White Noise Exemplifies the Constrained Disorder Principle-Based Concept of Overcoming Malfunctions
Abstract
1. Introduction
1.1. The Constrained Disorder Principle Accounts for All Types of Noise in the Universe
1.2. White Noise Is a Random Signal with Equal Intensity Across Different Frequencies, Resulting in a Constant Power Spectral Density
1.3. Platforms That Use the CDP to Leverage Noise to Correct Malfunctions
1.4. Using White Noise to Treat Clinical Conditions
1.5. Using White Noise to Treat Tinnitus
1.6. Potential Mechanisms Underlying the Positive Effects of WN
1.7. The CDP Addresses Some of the Current Challenges Associated with White Noise
2. Summary
Author Contributions
Funding
Conflicts of Interest
Comment on References
Abbreviations
CDP | constrained disorder principle |
AI | artificial intelligence |
WN | White noise |
SR | stochastic resonance |
References
- Ilan, Y. The constrained disorder principle defines living organisms and provides a method for correcting disturbed biological systems. Comput. Struct. Biotechnol. J. 2022, 20, 6087–6096. [Google Scholar] [CrossRef] [PubMed]
- Barry, R.J.; De Blasio, F.M. Characterizing pink and white noise in the human electroencephalogram. J. Neural Eng. 2021, 18, 034001. [Google Scholar] [CrossRef]
- Ghasemi, S.; Fasih-Ramandi, F.; Monazzam, M.R.; Khodakarim, S. White Noise and Its Potential Applications in Occupational Health: A Review. Iran. J. Public Health 2023, 52, 488–499. [Google Scholar] [CrossRef]
- Ilan, Y. Making use of noise in biological systems. Prog. Biophys. Mol. Biol. 2023, 178, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Constrained disorder principle-based variability is fundamental for biological processes: Beyond biological relativity and physiological regulatory networks. Prog. Biophys. Mol. Biol. 2023, 180, 37–48. [Google Scholar] [CrossRef]
- Sigawi, T.; Lehmann, H.; Hurvitz, N.; Ilan, Y. Constrained Disorder Principle-Based Second-Generation Algorithms Implement Quantified Variability Signatures to Improve the Function of Complex Systems. J. Bioinform. Syst. Biol. 2023, 6, 82–89. [Google Scholar] [CrossRef]
- Ilan, Y. Overcoming randomness does not rule out the importance of inherent randomness for functionality. J. Biosci. 2019, 44, 132. [Google Scholar] [CrossRef]
- Ilan, Y. Generating randomness: Making the most out of disordering a false order into a real one. J. Transl. Med. 2019, 17, 49. [Google Scholar] [CrossRef]
- Ilan, Y. Advanced Tailored Randomness: A Novel Approach for Improving the Efficacy of Biological Systems. J. Comput. Biol. 2020, 27, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Order Through Disorder: The Characteristic Variability of Systems. Front. Cell Dev. Biol. 2020, 8, 186. [Google Scholar] [CrossRef]
- El-Haj, M.; Kanovitch, D.; Ilan, Y. Personalized inherent randomness of the immune system is manifested by an individualized response to immune triggers and immunomodulatory therapies: A novel platform for designing personalized immunotherapies. Immunol. Res. 2019, 67, 337–347. [Google Scholar] [CrossRef]
- Ilan, Y. Randomness in microtubule dynamics: An error that requires correction or an inherent plasticity required for normal cellular function? Cell Biol. Int. 2019, 43, 739–748. [Google Scholar] [CrossRef]
- Ilan, Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J. Cell. Physiol. 2019, 234, 7923–7937. [Google Scholar] [CrossRef]
- Ilan-Ber, T.; Ilan, Y. The role of microtubules in the immune system and as potential targets for gut-based immunotherapy. Mol. Immunol. 2019, 111, 73–82. [Google Scholar] [CrossRef]
- Forkosh, E.; Kenig, A.; Ilan, Y. Introducing variability in targeting the microtubules: Review of current mechanisms and future directions in colchicine therapy. Pharmacol. Res. Perspect. 2020, 8, e00616. [Google Scholar] [CrossRef]
- Ilan, Y. beta-Glycosphingolipids as Mediators of Both Inflammation and Immune Tolerance: A Manifestation of Randomness in Biological Systems. Front. Immunol. 2019, 10, 1143. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Microtubules as a potential platform for energy transfer in biological systems: A target for implementing individualized, dynamic variability patterns to improve organ function. Mol. Cell. Biochem. 2022, 478, 375–392. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Enhancing the plasticity, proper function and efficient use of energy of the Sun, genes and microtubules using variability. Clin. Transl. Discov. 2022, 2, e103. [Google Scholar] [CrossRef]
- Shabat, Y.; Lichtenstein, Y.; Ilan, Y. Short-Term Cohousing of Sick with Healthy or Treated Mice Alleviates the Inflammatory Response and Liver Damage. Inflammation 2021, 44, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Rotnemer-Golinkin, D.; Ilan, Y. Personalized-Inherent Variability in a Time-Dependent Immune Response: A Look into the Fifth Dimension in Biology. Pharmacology 2022, 107, 417–422. [Google Scholar] [CrossRef]
