Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterization
2.3. Photocatalytic Assays
3. Results and Discussion
3.1. Structural and Morphological Analysis
3.2. Photocatalytic Degradation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Fe2(MoO4)3 | Iron molybdate |
FeWO4 | Iron tungstate |
MB | Methylene blue |
RhB | Rhodamine B |
XRD | X-ray diffraction |
FE-SEM | Field-emission scanning electron microscopy |
UV-vis | Ultraviolet–visible |
PL | Photoluminescence |
TOC | Total organic carbon |
MH | Microwave hydrothermal |
Egap | Band gap energy |
CB | Conduction band |
VB | Valence band |
e− | Electrons |
h+ | Holes |
e−/h+ pairs | Charge carriers |
ROS | Reactive oxygen species |
References
- Le, D.T.K.; Le, T.M.; Bui, H.M. Natural dyes from Diospyros Mollis: A sustainable alternative for the textile industry. Sustain. Chem. One World 2025, 5, 100049. [Google Scholar] [CrossRef]
- Mohamadpour, F.; Mohamadpour, F. Photodegradation of six selected antipsychiatric drugs; carbamazepine, sertraline, amisulpride, amitriptyline, diazepam, and alprazolam in environment: Efficiency, pathway, and mechanism—A review. Sustain. Environ. Res. 2024, 34, 8. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, L. Microplastic migration and transformation pathways and exposure health risks. Environ. Pollut. 2025, 368, 125700. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Ye, Y.; Xu, L.; Gao, T.; Zhong, A.; Song, Z. Recent Advances in Nanoscale Zero-Valent Iron (nZVI)-Based Advanced Oxidation Processes (AOPs): Applications, Mechanisms, and Future Prospects. Nanomaterials 2023, 13, 2830. [Google Scholar] [CrossRef]
- Liu, M.; Ye, Y.; Ye, J.; Gao, T.; Wang, D.; Chen, G.; Song, Z. Recent Advances of Magnetite (Fe3O4)-Based Magnetic Materials in Catalytic Applications. Magnetochemistry 2023, 9, 110. [Google Scholar] [CrossRef]
- Parasuraman, B.; Kandasamy, B.; Murugan, I.; Alsalhi, M.S.; Asemi, N.; Thangavelu, P.; Perumal, S. Designing the heterostructured FeWO4/FeS2 nanocomposites for an enhanced photocatalytic organic dye degradation. Chemosphere 2023, 334, 138979. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, K.; Rajendran, R.; Palanisamy, S.; Arumugam, P.; Thammasak, R. Powerful combination of FeWO4/g-C3N4 heterostructures for solar light driven photocatalytic degradation of tetracycline and its antibacterial activity. Mater. Today Sustain. 2023, 24, 100562. [Google Scholar] [CrossRef]
- Saranya, A.; Khan, M.R.; Ahmad, N.; Srivastava, P.; Poonguzhali, S.; Oh, T.H.; Vignesh, S.; Hartati, S.; Jothimani, K. Enhanced photocatalytic properties of visible light-responsive ZnS/FeWO4 composites for degradation of tetracycline and Escherichia coli inactivation. J. Alloys Compd. 2025, 1010, 176983. [Google Scholar]
- Wei, Y.; Guo, J.; Liu, C.; Lü, H.; Li, Y. FeWO4 nanosheets with enhanced exposed (001) facets for promoting photocatalytic Fenton degradation of organic pollutants. J. Solid State Chem. 2025, 345, 125238. [Google Scholar] [CrossRef]
