Time-Delayed Cold Gelation of Low-Ester Pectin and Gluten with CaCO3 to Facilitate Manufacture of Raw-Fermented Vegan Sausage Analogs
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sausage Manufacturing
2.3. Fermentation
2.4. Assessment of Time-Delayed Gelation
2.5. Physicochemical Properties
2.6. Texture Analysis
2.7. Food Safety
2.8. Sensorial Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Assessment of Time-Delayed Gelation
3.2. Physicochemical Properties
3.2.1. Weight Loss
3.2.2. pH Value
3.2.3. aw Value
3.2.4. Chemical Constituents
3.3. Texture Analysis
3.3.1. Pectin Concentration
3.3.2. Gluten Concentration
3.3.3. Dry Matter
3.3.4. Practical Assessment
3.4. Sensorial Analysis
3.5. Food Safety
3.6. Limitations of This Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PBMAs | Plant-based meat analogs |
DE | Degree of esterification |
LM | Low-methoxylated |
LAB | Lactic acid bacteria |
TVP | Textured vegetable protein |
RH | Relative humidity |
CFU | Colony-forming units |
ANOVA | Analysis of variance |
TPA | Texture profile analysis |
Appendix A
Ingredients | Amount (%) |
---|---|
Salt | 1.7 |
Salami aroma | 0.7 |
Garlic paste | 0.5 |
Paprika powder | 0.4 |
Pepper | 0.2 |
CaCO3 | 0.1 |
Colorants | |
Beetroot powder | 0.4 |
FeOx | 0.04 |
Total | 4.04 |
Appendix B
References
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat Consumption, Health, and the Environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [PubMed]
- United Nations. World Population Prospects 2024; Department of Economics and Social Affairs; Population Division: New York, NY, USA, 2024. [Google Scholar]
- Djekic, I.; Tomasevic, I. Environmental Impacts of the Meat Chain—Current Status and Future Perspectives. Trends Food Sci. Technol. 2016, 54, 94–102. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Falvo, M.J. Protein—Which is Best? J. Sports Sci. Med. 2004, 3, 118–130. [Google Scholar] [PubMed]
- Michel, F.; Hartmann, C.; Siegrist, M. Consumers’ Associations, Perceptions and Acceptance of Meat and Plant-Based Meat Alternatives. Food Qual. Prefer. 2021, 87, e104063. [Google Scholar] [CrossRef]
- He, J.; Evans, N.M.; Liu, H.; Shao, S. A Review of Research on Plant-Based Meat Alternatives: Driving Forces, History, Manufacturing, and Consumer Attitudes. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2639–2656. [Google Scholar] [CrossRef]
- Tyndall, S.M.; Maloney, G.R.; Cole, M.B.; Hazell, N.G.; Augustin, M.A. Critical Food and Nutrition Science Challenges for Plant-Based Meat Alternative Products. Crit. Rev. Food Sci. Nutr. 2022, 64, 638–653. [Google Scholar] [CrossRef]
- Arntfield, S.D.; Murray, E.D. The Influence of Processing Parameters on Food Protein Functionality I. Differential Scanning Calorimetry as an Indicator of Protein Denaturation. Can. Inst. Food Sci. Technol. J. 1981, 14, 289–294. [Google Scholar] [CrossRef]
- Lund, D. Influence of Time, Temperature, Moisture, Ingredients, and Processing Conditions on Starch Gelatinization. Crit. Rev. Food Sci. Nutr. 1984, 20, 249–273. [Google Scholar] [CrossRef]
- Saha, D.; Bhattacharya, S. Hydrocolloids as Thickening and Gelling Agents in Food: A Critical Review. J. Food Sci. Technol. 2010, 47, 587–597. [Google Scholar] [CrossRef]
- Elhalis, H.; See, X.Y.; Osen, R.; Chin, X.H.; Chow, Y. The Potentials and Challenges of using Fermentation to Improve the Sensory Quality of Plant-Based Meat Analogs. Front. Microbiol. 2023, 14, 1267227. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulou, K.; Dekkers, B.; van der Goot, A.J. Plant-Based Meat Analogues. In Sustainable Meat Production and Processing; Academic Press: Cambridge, MA, USA, 2019; pp. 103–126. [Google Scholar]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.; Comes, D.; Gamero, A.; Belloch, C. Fermentation of Texturized Pea Protein in Combination with Proteases for Aroma Development in Meat Analogues. J. Agric. Food Chem. 2024, 72, 4897–4905. [Google Scholar] [CrossRef]
- Leroy, F.; Verluyten, J.; De Vuyst, L. Functional Meat Starter Cultures for Improved Sausage Fermentation. Int. J. Food Microbiol. 2006, 106, 270–285. [Google Scholar] [CrossRef]
- Wood, B.J.B. (Ed.) Microbiology of Fermented Foods, 2nd ed.; Springer: New York, NY, USA, 1998; Volume 1, p. 852. [Google Scholar]