- Ilan, Y. Second-Generation Digital Health Platforms: Placing the Patient at the Center and Focusing on Clinical Outcomes. Front. Digit. Health 2020, 2, 569178. [Google Scholar] [CrossRef]
- Nittono, H. High-frequency sound components of high-resolution audio are not detected in auditory sensory memory. Sci. Rep. 2020, 10, 21740. [Google Scholar] [CrossRef] [PubMed]
- Nagel, K.I.; McLendon, H.M.; Doupe, A.J. Differential influence of frequency, timing, and intensity cues in a complex acoustic categorization task. J. Neurophysiol. 2010, 104, 1426–1437. [Google Scholar] [CrossRef]
- Machens, C.K.; Stemmler, M.B.; Prinz, P.; Krahe, R.; Ronacher, B.; Herz, A.V. Representation of acoustic communication signals by insect auditory receptor neurons. J. Neurosci. 2001, 21, 3215–3227. [Google Scholar] [CrossRef] [PubMed]
- Reybrouck, M.; Podlipniak, P.; Welch, D. Music and Noise: Same or Different? What Our Body Tells Us. Front. Psychol. 2019, 10, 1153. [Google Scholar] [CrossRef]
- Pellegrino, G.; Pinardi, M.; Schuler, A.-L.; Kobayashi, E.; Masiero, S.; Marioni, G.; Di Lazzaro, V.; Keller, F.; Arcara, G.; Piccione, F.; et al. Stimulation with acoustic white noise enhances motor excitability and sensorimotor integration. Sci. Rep. 2022, 12, 1310. [Google Scholar] [CrossRef]
- Gupta, M. Thermal noise in nonlinear resistive devices and its circuit representation. Proc. IEEE 1982, 70, 788–804. [Google Scholar] [CrossRef]
- Mueller, H.; Weber, J.; Hornsby, B. The Effects of Digital Noise Reduction on the Acceptance of Background Noise. Trends Amplif. 2006, 10, 83–93. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, D.; Li, X.; Ma, J.; Zhang, J.; Fang, J. Pink noise: Effect on complexity synchronization of brain activity and sleep consolidation. J. Theor. Biol. 2012, 306, 68–72. [Google Scholar] [CrossRef]
- Grauer, J. Random Noise Generation Using Fourier Series. J. Aircr. 2018, 55, 1754–1760. [Google Scholar] [CrossRef]
- Kuo, H.-H. White Noise Distribution Theory; Taylor & Francis Group: Oxford, UK, 2018. [Google Scholar]
- Iqbal, S.; Khan, T.M.; Naveed, K.; Naqvi, S.S.; Nawaz, S.J. Recent trends and advances in fundus image analysis: A review. Comput. Biol. Med. 2022, 151, 106277. [Google Scholar] [CrossRef] [PubMed]
- Chichilnisky, E.J. A simple white noise analysis of neuronal light responses. Network 2001, 12, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Gardner, T.; Magnasco, M. Sparse Time-Frequency Representations. Proc. Natl. Acad. Sci. USA 2006, 103, 6094–6099. [Google Scholar] [CrossRef] [PubMed]
- Howard, R. White noise: A time domain basis. In Proceedings of the 2015 International Conference on Noise and Fluctuations (ICNF), Xi’an, China, 2–6 June 2015; pp. 1–4. [Google Scholar]
- Riechers, P.; Crutchfield, J. Fraudulent white noise: Flat power spectra belie arbitrarily complex processes. Phys. Rev. Res. 2021, 3, 013170. [Google Scholar] [CrossRef]
- Othman, H. Generalized free Gaussian white noise. Int. J. Adv. Math. Sci. 2016, 4, 18. [Google Scholar] [CrossRef]
- Van Etten, W.C. Introduction to Random Signals and Noise; John Wiley & Sons: Chichester, UK, 2006. [Google Scholar]
- Blomberg, S.P.; Garland, T., Jr.; Ives, A.R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 2003, 57, 717–745. [Google Scholar]
- Khoury, T.; Ilan, Y. Platform introducing individually tailored variability in nerve stimulations and dietary regimen to prevent weight regain following weight loss in patients with obesity. Obes. Res. Clin. Pract. 2021, 15, 114–123. [Google Scholar] [CrossRef]
- Kessler, A.; Weksler-Zangen, S.; Ilan, Y. Role of the Immune System and the Circadian Rhythm in the Pathogenesis of Chronic Pancreatitis: Establishing a Personalized Signature for Improving the Effect of Immunotherapies for Chronic Pancreatitis. Pancreas 2020, 49, 1024–1032. [Google Scholar] [CrossRef]
- Ishay, Y.; Kolben, Y.; Kessler, A.; Ilan, Y. Role of circadian rhythm and autonomic nervous system in liver function: A hypothetical basis for improving the management of hepatic encephalopathy. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 321, G400–G412. [Google Scholar] [CrossRef]
- Kolben, Y.; Weksler-Zangen, S.; Ilan, Y. Adropin as a potential mediator of the metabolic system-autonomic nervous system-chronobiology axis: Implementing a personalized signature-based platform for chronotherapy. Obes. Rev. 2021, 22, e13108. [Google Scholar] [CrossRef]
- Kenig, A.; Kolben, Y.; Asleh, R.; Amir, O.; Ilan, Y. Improving Diuretic Response in Heart Failure by Implementing a Patient-Tailored Variability and Chronotherapy-Guided Algorithm. Front. Cardiovasc. Med. 2021, 8, 695547. [Google Scholar] [CrossRef] [PubMed]
- Azmanov, H.; Ross, E.L.; Ilan, Y. Establishment of an Individualized Chronotherapy, Autonomic Nervous System, and Variability-Based Dynamic Platform for Overcoming the Loss of Response to Analgesics. Pain Physician 2021, 24, 243–252. [Google Scholar] [CrossRef]