- Jalalat, Z.; Habibi-Yangjeh, A.; Yekan Motlagh, P.; Khataee, A. Activation of persulfate over double S-scheme photocatalyst fabricated by decoration of Fe2(MoO4)3 and MoO3 on modified g-C3N4 for degradation of pollutants. J. Alloys Compd. 2025, 1010, 177222. [Google Scholar] [CrossRef]
- Gai, C.; Xie, X.; Jian, Y.; Tao, Y.; Jin, R.; Peng, N. Enhancing photocatalytic degradation of tylosin with persulfate by facile synthesis of Fe-Mo@Mo photocatalyst. J. Environ. Chem. Eng. 2025, 13, 116613. [Google Scholar] [CrossRef]
- Ismail, A.A.; Alsheheri, S.Z.; Albukhari, S.M.; Mahmoud, M.H.H. Facile synthesis of visible-light-induced mesoporous Ag2O/Fe2(MoO4)3 photocatalysts for degradation of tetracycline. Opt. Mater. 2021, 121, 111505. [Google Scholar] [CrossRef]
- Vasanthakumar, V.; Alsawalha, M.; Jothimani, K.; Fu, M.L.; Yuan, B. Z-scheme direct dual semiconductor photocatalytic system with porous g-C3N4/Fe2(MoO4)3 composite: A promising approach for enhanced photocatalytic degradation of doxycycline. J. Environ. Chem. Eng. 2024, 12, 111710. [Google Scholar]
- Dutta, A.; Adhikari, S.; Johari, P.; Nag, R.; Bera, A.; Saha, S.K.; Akhtar, A.J. Unleashing the power of Fe2(MoO4)3 as a multifunctional material for energy storage and photocatalysis with theoretical insight from density functional theory. J. Energy Storage 2024, 85, 111082. [Google Scholar] [CrossRef]
- John Christopher, J.; Rajkumar, S.; Sharmila Lydia, I.; Princy Merlin, J. Investigation of Fe2(MoO4)3@Ppy Composite for Effective Photocatalytic Degradation of Crystal Violet Under Visible Light. J. Inorg. Organomet. Polym. 2025, 1–19. [Google Scholar] [CrossRef]
- Foroughi, M.; Peighambardoust, S.J.; Ramavandi, B.; Boffito, D.C. Simultaneous anionic dyes degradation via H2O2 activation using Zeolite 4A/ZnO/Fe2(MoO4)3 nanoparticles in a sono-photocatalytic process. Adv. Powder Technol. 2024, 35, 104320. [Google Scholar] [CrossRef]
- Singh, P.P.; Pandey, G.; Murti, Y.; Gairola, J.; Mahajan, S.; Kandhari, H.; Tivari, S.; Srivastava, V. Light-driven photocatalysis as an effective tool for degradation of antibiotics. RSC Adv. 2024, 14, 20492–20515. [Google Scholar] [CrossRef]
- Wang, J.; Chu, L.; Wojnárovits, L.; Takács, E. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Sci. Total Environ. 2020, 744, 140997. [Google Scholar] [CrossRef]
- Kumar, N.; Pandey, A.; Sharma, Y.C. A review on sustainable mesoporous activated carbon as adsorbent for efficient removal of hazardous dyes from industrial wastewater. J. Water Process Eng. 2023, 54, 104054. [Google Scholar] [CrossRef]
- Kubelka, P.; Munk, F. Ein Beitrag Zur Optik Der Farbanstriche. Zeit. Fur. Tech. Physik 1931, 12, 593–601. [Google Scholar]
- Almeida, M.; Cavalcante, L.; Morilla-Santos, C.; Dalmaschio, C.; Rajagopal, S.; Li, M.S.; Longo, E. Effect of partial preferential orientation and distortions in octahedral clusters on the photoluminescence properties of FeWO4 nanocrystals. CrystEngComm 2012, 14, 7127–7132. [Google Scholar] [CrossRef]
