized predictive control. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 406–412. [Google Scholar]
- Cebe, O.; Tiseo, C.; Xin, G.; Lin, H.c.; Smith, J.; Mistry, M. Online dynamic trajectory optimization and control for a quadruped robot. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 12773–12780. [Google Scholar]
- Farshidian, F.; Neunert, M.; Winkler, A.W.; Rey, G.; Buchli, J. An efficient optimal planning and control framework for quadrupedal locomotion. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 93–100. [Google Scholar]
- Bledt, G.; Kim, D.; Wensing, P.M.; Kim, S. Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–9. [Google Scholar]
- Kim, D.; Di Carlo, J.; Katz, B.; Bledt, G.; Kim, S. Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control. arXiv 2019, arXiv:1909.06586. [Google Scholar] [CrossRef]
- Katz, B.; Di Carlo, J.; Kim, S. Mini cheetah: A platform for pushing the limits of dynamic quadruped control. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 6295–6301. [Google Scholar]
- Ding, Y.; Pandala, A.; Park, H.W. Real-time model predictive control for versatile dynamic motions in quadrupedal robots. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 8484–8490. [Google Scholar]
- Ding, Y.; Pandala, A.; Li, C.; Shin, Y.H.; Park, H.W. Representation-free model predictive control for dynamic motions in quadrupeds. IEEE Trans. Robot. 2021, 37, 1154–1172. [Google Scholar] [CrossRef]
- Chignoli, M.; Wensing, P.M. Variational-based optimal control of underactuated balancing for dynamic quadrupeds. IEEE Access 2020, 8, 49785–49798. [Google Scholar] [CrossRef]
- Chignoli, M.; Kim, S. Online trajectory optimization for dynamic aerial motions of a quadruped robot. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 7693–7699. [Google Scholar]
- Villarreal, O.; Barasuol, V.; Wensing, P.M.; Caldwell, D.G.; Semini, C. MPC-based controller with terrain insight for dynamic legged locomotion. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2436–2442. [Google Scholar]
- Ding, C.; Zhou, L.; Li, Y.; Rong, X. A novel dynamic locomotion control method for quadruped robots running on rough terrains. IEEE Access 2020, 8, 150435–150446. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, X.; Ma, H.; An, H.; Lang, L. Model Predictive Control of Quadruped Robot Based on Reinforcement Learning. Appl. Sci. 2023, 13, 154. [Google Scholar] [CrossRef]
- Alexander, R.M. The gaits of bipedal and quadrupedal animals. Int. J. Robot. Res. 1984, 3, 49–59. [Google Scholar] [CrossRef]
- Alexander, R.M. Optimization and gaits in the locomotion of vertebrates. Physiol. Rev. 1989, 69, 1199–1227. [Google Scholar] [CrossRef]
- Maes, L.D.; Herbin, M.; Hackert, R.; Bels, V.L.; Abourachid, A. Steady locomotion in dogs: Temporal and associated spatial coordination patterns and the effect of speed. J. Exp. Biol. 2008, 211, 138–149. [Google Scholar] [CrossRef]
- Herbin, M.; Hommet, E.; Hanotin-Dossot, V.; Perret, M.; Hackert, R. Treadmill locomotion of the mouse lemur (Microcebus murinus); kinematic parameters during symmetrical and asymmetrical gaits. J. Comp. Physiol. A 2018, 204, 537–547. [Google Scholar] [CrossRef] [PubMed]
- McGhee, R.B.; Frank, A.A. On the stability properties of quadruped creeping gaits. Math. Biosci. 1968, 3, 331–351. [Google Scholar] [CrossRef]
- Lee, T.T.; Shih, C.L. A study of the gait control of a quadruped walking vehicle. IEEE J. Robot. Autom. 1986, 2, 61–69. [Google Scholar] [CrossRef]
- Ju, Z.; Wei, K.; Jin, L.; Xu, Y. Investigating stability outcomes across diverse gait patterns in quadruped robots: A comparative analysis. IEEE Robot. Autom. Lett. 2024, 9, 795–802. [Google Scholar] [CrossRef]
- Kiguchi, K.; Kusumoto, Y.; Watanabe, K.; Izumi, K.; Fukuda, T. Energy-optimal gait analysis of quadruped robots. Artif. Life Robot. 2002, 6, 120–125. [Google Scholar] [CrossRef]