- Potruch, A.; Khoury, S.T.; Ilan, Y. The role of chronobiology in drug-resistance epilepsy: The potential use of a variability and chronotherapy-based individualized platform for improving the response to anti-seizure drugs. Seizure 2020, 80, 201–211. [Google Scholar] [CrossRef]
- Isahy, Y.; Ilan, Y. Improving the long-term response to antidepressants by establishing an individualized platform based on variability and chronotherapy. Int. J. Clin. Pharmacol. Ther. 2021, 59, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Khoury, T.; Ilan, Y. Introducing Patterns of Variability for Overcoming Compensatory Adaptation of the Immune System to Immunomodulatory Agents: A Novel Method for Improving Clinical Response to Anti-TNF Therapies. Front. Immunol. 2019, 10, 2726. [Google Scholar] [CrossRef]
- Kenig, A.; Ilan, Y. A Personalized Signature and Chronotherapy-Based Platform for Improving the Efficacy of Sepsis Treatment. Front. Physiol. 2019, 10, 1542. [Google Scholar] [CrossRef]
- Ilan, Y. Why targeting the microbiome is not so successful: Can randomness overcome the adaptation that occurs following gut manipulation? Clin. Exp. Gastroenterol. 2019, 12, 209–217. [Google Scholar] [CrossRef]
- Gelman, R.; Bayatra, A.; Kessler, A.; Schwartz, A.; Ilan, Y. Targeting SARS-CoV-2 receptors as a means for reducing infectivity and improving antiviral and immune response: An algorithm-based method for overcoming resistance to antiviral agents. Emerg. Microbes Infect. 2020, 9, 1397–1406. [Google Scholar] [CrossRef]
- Ishay, Y.; Potruch, A.; Schwartz, A.; Berg, M.; Jamil, K.; Agus, S.; Ilan, Y. A digital health platform for assisting the diagnosis and monitoring of COVID-19 progression: An adjuvant approach for augmenting the antiviral response and mitigating the immune-mediated target organ damage. Biomed. Pharmacother. 2021, 143, 112228. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y.; Spigelman, Z. Establishing patient-tailored variability-based paradigms for anti-cancer therapy: Using the inherent trajectories which underlie cancer for overcoming drug resistance. Cancer Treat. Res. Commun. 2020, 25, 100240. [Google Scholar] [CrossRef]
- Hurvitz, N.; Azmanov, H.; Kesler, A.; Ilan, Y. Establishing a second-generation artificial intelligence-based system for improving diagnosis, treatment, and monitoring of patients with rare diseases. Eur. J. Hum. Genet. 2021, 29, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Digital Medical Cannabis as Market Differentiator: Second-Generation Artificial Intelligence Systems to Improve Response. Front. Med. 2021, 8, 788777. [Google Scholar] [CrossRef]
- Gelman, R.; Berg, M.; Ilan, Y. A Subject-Tailored Variability-Based Platform for Overcoming the Plateau Effect in Sports Training: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 1722. [Google Scholar] [CrossRef]
- Azmanov, H.; Bayatra, A.; Ilan, Y. Digital Analgesic Comprising a Second-Generation Digital Health System: Increasing Effectiveness by Optimizing the Dosing and Minimizing Side Effects. J. Pain Res. 2022, 15, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Hurvitz, N.; Elkhateeb, N.; Sigawi, T.; Rinsky-Halivni, L.; Ilan, Y. Improving the effectiveness of anti-aging modalities by using the constrained disorder principle-based management algorithms. Front. Aging 2022, 3, 1044038. [Google Scholar] [CrossRef] [PubMed]
- Kolben, Y.; Azmanov, H.; Gelman, R.; Dror, D.; Ilan, Y. Using chronobiology-based second-generation artificial intelligence digital system for overcoming antimicrobial drug resistance in chronic infections. Ann. Med. 2023, 55, 311–318. [Google Scholar] [CrossRef]
- Lehmann, H.; Arkadir, D.; Ilan, Y. Methods for Improving Brain-Computer Interface: Using A Brain-Directed Adjuvant and A Second-Generation Artificial Intelligence System to Enhance Information Streaming and Effectiveness of Stimuli. Int. J. Appl. Biol. Pharm. Technol. 2023, 14, 42–52. [Google Scholar] [CrossRef]
- Adar, O.; Hollander, A.; Ilan, Y. The Constrained Disorder Principle Accounts for the Variability That Characterizes Breathing: A Method for Treating Chronic Respiratory Diseases and Improving Mechanical Ventilation. Adv. Respir. Med. 2023, 91, 350–367. [Google Scholar] [CrossRef]
- Ilan, Y. The Constrained Disorder Principle Accounts for The Structure and Function of Water as An Ultimate Biosensor and Bioreactor in Biological Systems. Int. J. Appl. Biol. Pharm. Technol. 2023, 14, 31–41. [Google Scholar] [CrossRef]
- Sigawi, T.; Hamtzany, O.; Shakargy, J.D.; Ilan, Y. The Constrained Disorder Principle May Account for Consciousness. Brain Sci. 2024, 14, 209. [Google Scholar] [CrossRef]
- Ilan, Y. Special Issue “Computer-Aided Drug Discovery and Treatment”. Int. J. Mol. Sci. 2024, 25, 2683. [Google Scholar] [CrossRef]