- Freitas, T.S.; Oliveira, F.S.; Cruz, R.P.; Pereira, R.L.S.; Silva, A.R.P.; Moura, J.V.B.; Luz-Lima, C.; Viana, B.C.; da Silva, J.H.; Freire, P.T.C.; et al. Modulation of antibiotic effect by Fe2(MoO4)3 microstrutures. Eur. J. Pharm. Sci. 2018, 123, 295–300. [Google Scholar] [CrossRef]
- He, G.-L.; Chen, M.-J.; Liu, Y.-Q.; Li, X.; Liu, Y.-J.; Xu, Y.-H. Hydrothermal synthesis of FeWO4-graphene composites and their photocatalytic activities under visible light. Appl. Surf. Sci. 2015, 351, 474–479. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, Z. FeWO4 nanorods with excellent UV–Visible light photocatalysis. Prog. Nat. Sci.: Mater. Int. 2017, 27, 556–560. [Google Scholar] [CrossRef]
- Parveen, S.; Bhatti, I.; Ashar, A.; Javed, T.; Mohsin, M.; Hussain, M.; Khan, M.; Naz, S.; Iqbal, M. Synthesis, characterization and photocatalytic performance of iron molybdate (Fe2(MoO4)3) for the degradation of endosulfan pesticide. Mater. Res. Express 2020, 7, 035016. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Y.; Li, W.; Wang, F.; Li, H.; Ren, C.; Zhao, Y. Modified surficial chemistry micro-circumstance and mid-gap effect on photocatalytic ability of tetracycline by introducing of nitrogen in Fe2(MoO4)3. Mol. Catal. 2017, 434, 106–115. [Google Scholar] [CrossRef]
- Li, L.H.; Li, Y.Z.; Li, Y.; Ye, H.; Lu, A.H.; Ding, H.R.; Wang, C.Q.; Zhou, Q.M.; Shi, J.X.; Ji, X. Influences of Fe-Mn ratio on the photocatalytic performance of wolframite (FexMn1-xWO4). Chem. Geol. 2021, 575, 120253. [Google Scholar] [CrossRef]
- Li, L.H.; Li, Y.; Li, Y.Z.; Lu, A.H.; Ding, H.R.; Wong, P.K.; Sun, H.L.; Shi, J.X. Natural wolframite as a novel visible-light photocatalyst towards organics degradation and bacterial inactivation. Catal. Today 2020, 358, 177–183. [Google Scholar] [CrossRef]
- Li, L.; Carter, E.A. Defect-Mediated Charge-Carrier Trapping and Nonradiative Recombination in WSe2 Monolayers. J. Am. Chem. Soc. 2019, 141, 10451–10461. [Google Scholar] [CrossRef]
- Pathak, N.; Ali, K.; Alolayan, A.; Mao, Y. Broad emissions from dopant-free MgAl2O4 phosphor via defect-engineering. Mater. Res. Bull. 2025, 188, 113411. [Google Scholar] [CrossRef]
- Zhu, Y.; Ma, S.; Yang, Y.; Li, J.; Mei, Y.; Liu, L.; Yao, T.; Wu, J. Direct Z-scheme Fe2(MoO4)3/MoO3 heterojunction: Photo-Fenton reaction and mechanism comprehension. J. Alloys Compd. 2021, 873, 159830. [Google Scholar] [CrossRef]
- Ojha, D.P.; Karki, H.P.; Song, J.H.; Kim, H.J. Amine-assisted synthesis of FeWO4 nanorodg-C3N4 for enhanced visible light-driven Z-scheme photocatalysis. Compos. B Eng. 2019, 160, 277–284. [Google Scholar] [CrossRef]
- Guardiano, M.G.; Carena, L.; Pazzi, M.; Vione, D.; Nogueira, R.F.P. Simultaneous heterogeneous photo-Fenton degradation of azithromycin and clarithromycin in wastewater treatment plant effluent. J. Water Process Eng. 2025, 69, 106870. [Google Scholar] [CrossRef]