- Xi, W.; Yesilevskiy, Y.; Remy, C.D. Selecting gaits for economical locomotion of legged robots. Int. J. Robot. Res. 2016, 35, 1140–1154. [Google Scholar] [CrossRef]
- Pepe, G.; Laurenza, M.; Belfiore, N.P.; Carcaterra, A. Quadrupedal robots’ gaits identification via contact forces optimization. Appl. Sci. 2021, 11, 2102. [Google Scholar] [CrossRef]
- Tsujita, K.; Tsuchiya, K.; Onat, A. Adaptive gait pattern control of a quadruped locomotion robot. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Maui, HI, USA, 29 October–3 November 2001; IEEE: Piscataway, NJ, USA, 2001; pp. 2318–2323. [Google Scholar]
- Fukuoka, Y.; Habu, Y.; Fukui, T. A simple rule for quadrupedal gait generation determined by leg loading feedback: A modeling study. Sci. Rep. 2015, 5, 8169. [Google Scholar] [CrossRef]
- Owaki, D.; Ishiguro, A. A quadruped robot exhibiting spontaneous gait transitions from walking to trotting to galloping. Sci. Rep. 2017, 7, 277. [Google Scholar] [CrossRef]
- Shao, Y.; Jin, Y.; Liu, X.; He, W.; Wang, H.; Yang, W. Learning free gait transition for quadruped robots via phase-guided controller. IEEE Robot. Autom. Lett. 2022, 7, 1230–1237. [Google Scholar] [CrossRef]
- Bellegarda, G.; Shafiee, M.; Ijspeert, A. AllGaits: Learning all quadruped gaits and transitions. arXiv 2024, arXiv:2411.04787. [Google Scholar] [CrossRef]
- Sulpice, L.; Owaki, D.; Hayashibe, M. Footstep reward for energy-efficient quadruped gait generation and transition through deep reinforcement learning. Adv. Robot. 2025, 39, 71–78. [Google Scholar] [CrossRef]
- Bednarczyk, M.; Omran, H.; Bayle, B. Model predictive impedance control. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 470–476. [Google Scholar]
- Jin, Z.; Qin, D.; Liu, A.; Zhang, W.a.; Yu, L. Model predictive variable impedance control of manipulators for adaptive precision-compliance tradeoff. IEEE/ASME Trans. Mechatron. 2023, 28, 1174–1187. [Google Scholar] [CrossRef]
- Orin, D.E.; Goswami, A.; Lee, S.H. Centroidal dynamics of a humanoid robot. Auton. Robot. 2013, 35, 161–176. [Google Scholar] [CrossRef]
- Todorov, E.; Erez, T.; Tassa, Y. Mujoco: A physics engine for model-based control. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal, 7–12 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 5026–5033. [Google Scholar]
Parts | Mass (kg) | Dimensions (m) |
---|---|---|
Body Link | 3.65 | 0.60 × 0.40 × 0.10 * |
Hip Link | 4.10 | 0.05 |
Thigh Link | 0.27 | 0.22 |
Shank Link | 0.55 | 0.22 |
1st Auxiliary Link | 0.09 | 0.05 |
2nd Auxiliary Link | 0.27 | 0.22 |
Symbols | Values |
---|---|
diag([5, 15, 11.2]) | |
diag([10, 10, 10]) | |
diag([0, 0, 64]) | |
diag([50, 50, 50]) |
Symbols | Values |
---|---|
0.7 | |
24.199 | |
11.503 | |
7.2125 |
Gait Pattern | (LF) | (RF) | (LH) | (RH) |
---|---|---|---|---|
Trot | 0 | 0.5 | 0.5 | 0 |
Trsv. gallop * | 0 | 0.1 | 0.5 | 0.6 |
Pace | 0 | 0.5 | 0 | 0.5 |
Transition ** | 0 | 0.5 to 0.1 | 0.5 | 1 to 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.H.; Cho, J.; Park, J.H. Model Predictive Impedance Control and Gait Optimization for High-Speed Quadrupedal Running. Appl. Sci. 2025, 15, 8861. https://doi.org/10.3390/app15168861
Kim DH, Cho J, Park JH. Model Predictive Impedance Control and Gait Optimization for High-Speed Quadrupedal Running. Applied Sciences. 2025; 15(16):8861. https://doi.org/10.3390/app15168861
Chicago/Turabian StyleKim, Deok Ha, Jaeuk Cho, and Jong Hyeon Park. 2025. "Model Predictive Impedance Control and Gait Optimization for High-Speed Quadrupedal Running" Applied Sciences 15, no. 16: 8861. https://doi.org/10.3390/app15168861
APA StyleKim, D. H., Cho, J., & Park, J. H. (2025). Model Predictive Impedance Control and Gait Optimization for High-Speed Quadrupedal Running. Applied Sciences, 15(16), 8861. https://doi.org/10.3390/app15168861