Analysis of Lower Limb Performance Determinants in Sport Climbing
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Sex Differences
4.2. Differences by Level
4.3. Practical Applications
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeterbakken, A.H.; Schöffl, V.R.; Schweizer, A.; Grønhaug, G. Editorial: Injuries, Injury Prevention and Training in Climbing. Front. Sports Act. Living 2024, 6, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Baláš, J.; PanáIková, M.; Strejcová, B.; Martin, A.J.; Cochrane, D.J.; Kaláb, M.; Kodejška, J.; Draper, N. The Relationship between Climbing Ability and Physiological Responses to Rock Climbing. Sci. World J. 2014, 2014, 678387. [Google Scholar] [CrossRef] [PubMed]
- Giles, D.; Barnes, K.; Taylor, N.; Chidley, C.; Chidley, J.; Mitchell, J.; Torr, O.; Gibson-Smith, E.; España-Romero, V. Anthropometry and Performance Characteristics of Recreational Advanced to Elite Female Rock Climbers. J. Sports Sci. 2021, 39, 48–56. [Google Scholar] [CrossRef]
- International Olympic Committee. IOC Annual Report: Credibility, Sustainability, Youth; IOC: Lausanne, Switzerland, 2019. [Google Scholar]
- Lutter, C.; El-Sheikh, Y.; Schöffl, I.; Schöffl, V. Sport Climbing: Medical Considerations for This New Olympic Discipline. Br. J. Sports Med. 2017, 51, 2–3. [Google Scholar] [CrossRef]
- Lutter, C.; Schöffl, V. Future Aspects: Climbing in the Olympics. In Climbing Medicine; Springer International Publishing: Cham, Switzerland, 2022; pp. 325–329. ISBN 9783030721848. [Google Scholar]
- Saul, D.; Steinmetz, G.; Lehmann, W.; Schilling, A.F. Determinants for Success in Climbing: A Systematic Review. J. Exerc. Sci. Fit. 2019, 17, 91–100. [Google Scholar] [CrossRef]
- Bergua-Gómez, P.; Gomez-Bruton, A.; Casajús, J.A.; Montero-Marin, J. A New Performance Threshold in Sport Climbing: Change in How Climbing Trainers Work? Sci. Sports 2022, 37, 656–658. [Google Scholar] [CrossRef]
- Deyhle, M.R.; Hsu, H.-S.; Fairfield, T.J.; Cadez-Schmidt, T.L.; Gurney, B.A.; Mermier, C.M. Relative Importance of Four Muscle Groups for Indoor Rock Climbing Performance. J. Strength Cond. Res. 2015, 29, 2006–2014. [Google Scholar] [CrossRef]
- Saeterbakken, A.H.; Stien, N.; Pedersen, H.; Langer, K.; Scott, S.; Michailov, M.L.; Gronhaug, G.; Baláš, J.; Solstad, T.E.J.; Andersen, V. The Connection Between Resistance Training, Climbing Performance, and Injury Prevention. Sports Med.-Open 2024, 10, 10. [Google Scholar] [CrossRef]
- Ginszt, M.; Saito, M.; Ziȩba, E.; Majcher, P.; Kikuchi, N. Body Composition, Anthropometric Parameters, and Strength-Endurance Characteristics of Sport Climbers: A Systematic Review. J. Strength Cond. Res. 2023, 37, 1339–1348. [Google Scholar] [CrossRef]
- Laffaye, G.; Collin, J.-M.; Levernier, G.; Padulo, J. Upper-Limb Power Test in Rock-Climbing. Int. J. Sports Med. 2014, 35, 670–675. [Google Scholar] [CrossRef]
- Eichler, M.; Lutter, C.; Morris, P.D.; Schöffl, V. Run-and-Jump Failure: New Injury Patterns in Indoor Bouldering. Sport. Sportschaden 2024, 38, 27–30. [Google Scholar] [CrossRef]