- Maya, A.A.S.; Akhtar, P.; Hossen, M.A.; Alam, M.J.; AlMohamadi, H.; Ahmed, Y. Heterogeneous Fenton-assisted antibiotic removal from wastewater: Effect of FeWO4 nanomaterial morphology across four Fenton processes. Water Res. X 2025, 29, 100354. [Google Scholar] [CrossRef]
- Qian, J.P.; Shen, L.; Wang, Y.Y.; Li, L.L.; Zhang, Y.C. Photo-Fenton catalytic and photocatalytic performance of FeWO4 nanorods prepared at different pH. Mater. Lett. 2023, 334, 133705. [Google Scholar] [CrossRef]
- Wang, L.; Huang, X.; Han, M.; Lyu, L.; Li, T.; Gao, Y.; Zeng, Q.; Hu, C. Efficient inhibition of photogenerated electron-hole recombination through persulfate activation and dual-pathway degradation of micropollutants over iron molybdate. Appl. Catal. B Environ. 2019, 257, 117904. [Google Scholar] [CrossRef]
- Moretti, A.C.L.; dos Santos, M.G.G.; Soares, M.E.; de Freitas, J.V.R.; Rios, L.; Silva, F.S.; Gimenes, R.; Kondo, M.M.; da Silva, M.R.A. Degradation of Municipal Solid Waste Landfill Leachate Using Ferrites from Spent Batteries as Heterogeneous Solar Photo-Fenton Catalyst. Int. J. Environ. Res. 2023, 17, 33. [Google Scholar] [CrossRef]
- Grebel, J.E.; Pignatello, J.J.; Mitch, W.A. Effect of Halide Ions and Carbonates on Organic Contaminant Degradation by Hydroxyl Radical-Based Advanced Oxidation Processes in Saline Waters. Environ. Sci. Technol. 2010, 44, 6822–6828. [Google Scholar] [CrossRef] [PubMed]
- Rauf, M.A.; Ashraf, S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Engi. J. 2009, 151, 10–18. [Google Scholar] [CrossRef]
- Taddesse, A.M.; Alemu, M.; Kebede, T. Enhanced photocatalytic activity of p-n-n heterojunctions ternary composite Cu2O/ZnO/Ag3PO4 under visible light irradiation. J. Environ. Chem. Eng. 2020, 8, 104356. [Google Scholar] [CrossRef]
- Tedla, H.; Díaz, I.; Kebede, T.; Taddesse, A.M. Synthesis, characterization and photocatalytic activity of zeolite supported ZnO/Fe2O3/MnO2 nanocomposites. J. Environ. Chem. Eng. 2015, 3, 1586–1591. [Google Scholar] [CrossRef]
- Khelifi, S.; Alsharary, R.; Berez, A.; Mansour, L.; Choukchou-Braham, A.; Ayari, F. Textile effluent treatment under artificial and natural irradiation using coupled ZnO-iron ores nanocomposite as photocatalyst. Desalin. Water Treat. 2022, 258, 153–165. [Google Scholar] [CrossRef]
Photocatalyst | Effluent | Degradation | Exposure time | Lamp | Ref. |
---|---|---|---|---|---|
FeWO4 | MB dye | 72.1 | 120 | Light irradiation | [6] |
FeWO4 | Tetracycline | 68 | 160 | Light irradiation | [7] |
FeWO4 | Tetracycline | 67.5 | 105 | Xe arc lamp | [8] |
FeWO4 (nanosheet) * | RhB dye | 96.5 | 120 | Xe lamp | [9] |
FeWO4 (hexagonal sheet) * | 72.7 | ||||
FeWO4 (nanorod) * | 74.4 | ||||
Fe2(MoO4)3–MO3 | Tetracycline | 75 | 300 | LED lamp | [10] |
Fe2(MoO4)3 | Tylosin | ~99 | 20 | LED lamp | [11] |
Fe2(MoO4)3 | Tetracycline | 20 | 120 | Xe lamp | [12] |
Fe2(MoO4)3 | Doxycycline | 45.2 | 120 | Xe lamp | [13] |
Fe2(MoO4)3 | MB dye | 96 | 70 | Solar radiation | [14] |