- Hurvitz, N.; Dinur, T.; Revel-Vilk, S.; Agus, S.; Berg, M.; Zimran, A.; Ilan, Y. A Feasibility Open-Labeled Clinical Trial Using a Second-Generation Artificial-Intelligence-Based Therapeutic Regimen in Patients with Gaucher Disease Treated with Enzyme Replacement Therapy. J. Clin. Med. 2024, 13, 3325. [Google Scholar] [CrossRef]
- Ilan, Y. Free Will as Defined by the Constrained Disorder Principle: A Restricted, Mandatory, Personalized, Regulated Process for Decision-Making. Integr. Psychol. Behav. Sci. 2024, 58, 1843–1875. [Google Scholar] [CrossRef]
- Ilan, Y. The Constrained Disorder Principle Defines Mitochondrial Variability and Provides A Platform for A Novel Mechanism for Improved Functionality of Complex Systems. Fortune J. Health Sci. 2024, 7, 338–347. [Google Scholar] [CrossRef]
- Sigawi, T.; Israeli, A.; Ilan, Y. Harnessing Variability Signatures and Biological Noise May Enhance Immunotherapies’ Efficacy and Act as Novel Biomarkers for Diagnosing and Monitoring Immune-Associated Disorders. Immunotargets Ther. 2024, 13, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Improving Global Healthcare and Reducing Costs Using Second-Generation Artificial Intelligence-Based Digital Pills: A Market Disruptor. Int. J. Environ. Res. Public Health 2021, 18, 811. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Next-Generation Personalized Medicine: Implementation of Variability Patterns for Overcoming Drug Resistance in Chronic Diseases. J. Pers. Med. 2022, 12, 1303. [Google Scholar] [CrossRef]
- Hurvitz, N.; Ilan, Y. The Constrained-Disorder Principle Assists in Overcoming Significant Challenges in Digital Health: Moving from “Nice to Have” to Mandatory Systems. Clin. Pract. 2023, 13, 994–1014. [Google Scholar] [CrossRef]
- Sigawi, T.; Ilan, Y. Using Constrained-Disorder Principle-Based Systems to Improve the Performance of Digital Twins in Biological Systems. Biomimetics 2023, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Overcoming Compensatory Mechanisms toward Chronic Drug Administration to Ensure Long-Term, Sustainable Beneficial Effects. Mol. Ther. Methods Clin. Dev. 2020, 18, 335–344. [Google Scholar] [CrossRef]
- Bayatra, A.; Nasserat, R.; Ilan, Y. Overcoming Low Adherence to Chronic Medications by Improving their Effectiveness Using a Personalized Second-generation Digital System. Curr. Pharm. Biotechnol. 2024, 25, 2078–2088. [Google Scholar] [CrossRef]
- Hurvitz, N.; Lehman, H.; Hershkovitz, Y.; Kolben, Y.; Jamil, K.; Agus, S.; Berg, M.; Aamar, S.; Ilan, Y. A constrained disorder principle-based second-generation artificial intelligence digital medical cannabis system: A real-world data analysis. J. Public Health Res. 2025, 14, 22799036251337640. [Google Scholar] [CrossRef]
- Sigawi, T.; Gelman, R.; Maimon, O.; Yossef, A.; Hemed, N.; Agus, S.; Berg, M.; Ilan, Y.; Popovtzer, A. Improving the response to lenvatinib in partial responders using a Constrained-Disorder-Principle-based second-generation artificial intelligence-therapeutic regimen: A proof-of-concept open-labeled clinical trial. Front. Oncol. 2024, 14, 1426426. [Google Scholar] [CrossRef]
- Gelman, R.; Hurvitz, N.; Nesserat, R.; Kolben, Y.; Nachman, D.; Jamil, K.; Agus, S.; Asleh, R.; Amir, O.; Berg, M.; et al. A second-generation artificial intelligence-based therapeutic regimen improves diuretic resistance in heart failure: Results of a feasibility open-labeled clinical trial. Biomed. Pharmacother. 2023, 161, 114334. [Google Scholar] [CrossRef]
- Vargas-Drechsler, M.; Pallas-Areny, R. Thermal noise in a finite bandwidth. Instrum. Meas. Mag. IEEE 2002, 4, 23–25. [Google Scholar] [CrossRef]
- Pourfannan, H.; Mahzoon, H.; Yoshikawa, Y.; Ishiguro, H. Sound masking by a low-pitch speech-shaped noise improves a social robot’s talk in noisy environments. Front. Robot. AI 2024, 10, 1205209. [Google Scholar] [CrossRef] [PubMed]
- Lindín, M.; Correa, K.; Zurrón, M.; Díaz, F. Mismatch negativity (MMN) amplitude as a biomarker of sensory memory deficit in amnestic mild cognitive impairment. Front. Aging Neurosci. 2013, 5, 79. [Google Scholar] [CrossRef] [PubMed]
- Czaja, Z.; Kowalewski, M. A random signal generation method for microcontrollers with DACs. Metrol. Meas. Syst. 2018, 25, 675–687. [Google Scholar] [CrossRef]
- De Jong, R.W.; Davis, G.S.; Chelf, C.J.; Marinelli, J.P.; Erbele, I.D.; Bowe, S.N. Continuous white noise exposure during sleep and childhood development: A scoping review. Sleep Med. 2024, 119, 88–94. [Google Scholar] [CrossRef]
- Zhang, L. An Investigation of A White Noise-based App for Improving Sleep Quality. Acad. J. Sci. Technol. 2023, 7, 76–80. [Google Scholar] [CrossRef]
- Riedy, S.M.; Smith, M.G.; Rocha, S.; Basner, M. Noise as a sleep aid: A systematic review. Sleep Med. Rev. 2021, 55, 101385. [Google Scholar] [CrossRef]