- de la Cruz, V.M.; Carranza, V.R.; Ravé, J.M.G. Road to Paris 2024: Force-Velocity Profile in Different Speed Climbers’ Abilities. Biol. Sport 2024, 42, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Heck, J.; Pflüger, P.; Greve, F.; Biberthaler, P.; Crönlein, M. Characteristics of Bouldering Injuries Based on 430 Patients Presented to an Urban Emergency Department. Injury 2022, 53, 1394–1400. [Google Scholar] [CrossRef] [PubMed]
- Lutter, C.; Tischer, T.; Cooper, C.; Frank, L.; Hotfiel, T.; Lenz, R.; Schöffl, V. Mechanisms of Acute Knee Injuries in Bouldering and Rock Climbing Athletes. Am. J. Sports Med. 2020, 48, 730–738. [Google Scholar] [CrossRef]
- Lutter, C.; Popp, D.; Schöffl, V. Knee Injuries in Rock Climbing and Bouldering—An Update. Orthop. J. Sports Med. 2018, 6, 2325967118s00019. [Google Scholar] [CrossRef]
- Schöffl, V.; Lutter, C.; Popp, D. The ‘Heel Hook’—A Climbing-Specific Technique to Injure the Leg. Wilderness Environ. Med. 2016, 27, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Schöffl, V.; Johnson, M.I. Incidence, Diagnosis, and Management of Injury in Sport Climbing and Bouldering: A Critical Review. Curr. Sports Med. Rep. 2018, 17, 396–401. [Google Scholar] [CrossRef]
- Schöffl, V.; Simon, M.; Lutter, C. Finger- und Schulterverletzungen im Klettersport. Orthopade 2019, 48, 1005–1012. [Google Scholar] [CrossRef]
- Buzzacott, P.; Schöffl, I.; Chimiak, J.; Schöffl, V. Rock Climbing Injuries Treated in US Emergency Departments, 2008–2016. Wilderness Environ. Med. 2019, 30, 121–128. [Google Scholar] [CrossRef]
- Draper, N.; Brent, S.; Hodgson, C.; Blackwell, G. Flexibility Assessment and the Role of Flexibility as a Determinant of Performance in Rock Climbing. Int. J. Perform. Anal. Sport 2009, 9, 67–89. [Google Scholar] [CrossRef]
- Langer, K.; Simon, C.; Wiemeyer, J. Strength Training in Climbing: A Systematic Review. J. Strength Cond. Res. 2023, 37, 751–767. [Google Scholar] [CrossRef] [PubMed]
- Langer, K.; Simon, C.; Wiemeyer, J. Physical Performance Testing in Climbing—A Systematic Review. Front. Sports Act. Living 2023, 5, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Čular, D.; Dhahbi, W.; Kolak, I.; Dello Iacono, A.; Bešlija, T.; Laffaye, G.; Padulo, J. Reliability, Sensitivity, and Minimal Detectable Change of a New Specific Climbing Test for Assessing Asymmetry in Reach Technique. J. Strength Cond. Res. 2021, 35, 527–534. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki. JAMA 2013, 310, 2191. [Google Scholar] [CrossRef]
- Draper, N.; Giles, D.; Schöffl, V.; Konstantin Fuss, F.; Watts, P.; Wolf, P.; Baláš, J.; Espana-Romero, V.; Blunt Gonzalez, G.; Fryer, S.; et al. Comparative Grading Scales, Statistical Analyses, Climber Descriptors and Ability Grouping: International Rock Climbing Research Association Position Statement. Sports Technol. 2016, 8, 88–94. [Google Scholar] [CrossRef]
- Alvero-Cruz, J.R.; Correas-Gómez, L.; Ronconi, M.; Fernández-Vázquez, R.; Porta i Manzañido, J. Bioelectrical Impedance Analysis as a Method of Body Composition Estimation: A Practical Approach. Rev. Andal. Med. Del. Deport. 2011, 4, 167–174. [Google Scholar]
- Draga, P.; Ozimek, M.; Krawczyk, M.; Rokowski, R.; Nowakowska, M.; Ochwat, P.; Jurczak, A.; Stanula, A. Importance and Diagnosis of Flexibility Preparation of Male Sport Climbers. Int. J. Environ. Res. Public Health 2020, 17, 2512. [Google Scholar] [CrossRef]