Fe2(MoO4)3 | Crystal violet | 62 | 120 | LED lamp | [15] |
Fe2(MoO4)3 * | Methyl orange | 80.93 | 30 | UVC light source | [16] |
Brilliant blue | 72.58 | 30 |
Fe2(MoO4)3 | ||||
PL Emission | (%) | Wavelength | Energy | Likely Origin |
Dark blue | 68 | 435 | ~2.85 | Self-trapped excitons in [MoO4] clusters |
Blue–green * | 32 | 489 | ~2.53 | Extrinsic defect states/deep-level emissions |
FeWO4 | ||||
PL Emission | (%) | Wavelength | Energy | Likely Origin |
Blue | 14 | 421 | ~2.95 | Intrinsic/shallow state ([WO6] in an ordered lattice) |
Dark blue | 56 | 441 | ~2.81 | Self-trapped excitons in [WO6] clusters |
Blue–green | 30 | 473 | ~2.62 | Shallow defect states or distorted [WO6] clusters |
TOC removal | % |
Fe2(MoO4)3 | 60.6 ± 0.01 |
FeWO4 | 66.7 ± 0.07 |
Parameters | Result |
Total organic carbon (mg L−1) | 14.2 |
pH | 6.0 |
Conductivity (mS cm−1) | 126 |
Fluoride (mg L−1) | 1.18 |
Chloride (mg L−1) | 1.14 |
Nitrite (mg L−1) | <0.04 |
Bromide (mg L−1) | <0.01 |
Chlorate (mg L−1) | < 0.04 |
Chlorite (mg L−1) | 0.71 |
Nitrate (mg L−1) | 2.48 |
Phosphate (mg L−1) | <0.01 |
Sulfate (mg L−1) | 30.69 |
Sulfite (mg L−1) | <0.04 |
Lithium (mg L−1) | <0.04 |
Sodium (mg L−1) | 12.36 |
Ammonium (mg L−1) | 0.36 |
Potassium (mg L−1) | 2.10 |
Calcium (mg L−1) | 5.84 |
Magnesium (mg L−1) | 1.16 |
Photocatalyst | Effluent | Degradation | Exposure Time | Light Source | Conditions | Ref. |
---|---|---|---|---|---|---|
Fe2(MoO4)3 | Aluminum anodizing | 32.2 | 120 | Visible | 50 mg catalyst, 100 mL effluent | This work |
FeWO4 | 45.3 | |||||
Cu2O/ZnO/Ag3PO4 | Sewage (textile company) | 78.2 | 180 | Tungsten | 140 mg/L catalyst, 100 mL effluent, pH = 6.0 | [40] |
ZnO/Fe2O3/MnO2 | Sewage (textile company) | 63 | 120 | Tungsten | 125 mg/L catalyst, 100 mL effluent, pH = 6.0 | [41] |
ZnO ZnO–iron oxide | Textile effluent | 50 77 | 120 | UV-A | 0.2 g catalyst, 150 mL effluent, pH = 12.4 | [42] |
ZnO–iron oxide | 85 | Natural solar radiation (sunny days) | ||||
ZnO–iron oxide | 98.6 | 0.2 g catalyst, 150 mL effluent, pH = 12.4, 1 mL of H2O2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, L.K.; Guardiano, M.G.; Mascaro, L.H.; Calatayud, M.; Gouveia, A.F. Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries. Appl. Sci. 2025, 15, 8594. https://doi.org/10.3390/app15158594
Ribeiro LK, Guardiano MG, Mascaro LH, Calatayud M, Gouveia AF. Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries. Applied Sciences. 2025; 15(15):8594. https://doi.org/10.3390/app15158594
Chicago/Turabian StyleRibeiro, Lara K., Matheus G. Guardiano, Lucia H. Mascaro, Monica Calatayud, and Amanda F. Gouveia. 2025. "Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries" Applied Sciences 15, no. 15: 8594. https://doi.org/10.3390/app15158594
APA StyleRibeiro, L. K., Guardiano, M. G., Mascaro, L. H., Calatayud, M., & Gouveia, A. F. (2025). Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries. Applied Sciences, 15(15), 8594. https://doi.org/10.3390/app15158594