- Ebben, M.R.; Yan, P.; Krieger, A.C. The effects of white noise on sleep and duration in individuals living in a high noise environment in New York City. Sleep Med. 2021, 83, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Forquer, L.; Johnson, C. Continuous White Noise to Reduce Resistance Going to Sleep and Night Wakings in Toddlers. Child Fam. Behav. Ther. 2005, 27, 1–10. [Google Scholar] [CrossRef]
- Stanchina, M.; Abu-Hijleh, M.; Chaudhry, B.; Carlisle, C.; Millman, R. The influence of white noise on sleep in subjects exposed to ICU noise. Sleep Med. 2005, 6, 423–428. [Google Scholar] [CrossRef]
- Rodríguez-Montaño, V.M.; Puyana-Romero, V.; Hernández-Molina, R.; Beira-Jiménez, J.L. The Noise: A Silent Threat to the Recovery of Patients in Neonatal Intensive Care Units. Buildings 2024, 14, 2778. [Google Scholar] [CrossRef]
- Zhang, Q.; Huo, Q.; Chen, P.; Yao, W.; Ni, Z. Effects of white noise on preterm infants in the neonatal intensive care unit: A meta-analysis of randomised controlled trials. Nurs. Open 2024, 11, e2094. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, J.; Kurdyś-Bykowska, P.; Surówka, Ł.; Obuchowicz, A. Use of white noise-emitting devices in infants and small children as assessed by their parents. Paediatr. Fam. Med. 2019, 15, 291–296. [Google Scholar] [CrossRef]
- Zhu, L.; Zheng, L. Influence of White Sound on Sleep Quality, Anxiety, and Depression in Patients with Schizophrenia. Noise Health 2024, 26, 97–101. [Google Scholar] [CrossRef]
- Kaneko, Y.; Butler, J.; Saitoh, E.; Horie, T.; Fujii, M.; Sasaki, H. Efficacy of white noise therapy for dementia patients with schizophrenia. Geriatr. Gerontol. Int. 2013, 13, 808–810. [Google Scholar] [CrossRef]
- Ramaswamy, M.; Philip, J.L.; Priya, V.; Priyadarshini, S.; Ramasamy, M.; Jeevitha, G.C.; Mathkor, D.M.; Haque, S.; Dabaghzadeh, F.; Bhattacharya, P.; et al. Therapeutic use of music in neurological disorders: A concise narrative review. Heliyon 2024, 10, e35564. [Google Scholar] [CrossRef]
- Son, S.M.; Kwag, S.W. Effects of white noise in walking on walking time, state anxiety, and fear of falling among the elderly with mild dementia. Brain Behav. 2020, 10, e01874. [Google Scholar] [CrossRef]
- Ridder, H.; Stige, B.; Qvale, L.; Gold, C. Individual music therapy for agitation in dementia: An exploratory randomized controlled trial. Aging Ment. Health 2013, 17, 667–678. [Google Scholar] [CrossRef]
- Farokhnezhad Afshar, P.; Mahmoudi, A.; Abdi, A. The effect of white noise on the vital signs of elderly patients admitted to the cardiac care unit. J. Gerontol. 2016, 1, 27–34. [Google Scholar] [CrossRef]
- Akca, K.; Ozdemir, A.A. Effect of Soothing Noise on Sucking Success of Newborns. Breastfeed. Med. 2014, 9, 538–542. [Google Scholar] [CrossRef]
- Baum, N.; Chaddha, J. The Impact of Auditory White Noise on Cognitive Performance. J. Sci. Med. 2021, 3, 1–15. [Google Scholar] [CrossRef]
- Awada, M.; Becerik-Gerber, B.; Lucas, G.; Roll, S. Cognitive performance, creativity and stress levels of neurotypical young adults under different white noise levels. Sci. Rep. 2022, 12, 14566. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.J.; Khosrowabadi, R.; Khodakarim, S.; Mohammadian, F. The Effect of Noise Exposure on Cognitive Performance and Brain Activity Patterns. Open Access Maced. J. Med. Sci. 2019, 7, 2924–2931. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, S.; Xie, S.; Wu, L.; Jiang, C.; Ding, S.; Zhang, Z.; Xu, W.; Li, H. Does background sound impact cognitive performance and relaxation states in enclosed office? Build. Environ. 2025, 267, 112313. [Google Scholar] [CrossRef]
- Rausch, V.; Bauch, E.; Bunzeck, N. White Noise Improves Learning by Modulating Activity in Dopaminergic Midbrain Regions and Right Superior Temporal Sulcus. J. Cogn. Neurosci. 2013, 26, 1469–1480. [Google Scholar] [CrossRef] [PubMed]
- Angwin, A.J.; Wilson, W.; Arnott, W.; Signorini, A.; Barry, R.; Copland, D. White noise enhances new-word learning in healthy adults. Sci. Rep. 2017, 7, 13045. [Google Scholar] [CrossRef] [PubMed]
- Nigg, J.T.; Bruton, A.; Kozlowski, M.B.; Johnstone, J.M.; Karalunas, S.L. Systematic Review and Meta-Analysis: Do White Noise and Pink Noise Help With Attention in Attention-Deficit/Hyperactivity Disorder? J. Am. Acad. Child Adolesc. Psychiatry 2024, 63, 778. [Google Scholar] [CrossRef]
- Pickens, T.; Khan, S.; Berlau, D. White Noise as a Possible Therapeutic Option for Children with ADHD. Complement. Ther. Med. 2018, 42, 151–155. [Google Scholar] [CrossRef]
- Lin, H.Y. The Effects of White Noise on Attentional Performance and On-Task Behaviors in Preschoolers with ADHD. Int. J. Environ. Res. Public Health 2022, 19, 15391. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.; Johnson, C.; Bradley-Johnson, S. White Noise to Decrease Problem Behaviors in the Classroom for a Child With Attention Deficit Hyperactivity Disorder (ADHD). Child Fam. Behav. Ther. 2015, 37, 38–50. [Google Scholar] [CrossRef]