- Wells, K.F.; Dillon, E.K. The Sit and Reach—A Test of Back and Leg Flexibility. Res. Q. Am. Assoc. Health Phys. Educ. Recreat. 1952, 23, 115–118. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Romero-Franco, N.; Jiménez-Reyes, P. Concurrent Validity and Reliability of an IPhone App for the Measurement of Ankle Dorsiflexion and Inter-Limb Asymmetries. J. Sports Sci. 2019, 37, 249–253. [Google Scholar] [CrossRef]
- Bosco, C.; Luhtanen, P.; Komi, P. A Simple Method for Measurement of Mechanical Power in Jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Noyes, F.R.; Barber, S.D.; Mangine, R.E. Abnormal Lower Limb Symmetry Determined by Function Hop Tests after Anterior Cruciate Ligament Rupture. Am. J. Sports Med. 1991, 19, 513–518. [Google Scholar] [CrossRef]
- Sharath, U.; Prakruthi, B.; Pradeep, K.; Shridhar, S. A Study on Effect of Wobble Board Balance Training Program on Static Balance, Dynamic Balance, Triple Hop Distance and Vertical Jump Height in Basketball Athletes. Int. J. Phys. Educ. Sports Health 2020, 7, 163–169. [Google Scholar]
- Devise, M.; Quaine, F.; Vigouroux, L. Assessing Climbers’ Pull-up Capabilities by Differentiating the Parameters Involved in Power Production. PeerJ 2023, 11, e15886. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, M.; Pareja-Blanco, F.; Diaz-Cueli, D.; González-Badillo, J.J. Determinant Factors of Pull up Performance in Trained Athletes. J. Sports Med. Phys. Fit. 2016, 56, 825–833. [Google Scholar]
- Gutiérrez-Arroyo, J.; García-Heras, F.; Carballo-Leyenda, B.; Villa-Vicente, J.G.; Rodríguez-Medina, J.; Rodríguez-Marroyo, J.A. Effect of a High-Intensity Circuit Training Program on the Physical Fitness of Wildland Firefighters. Int. J. Environ. Res. Public Health 2023, 20, 2073. [Google Scholar] [CrossRef]
- Auer, J.; Schöffl, V.R.; Achenbach, L.; Meffert, R.H.; Fehske, K. Indoor Bouldering—A Prospective Injury Evaluation. Wilderness Environ. Med. 2021, 32, 160–167. [Google Scholar] [CrossRef]
- Haugen, T.A.; Breitschädel, F.; Wiig, H.; Seiler, S. Countermovement Jump Height in National-Team Athletes of Various Sports: A Framework for Practitioners and Scientists. Int. J. Sports Physiol. Perform. 2021, 16, 184–189. [Google Scholar] [CrossRef]
- España-Romero, V.; Ortega Porcel, F.B.; Artero, E.G.; Jiménez-Pavón, D.; Gutiérrez Sainz, Á.; Castillo Garzón, M.J.; Ruiz, J.R. Climbing Time to Exhaustion Is a Determinant of Climbing Performance in High-Level Sport Climbers. Eur. J. Appl. Physiol. 2009, 107, 517–525. [Google Scholar] [CrossRef]
- Krawczyk, M.; Pociecha, M.; Ozimek, M.; Draga, P. The Force, Velocity, and Power of the Lower Limbs as Determinants of Speed Climbing Efficiency. Trends Sports Sci. 2020, 27, 219–224. [Google Scholar] [CrossRef]
- Judd, A.; Sharp, T. The Single Hop for Distance Test: Reviewing the Methodology to Measure Maximum and Repeated Performance. J. Sports Rehabil. 2022, 31, 657–663. [Google Scholar] [CrossRef]
- Ebert, J.R.; Du Preez, L.; Furzer, B.; Edwards, P.; Joss, B. Which Hop Tests Can Best Identify Functional Limb Asymmetry in Patients 9-12 Months after Anterior Cruciate Ligament Reconstruction Employing a Hamstrings Tendon Autograft? Int. J. Sports Phys. Ther. 2021, 16, 393–403. [Google Scholar] [CrossRef]