- Chen, I.-C.; Chan, H.-Y.; Lin, K.-C.; Huang, Y.-T.; Tsai, P.-L.; Huang, Y.-M. Listening to White Noise Improved Verbal Working Memory in Children with Attention-Deficit/Hyperactivity Disorder: A Pilot Study. Int. J. Environ. Res. Public Health 2022, 19, 7283. [Google Scholar] [CrossRef] [PubMed]
- Banbury, S.; Berry, D. Office noise and employee concentration: Identifying causes of disruption and potential improvements. Ergonomics 2005, 48, 25–37. [Google Scholar] [CrossRef]
- Soderlund, G.; Sikström, S.; Loftesnes, J.M.; Sonuga-Barke, E. The effects of background white noise on memory performance in inattentive school children. Behav. Brain Funct. 2010, 6, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fei, J.; Zheng, Y.; Li, P.; Ren, X.; An, Y. Effects of the Combination of Noise Reduction Earplugs with White Noise and Rational Emotional Therapy on Emotional States of Inpatients with Colorectal Cancer. Noise Health 2024, 26, 300–305. [Google Scholar] [CrossRef]
- Yamagata, M.; Kiyono, K.; Kimura, T. Long-range cross-correlations between center of pressure velocity and colored noises provided during quiet standing. Neurosci. Lett. 2024, 842, 138008. [Google Scholar] [CrossRef]
- Caetano, M.; Kafentzis, G.; Degottex, G.; Mouchtaris, A.; Stylianou, Y. Evaluating How Well Filtered White Noise Models the Residual from Sinusoidal Modeling of Musical Instrument Sounds. In Proceedings of the 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, 20–23 October 2013. [Google Scholar]
- Arslan, S.; Yildirim, B. A Novel White Noise Generator as the Tracking Generator for Filter Measurements. AEU-Int. J. Electron. Commun. 2018, 96, 13–17. [Google Scholar] [CrossRef]
- Shargorodsky, J.; Curhan, G.C.; Farwell, W.R. Prevalence and characteristics of tinnitus among US adults. Am. J. Med. 2010, 123, 711–718. [Google Scholar] [CrossRef]
- Baguley, D.; McFerran, D.; Hall, D. Tinnitus. Lancet 2013, 382, 1600–1607. [Google Scholar] [CrossRef]
- Bhatt, J.M.; Lin, H.W.; Bhattacharyya, N. Prevalence, Severity, Exposures, and Treatment Patterns of Tinnitus in the United States. JAMA Otolaryngol. Head Neck Surg. 2016, 142, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Maes, I.H.; Cima, R.F.; Vlaeyen, J.W.; Anteunis, L.J.; Joore, M.A. Tinnitus: A cost study. Ear Hear. 2013, 34, 508–514. [Google Scholar] [CrossRef]
- Lockwood, A.H.; Salvi, R.J.; Burkard, R.F. Tinnitus. N. Engl. J. Med. 2002, 347, 904–910. [Google Scholar] [CrossRef]
- Messina, A.; Corvaia, A.; Marino, C. Definition of Tinnitus. Audiol. Res. 2022, 12, 281–289. [Google Scholar] [CrossRef]
- Yuan, J.; Sun, Y.; Sang, S.; Pham, J.H.; Kong, W.-J. The risk of cognitive impairment associated with hearing function in older adults: A pooled analysis of data from eleven studies. Sci. Rep. 2018, 8, 2137. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, S.; Chen, S.; Wen, Y.-y.; Liu, B.; Xie, W.; Li, D.; Liu, L.; Huang, X.; Sun, Y.; et al. Autosomal Recessive Congenital Sensorineural Hearing Loss due to a Novel Compound Heterozygous PTPRQ Mutation in a Chinese Family. Neural Plast. 2018, 2018, 9425725. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Chen, S.; Xie, L.; Xu, K.; Lin, Y.; Bai, X.; Zhang, H.-M.; Liu, X.-Z.; Jin, Y.; Sun, Y.; et al. Auditory Neuropathy Spectrum Disorder due to Two Novel Compound Heterozygous OTOF Mutations in Two Chinese Families. Neural Plast. 2019, 2019, 9765276. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.E.; Eggermont, J.J.; Caspary, D.M.; Shore, S.E.; Melcher, J.R.; Kaltenbach, J.A. Ringing ears: The neuroscience of tinnitus. J. Neurosci. 2010, 30, 14972–14979. [Google Scholar] [CrossRef]
- Hesser, H.; Weise, C.; Westin, V.Z.; Andersson, G. A systematic review and meta-analysis of randomized controlled trials of cognitive-behavioral therapy for tinnitus distress. Clin. Psychol. Rev. 2011, 31, 545–553. [Google Scholar] [CrossRef]
- Hoare, D.J.; Kowalkowski, V.L.; Kang, S.; Hall, D.A. Systematic review and meta-analyses of randomized controlled trials examining tinnitus management. Laryngoscope 2011, 121, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Song, J.J.; Vanneste, S.; Van de Heyning, P.; De Ridder, D. Transcranial direct current stimulation in tinnitus patients: A systemic review and meta-analysis. Sci. World J. 2012, 2012, 427941. [Google Scholar] [CrossRef] [PubMed]
- Vernon, J. Attemps to relieve tinnitus. J. Am. Audiol. Soc. 1977, 2, 124–131. [Google Scholar]
- Attarha, M.; Bigelow, J.; Merzenich, M.M. Unintended Consequences of White Noise Therapy for Tinnitus-Otolaryngology’s Cobra Effect: A Review. JAMA Otolaryngol. Head Neck Surg. 2018, 144, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Hoare, D.; Searchfield, G.; Refaie, A.; Henry, J. Sound Therapy for Tinnitus Management: Practicable Options. J. Am. Acad. Audiol. 2014, 25, 62–75. [Google Scholar] [CrossRef]
- Henry, J.A.; Zaugg, T.L.; Myers, P.J.; Schechter, M.A. Using therapeutic sound with progressive audiologic tinnitus management. Trends Amplif. 2008, 12, 188–209. [Google Scholar] [CrossRef]
- Hobson, J.; Chisholm, E.; El Refaie, A. Sound therapy (masking) in the management of tinnitus in adults. Cochrane Database Syst. Rev. 2012, 11, Cd006371. [Google Scholar] [CrossRef]
- Tunkel, D.E.; Bauer, C.A.; Sun, G.H.; Rosenfeld, R.M.; Chandrasekhar, S.S.; Cunningham, E.R., Jr.; Archer, S.M.; Blakley, B.W.; Carter, J.M.; Granieri, E.C.; et al. Clinical practice guideline: Tinnitus. Otolaryngol. Head Neck Surg. 2014, 151 (Suppl. 2), S1–S40. [Google Scholar] [CrossRef]
- Jastreboff, P.J.; Jastreboff, M.M. Tinnitus Retraining Therapy (TRT) as a method for treatment of tinnitus and hyperacusis patients. J. Am. Acad. Audiol. 2000, 11, 162–177. [Google Scholar] [CrossRef]
- Henry, J.A.; Schechter, M.A.; Zaugg, T.L.; Griest, S.; Jastreboff, P.J.; Vernon, J.A.; Kaelin, C.; Meikle, M.B.; Lyons, K.S.; Stewart, B.J. Outcomes of clinical trial: Tinnitus masking versus tinnitus retraining therapy. J. Am. Acad. Audiol. 2006, 17, 104–132. [Google Scholar] [CrossRef]
- Tyler, R.S.; Noble, W.; Coelho, C.B.; Ji, H. Tinnitus retraining therapy: Mixing point and total masking are equally effective. Ear Hear. 2012, 33, 588–594. [Google Scholar] [CrossRef]
- Davis, P.B.; Paki, B.; Hanley, P.J. Neuromonics Tinnitus Treatment: Third clinical trial. Ear Hear. 2007, 28, 242–259. [Google Scholar] [CrossRef]
- Oiticica, J.; Vasconcelos, L.G.E.; Horiuti, M.B. White noise effect on listening effort among patients with chronic tinnitus and normal hearing thresholds. Braz. J. Otorhinolaryngol. 2023, 90, 101340. [Google Scholar] [CrossRef]
- Wang, H.; Tang, D.; Wu, Y.; Zhou, L.; Sun, S. The state of the art of sound therapy for subjective tinnitus in adults. Ther. Adv. Chronic Dis. 2020, 11, 2040622320956426. [Google Scholar] [CrossRef]
- Mondelli, M.; Cabreira, A.F.; Matos, I.L.; Ferreira, M.C.; Rocha, A.V. Sound Generator: Analysis of the Effectiveness of Noise in the Habituation of Tinnitus. Int. Arch. Otorhinolaryngol. 2021, 25, e205–e212. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Wang, G.; Zheng, Z.; Gao, M.; Li, S.; Wu, S. Pink noise: A potential sound therapy for tinnitus. Am. J. Transl. Res. 2023, 15, 6621–6625. [Google Scholar]
- Reavis, K.M.; Rothholtz, V.S.; Tang, Q.; Carroll, J.A.; Djalilian, H.; Zeng, F.G. Temporary suppression of tinnitus by modulated sounds. J. Assoc. Res. Otolaryngol. 2012, 13, 561–571. [Google Scholar] [CrossRef]
- Searchfield, G.D.; Sanders, P.J. A randomized single-blind controlled trial of a prototype digital polytherapeutic for tinnitus. Front. Neurol. 2022, 13, 958730. [Google Scholar] [CrossRef] [PubMed]
- Persic, D.; Thomas, M.E.; Pelekanos, V.; Ryugo, D.K.; Takesian, A.E.; Krumbholz, K.; Pyott, S.J. Regulation of auditory plasticity during critical periods and following hearing loss. Hear. Res. 2020, 397, 107976. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yuan, W. Central plasticity and dysfunction elicited by aural deprivation in the critical period. Front. Neural Circuits 2015, 9, 26. [Google Scholar] [CrossRef]
- Ribic, A. Stability in the Face of Change: Lifelong Experience-Dependent Plasticity in the Sensory Cortex. Front. Cell. Neurosci. 2020, 14, 76. [Google Scholar] [CrossRef] [PubMed]
- Irvine, D.R.F. Plasticity in the auditory system. Hear. Res. 2018, 362, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Ilan, Y. Using the Constrained Disorder Principle to Navigate Uncertainties in Biology and Medicine: Refining Fuzzy Algorithms. Biology 2024, 13, 830. [Google Scholar] [CrossRef] [PubMed]
- van der Groen, O.; Potok, W.; Wenderoth, N.; Edwards, G.; Mattingley, J.B.; Edwards, D. Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. Neurosci. Biobehav. Rev. 2022, 138, 104702. [Google Scholar] [CrossRef]
- Othman, E.; Yusoff, A.N.; Mohamad, M.; Abdul Manan, H.; Giampietro, V.; Abd Hamid, A.I.; Dzulkifli, M.A.; Osman, S.S.; Wan Burhanuddin, W.I.D. Low intensity white noise improves performance in auditory working memory task: An fMRI study. Heliyon 2019, 5, e02444. [Google Scholar] [CrossRef]
- Yamagata, M.; Okada, S.; Tsujioka, Y.; Takayama, A.; Shiozawa, N.; Kimura, T. Effects of subthreshold electrical stimulation with white noise, pink noise, and chaotic signals on postural control during quiet standing. Gait Posture 2022, 94, 39–44. [Google Scholar] [CrossRef]
- Matthews, P.; Raul, P.; Ward, L.M.; van Boxtel, J.J.A. Stochastic resonance in the sensory systems and its applications in neural prosthetics. Clin. Neurophysiol. 2024, 165, 182–200. [Google Scholar] [CrossRef]
- Bender, D.A.; Ni, R.; Barbour, D.L. Spontaneous activity is correlated with coding density in primary auditory cortex. J. Neurophysiol. 2016, 116, 2789–2798. [Google Scholar] [CrossRef] [PubMed]
- Burkard, R. Hearing Disorders. In International Encyclopedia of Public Health; Heggenhougen, H.K., Ed.; Academic Press: Oxford, UK, 2008; pp. 273–281. [Google Scholar]