- Thomeé, R.; Kaplan, Y.; Kvist, J.; Myklebust, G.; Risberg, M.A.; Theisen, D.; Tsepis, E.; Werner, S.; Wondrasch, B.; Witvrouw, E. Muscle Strength and Hop Performance Criteria Prior to Return to Sports after ACL Reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 1798–1805. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.; Hynes, V.; Whittaker, A.; Aitchison, T. Anthropometric, Strength, Endurance and Flexibility Characteristics of Elite and Recreational Climbers. J. Sports Sci. 1996, 14, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Ozimek, M.; Staszkiewicz, R.; Rokowski, R.; Stanula, A. Analysis of Tests Evaluating Sport Climbers’ Strength and Isometric Endurance. J. Hum. Kinet. 2016, 53, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, W.; Liu, T.; Zhang, D. Association of Grip Strength with Risk of All-Cause Mortality, Cardiovascular Diseases, and Cancer in Community-Dwelling Populations: A Meta-Analysis of Prospective Cohort Studies. J. Am. Med. Dir. Assoc. 2017, 18, 551.E17–551.E35. [Google Scholar] [CrossRef]
- Stien, N.; Saeterbakken, A.H.; Andersen, V. Tests and Procedures for Measuring Endurance, Strength, and Power in Climbing—A Mini-Review. Front. Sports Act. Living 2022, 4, 847447. [Google Scholar] [CrossRef]
- Marcolin, G.; Faggian, S.; Muschietti, M.; Matteraglia, L.; Paoli, A. Determinants of Climbing Performance: When Finger Flexor Strength and Endurance Count. J. Strength Cond. Res. 2022, 36, 1099–1104. [Google Scholar] [CrossRef]
- McKay, G.D.; Goldie, P.A.; Payne, W.R.; Oakes, B.W. Ankle Injuries in Basketball: Injury Rate and Risk Factors. Br. J. Sports Med. 2001, 35, 103–108. [Google Scholar] [CrossRef]
- Baumbach, S.F.; Braunstein, M.; Seeliger, F.; Borgmann, L.; Böcker, W.; Polzer, H. Ankle Dorsiflexion: What Is Normal? Development of a Decision Pathway for Diagnosing Impaired Ankle Dorsiflexion and M. Gastrocnemius Tightness. Arch. Orthop. Trauma Surg. 2016, 136, 1203–1211. [Google Scholar] [CrossRef]
- López-Miñarro, P.A.; Rodríguez-García, P.L. Hamstring Muscle Extensibility Influences the Criterion-Related Validity of Sit-and-Reach and Toe-Touch Tests. J. Strength Cond. Res. 2010, 24, 1013–1018. [Google Scholar] [CrossRef]
- American College of Sports Science. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams and Wilkins: Ambler, PA, USA, 2017; ISBN 9781496339072. [Google Scholar]
- Erkula, G.; Demirkan, F.; Alper Kılıç, B.; Kıter, E. Hamstring Shortening in Healthy Adults. J. Back Musculoskelet. Rehabil. 2002, 16, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Epstein, Y.; Yanovich, R.; Moran, D.S.; Heled, Y. Physiological Employment Standards IV: Integration of Women in Combat Units Physiological and Medical Considerations. Eur. J. Appl. Physiol. 2013, 113, 2673–2690. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.; Gebhardt, D.L.; Gaskill, S.E.; Roy, T.C.; Sharp, M.A. Current Considerations Related to Physiological Differences between the Sexes and Physical Employment Standards. Appl. Physiol. Nutr. Metab. 2016, 41, S108–S120. [Google Scholar] [CrossRef] [PubMed]
- Montalvo, A.M.; Schneider, D.K.; Yut, L.; Webster, K.E.; Beynnon, B.; Kocher, M.S.; Myer, G.D. “What’s My Risk of Sustaining an ACL Injury While Playing Sports?” A Systematic Review with Meta-Analysis. Br. J. Sports Med. 2019, 53, 1003–1012. [Google Scholar] [CrossRef]
- Sutton, K.M.; Bullock, J.M. Anterior Cruciate Ligament Rupture: Differences Between Males and Females. J. Am. Acad. Orthop. Surg. 2013, 21, 41–50. [Google Scholar] [CrossRef]
- Dragoo, J.L.; Castillo, T.N.; Braun, H.J.; Ridley, B.A.; Kennedy, A.C.; Golish, S.R. Prospective Correlation Between Serum Relaxin Concentration and Anterior Cruciate Ligament Tears Among Elite Collegiate Female Athletes. Am. J. Sports Med. 2011, 39, 2175–2180. [Google Scholar] [CrossRef]
- Kjær, M.; Magnusson, P.; Krogsgaard, M.; Møller, J.B.; Olesen, J.; Heinemeier, K.; Hansen, M.; Haraldsson, B.; Koskinen, S.; Esmarck, B.; et al. Extracellular Matrix Adaptation of Tendon and Skeletal Muscle to Exercise. J. Anat. 2006, 208, 445–450. [Google Scholar] [CrossRef]
- Yu, S.; Lin, L.; Liang, H.; Lin, M.; Deng, W.; Zhan, X.; Fu, X.; Liu, C. Gender Difference in Effects of Proprioceptive Neuromuscular Facilitation Stretching on Flexibility and Stiffness of Hamstring Muscle. Front. Physiol. 2022, 13, 918176. [Google Scholar] [CrossRef]
- Zazulak, B.T.; Paterno, M.; Myer, G.D.; Romani, W.A.; Hewett, T.E. The Effects of the Menstrual Cycle on Anterior Knee Laxity. Sports Med. 2006, 36, 847–862. [Google Scholar] [CrossRef]
- Höög, S.; Andersson, E.P. Sex and Age-Group Differences in Strength, Jump, Speed, Flexibility, and Endurance Performances of Swedish Elite Gymnasts Competing in TeamGym. Front. Sports Act. Living 2021, 3, 653503. [Google Scholar] [CrossRef]
- Draper, N.; Dickson, T.; Blackwell, G.; Priestley, S.; Fryer, S.; Marshall, H.; Shearman, J.; Hamlin, M.; Winter, D.; Ellis, G. Sport-Specific Power Assessment for Rock Climbing. J. Sports Med. Phys. Fit. 2011, 51, 417–425. [Google Scholar] [CrossRef]
All (n = 24) | Female (n = 7) | Male (n = 17) | % | |
---|---|---|---|---|
Body mass (kg) | 66.5 ± 9.9 | 56.0 ± 4.7 | 70.9 ± 8.0 | 21.02 * |
Height (cm) | 172.0 ± 9.0 | 161.8 ± 5.9 | 176.2 ± 6.2 | 8.17 * |
APE index (cm) | 3.6 ± 3.9 | 2.1 ± 3.1 | 4.3 ± 4.1 | 51.16 * |
BMI (Kg·m−2) | 22.3 ± 6.6 | 21.4 ± 1.3 | 22.6 ± 1.7 | 5.31 * |
Fat mass (%) | 14.4 ± 4.2 | 18.1 ± 2.1 | 12.9 ± 3.8 | −40.31 * |
Age (years) | 33.5 ± 9.3 | 28.7 ± 5.1 | 35.5 ± 10.0 | 19.15 * |
Experience (years) | 6.6 ± 6.8 | 3.5 ± 3.2 | 7.8 ± 7.5 | 55.13 * |
Climbing grade (IRCRA) | 6c+ (16.1) | 6b+ (14.6) | 7a (18.8) | 13.1 * |
Test | All (n = 24) | Female (n = 7) | Male (n = 17) | Difference (%) | p-Value |
---|---|---|---|---|---|
SJ (cm) | 28.5 ± 5.6 | 23.9 ± 3.1 | 30.4 ± 5.3 | 21.3 | 0.003 |
CMJ (cm) | 31.9 ± 5.6 | 26.2 ± 2.5 | 34.2 ± 4.8 | 23.5 | <0.001 |
DJ (cm) | 30.7 ± 5.8 | 25.3 ± 3.1 | 33.0 ± 5.2 | 23.3 | <0.001 |
Power (W) | 2902.7 ± 638.2 | 2093.4 ± 257.7 | 3236.0 ± 394.9 | 35.3 | <0.001 |
Power (W/kg) | 43.3 ± 5.1 | 37.3 ± 2.5 | 45.7 ± 3.6 | 18.4 | <0.001 |
Power (W/FFM) | 50.5 ± 5.1 | 45.6 ± 3.0 | 52.6 ± 4.3 | 13.3 | <0.001 |
DS left (°) | 45.8 ± 7.5 | 42.4 ± 7.7 | 47.2 ± 7.2 | 10.2 | 0.081 |