- Rufener, K.S.; Kauk, J.; Ruhnau, P.; Repplinger, S.; Heil, P.; Zaehle, T. Inconsistent effects of stochastic resonance on human auditory processing. Sci. Rep. 2020, 10, 6419. [Google Scholar] [CrossRef]
- Rousseau, D.; Chapeau-Blondeau, F. Suprathreshold stochastic resonance and signal-to-noise ratio improvement in arrays of comparators. Phys. Lett. A 2004, 321, 280–290. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, P.; Li, M.; Han, D. A novel stochastic resonance model based on bistable stochastic pooling network and its application. Chaos Solitons Fractals 2021, 145, 110800. [Google Scholar] [CrossRef]
- Yu, H.; Galán, R.F.; Wang, J.; Cao, Y.; Liu, J. Stochastic resonance, coherence resonance, and spike timing reliability of Hodgkin–Huxley neurons with ion-channel noise. Phys. A Stat. Mech. Its Appl. 2017, 471, 263–275. [Google Scholar] [CrossRef]
- Helps, S.K.; Bamford, S.; Sonuga-Barke, E.J.; Söderlund, G.B. Different effects of adding white noise on cognitive performance of sub-, normal and super-attentive school children. PLoS ONE 2014, 9, e112768. [Google Scholar] [CrossRef]
- Zhou, H.; Molesworth, B.R.C.; Burgess, M.; Hatfield, J. The effect of moderate broadband noise on cognitive performance: A systematic review. Cogn. Technol. Work 2024, 26, 1–36. [Google Scholar] [CrossRef]
- Ilan, Y. The constrained-disorder principle defines the functions of systems in nature. Front. Netw. Physiol. 2024, 4, 1361915. [Google Scholar] [CrossRef]
- Schwarzkopf, D.S.; Silvanto, J.; Rees, G. Stochastic resonance effects reveal the neural mechanisms of transcranial magnetic stimulation. J. Neurosci. 2011, 31, 3143–3147. [Google Scholar] [CrossRef]
- Lefebvre, J.; Hutt, A.; Frohlich, F. Stochastic resonance mediates the state-dependent effect of periodic stimulation on cortical alpha oscillations. elife 2017, 6, e32054. [Google Scholar] [CrossRef]
- Vd Groen, O.; Tang, M.; Wenderoth, N.; Mattingley, J. Stochastic resonance enhances the rate of evidence accumulation during combined brain stimulation and perceptual decision-making. PLOS Comput. Biol. 2018, 14, e1006301. [Google Scholar] [CrossRef]
- Brocolini, L.; Parizet, E.; Chevret, P. Effect of masking noise on cognitive performance and annoyance in open plan offices. Appl. Acoust. 2016, 114, 44–55. [Google Scholar] [CrossRef]
- Cerisara, C.; Demange, S.; Haton, J.P. On noise masking for automatic missing data speech recognition: A survey and discussion. Comput. Speech Lang. 2007, 21, 443–457. [Google Scholar] [CrossRef]
- Guo, W.; Fan, Y.; Zhang, G. Lightweight Infrared Image Denoising Method Based on Adversarial Transfer Learning. Sensors 2024, 24, 6677. [Google Scholar] [CrossRef]
- Miller, M.; Donovan, C.-L.; Bennett, C.; Aminoff, E.; Mayer, R. Individual differences in cognitive style and strategy predict similarities in the patterns of brain activity between individuals. Neuroimage 2011, 59, 83–93. [Google Scholar] [CrossRef]
- Egeland, J.; Lund, O.; Kowalik-Gran, I.; Aarlien, A.; Söderlund, G. Effects of auditory white noise stimulation on sustained attention and response time variability. Front. Psychol. 2023, 14, 1301771. [Google Scholar] [CrossRef]
- Ilan, Y. The Constrained Disorder Principle Overcomes the Challenges of Methods for Assessing Uncertainty in Biological Systems. J. Pers. Med. 2025, 15, 10. [Google Scholar] [CrossRef]
- Ilan, Y. The constrained disorder principle and the law of increasing functional information: The elephant versus the Moeritherium. Comput. Struct. Biotechnol. Rep. 2025, 2, 100040. [Google Scholar] [CrossRef]
- Adar, O.; Shakargy, J.D.; Ilan, Y. The Constrained Disorder Principle: Beyond Biological Allostasis. Biology 2025, 14, 339. [Google Scholar] [CrossRef]
- Ilan, Y. The Relationship Between Biological Noise and Its Application: Understanding System Failures and Suggesting a Method to Enhance Functionality Based on the Constrained Disorder Principle. Biology 2025, 14, 349. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stern Shavit, S.; Ilan, Y. White Noise Exemplifies the Constrained Disorder Principle-Based Concept of Overcoming Malfunctions. Appl. Sci. 2025, 15, 8769. https://doi.org/10.3390/app15168769
Stern Shavit S, Ilan Y. White Noise Exemplifies the Constrained Disorder Principle-Based Concept of Overcoming Malfunctions. Applied Sciences. 2025; 15(16):8769. https://doi.org/10.3390/app15168769
Chicago/Turabian StyleStern Shavit, Sagit, and Yaron Ilan. 2025. "White Noise Exemplifies the Constrained Disorder Principle-Based Concept of Overcoming Malfunctions" Applied Sciences 15, no. 16: 8769. https://doi.org/10.3390/app15168769
APA StyleStern Shavit, S., & Ilan, Y. (2025). White Noise Exemplifies the Constrained Disorder Principle-Based Concept of Overcoming Malfunctions. Applied Sciences, 15(16), 8769. https://doi.org/10.3390/app15168769