DS right (°) | 46.2 ± 6.5 | 43.8 ± 7.4 | 47.3 ± 6.1 | 7.4 | 0.121 |
Sit and Reach (cm) | 9.4 ± 9.0 | 12.6 ± 6.6 | 8.1 ± 9.7 | −57.2 | 0.133 |
LFM (cm) | 73.5 ± 4.0 | 79.4 ± 8.5 | 75.2 ± 5.4 | −5.5 | 0.083 |
RFM (cm) | 74.1 ± 3.8 | 79.0 ± 10.4 | 77.1 ± 5.5 | −2.4 | 0.283 |
Hop Test Left (m) | 1.6 ± 0.2 | 1.4 ± 0.1 | 1.7 ± 0.2 | 15.9 | 0.003 |
Hop Test Right (m) | 1.6 ± 0.2 | 1.4 ± 0.1 | 1.7 ± 0.2 | 16.8 | 0.002 |
H3JL (m) | 5.4 ± 0.8 | 4.6 ± 0.5 | 5.7 ± 0.7 | 18.5 | <0.001 |
H3JR (m) | 5.4 ± 0.7 | 4.7 ± 0.3 | 5.7 ± 0.7 | 16.7 | <0.001 |
Pull-ups (rep.) | 11.0 ± 5.4 | 7.4 ± 3.9 | 12.5 ± 5.4 | 40.8 | 0.018 |
Handgrip strength (kgf) | 44.4 ± 9.1 | 32.8 ± 2.3 | 49.1 ± 5.8 | 33.2 | <0.001 |
Relative handgrip strength (kgf/body mass) | 0.66 ± 0.09 | 0.60 ± 0.08 | 0.69 ± 0.09 | 13.0 | 0.015 |
Relative handgrip strength (kgf/fat-free mass) | 0.78 ± 0.79 | 0.72 ± 0.77 | 0.80 ± 0.70 | 9.9 | 0.012 |
Test | Intermediate (n = 11) | Advanced (n = 13) | Difference (%) | p-Value |
---|---|---|---|---|
SJ (cm) | 27.0 ± 4.0 | 29.8 ± 6.5 | −10.5 | 0.227 |
CMJ (cm) | 30.7 ± 4.2 | 32.9 ± 6.6 | −7.3 | 0.341 |
DJ (cm) | 28.9 ± 4.2 | 32.3 ± 6.6 | −11.5 | 0.166 |
Power (W) | 2912.8 ± 641.2 | 2894.2 ± 661.7 | 0.6 | 0.945 |
Power (W/kg) | 42.5 ± 4.1 | 44.0 ± 5.9 | −3.5 | 0.495 |
Power (W/FFM) | 50.2 ± 3.8 | 50.9 ± 6.1 | −1.4 | 0.737 |
DS left (°) | 45.9 ± 6.2 | 45.8 ± 8.8 | 0.3 | 0.968 |
DS right (°) | 47.2 ± 3.5 | 45.4 ± 8.4 | 3.9 | 0.509 |
Sit and Reach (cm) | 9.7 ± 11.6 | 9.2 ± 6.7 | 4.9 | 0.901 |
LFM (cm) | 77.2 ± 6.7 | 75.8 ± 6.6 | 1.8 | 0.619 |
RFM (cm) | 78.5 ± 7.6 | 76.9 ± 6.8 | 2.1 | 0.588 |
Hop Test Left (m) | 1.7 ± 0.2 | 1.6 ± 0.3 | 6.7 | 0.248 |
Hop Test Right (m) | 1.7 ± 0.2 | 1.6 ± 0.3 | 4.5 | 0.445 |
H3JL (m) | 5.5 ± 0.6 | 5.3 ± 0.9 | 3.5 | 0.572 |
H3JR (m) | 5.4 ± 0.7 | 5.4 ± 0.8 | 0.1 | 0.989 |
Pull-ups (rep.) | 8.6 ± 4.1 | 13.0 ± 5.8 | −50.5 | 0.047 |
Handgrip strength (kgf) | 42.9 ± 9.8 | 45.6 ± 8.7 | −6.3 | 0.482 |
Relative handgrip strength (kgf/body mass) | 0.6 ± 0.1 | 0.7 ± 0.1 | −11.6 | 0.036 |
Relative handgrip strength (kgf/fat-free mass) | 0.7 ± 0.1 | 0.8 ± 0.1 | −9.3 | 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Heras, F.; Diez-Martín, M.; González-Martínez, D.; Gutiérrez-Arroyo, J.; Molinero, O.; Salguero, A. Analysis of Lower Limb Performance Determinants in Sport Climbing. Appl. Sci. 2025, 15, 8797. https://doi.org/10.3390/app15168797
García-Heras F, Diez-Martín M, González-Martínez D, Gutiérrez-Arroyo J, Molinero O, Salguero A. Analysis of Lower Limb Performance Determinants in Sport Climbing. Applied Sciences. 2025; 15(16):8797. https://doi.org/10.3390/app15168797
Chicago/Turabian StyleGarcía-Heras, Fabio, María Diez-Martín, Diego González-Martínez, Jorge Gutiérrez-Arroyo, Olga Molinero, and Alfonso Salguero. 2025. "Analysis of Lower Limb Performance Determinants in Sport Climbing" Applied Sciences 15, no. 16: 8797. https://doi.org/10.3390/app15168797
APA StyleGarcía-Heras, F., Diez-Martín, M., González-Martínez, D., Gutiérrez-Arroyo, J., Molinero, O., & Salguero, A. (2025). Analysis of Lower Limb Performance Determinants in Sport Climbing. Applied Sciences, 15(16), 8797. https://doi.org/10.3390/app15168797