- Razavizadeh, S.; Alencikiene, G.; Salaseviciene, A.; Vaiciulyte-Funk, L.; Ertbjerg, P.; Zabulione, A. Impact of Fermentation of Okara on Physicochemical, Techno-Functional, and Sensory Properties of Meat Analogues. Eur. Food Res. Technol. 2021, 247, 2379–2389. [Google Scholar] [CrossRef]
- Flores, M.; Piornos, J.A. Fermented Meat Sausages and the Challenge of their Plant-Based Alternatives: A Comparative Review on Aroma-Related Aspects. Meat Sci. 2021, 182, e108636. [Google Scholar] [CrossRef]
- Schindler, S.; Zelena, K.; Krings, U.; Bez, J.; Eisner, P.; Berger, R.G. Improvement of the Aroma of Pea (Pisum sativum) Protein Extracts by Lactic Acid Fermentation. Food Biotechnol. 2012, 26, 58–74. [Google Scholar] [CrossRef]
- Meynier, A.; Novelli, E.; Chizzolini, R.; Zanardi, E.; Gandemer, G. Volatile Compounds of Commercial Milano Salami. Meat Sci. 1999, 51, 175–183. [Google Scholar] [CrossRef]
- Maung, T.T.; Gu, B.Y.; Kim, M.H.; Ryu, G.H. Fermentation of Texturized Vegetable Proteins Extruded at Different Moisture Contents: Effect on Physicochemical, Structural, and Microbial Properties. Food Sci. Biotechnol. 2020, 29, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Holzapfel, W.H. Appropriate starter culture technologies for small-scale fermentation in developing countries. Int. J. Food Microbiol. 2002, 75, 197–212. [Google Scholar] [CrossRef]
- Olesen, P.T.; Meyer, A.S.; Stahnke, L.H. Generation of flavour compounds in fermented sausages-the influence of curing ingredients, Staphylococcus starter culture and ripening time. Meat Sci. 2004, 66, 675–687. [Google Scholar] [CrossRef]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef] [PubMed]
- Grazia, L.; Romano, P.; Bagni, A.; Roggiani, D.; Guglielmi, G. The role of moulds in the ripening process of salami. Food Microbiol. 1986, 3, 19–25. [Google Scholar] [CrossRef]
- Fišera, M.; Valášek, P.; Mlček, J.; Fojtíková, L.; Fišerová, L. Determination of Natamycin in Fermented Dry Salami Casings. J. Food Process. Preserv. 2015, 39, 3110–3116. [Google Scholar] [CrossRef]
- Choudhury, D.; Singh, S.; Seah, J.S.H.; Yeo, D.C.L.; Tan, L.P. Commercialization of Plant-Based Meat Alternatives. Trends Plant Sci. 2020, 25, 1055–1058. [Google Scholar] [CrossRef]
- de Avelar, M.H.M.; Efraim, P. Alginate/Pectin Cold-Set Gelation as a Potential Sustainable Method for Jelly Candy Production. Lwt 2020, 123, e109119. [Google Scholar] [CrossRef]
- Maltais, A.; Remondetto, G.E.; Gonzalez, R.; Subirade, M. Formation of Soy Protein Isolate Cold-set Gels: Protein and Salt Effects. J. Food Sci. 2005, 70, C67–C73. [Google Scholar] [CrossRef]
- Hongsprabhas, P.; Barbut, S. Ca2+ -Induced Gelation of Whey Protein Isolate: Effects of Pre-Heating. Food Res. Int. 1996, 29, 135–139. [Google Scholar] [CrossRef]
- Maltais, A.; Remondetto, G.E.; Subirade, M. Mechanisms Involved in the Formation and Structure of Soy Protein Cold-Set Gels: A Molecular and Supramolecular Investigation. Food Hydrocoll. 2008, 22, 550–559. [Google Scholar] [CrossRef]
- Motoki, M.; Seguro, K. Transglutaminase and its Use for Food Processing. Trends Food Sci. Technol. 1998, 9, 204–210. [Google Scholar] [CrossRef]
- Lerner, A.; Matthias, T. Changes in Intestinal Tight Junction Permeability Associated with Industrial Food Additives Explain the Rising Incidence of Autoimmune Disease. Autoimmun. Rev. 2015, 14, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Gerez, C.L.; Rollan, G.C.; de Valdez, G.F. Gluten Breakdown by Lactobacilli and Pediococci Strains Isolated from Sourdough. Lett. Appl. Microbiol. 2006, 42, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat analogues: Health Promising Sustainable Meat Substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Baune, M.-C.; Terjung, N.; Tülbek, M.Ç.; Boukid, F. Textured Vegetable Proteins (TVP): Future Foods standing on their Merits as Meat Alternatives. Future Foods 2022, 6, e100181. [Google Scholar] [CrossRef]
- Herz, E.; Moll, P.; Schmitt, C.; Weiss, J. Binders in Foods: Definition, Functionality, and Characterization. Food Hydrocoll. 2023, 145, e109077. [Google Scholar] [CrossRef]
- Sadler, M.J. Meat Alternatives—Market Developments and Health Benefits. Trends Food Sci. Technol. 2004, 15, 250–260. [Google Scholar] [CrossRef]
- Ooms, N.; Delcour, J.A. How to Impact Gluten Protein Network Formation during Wheat Flour Dough Making. Curr. Opin. Food Sci. 2019, 25, 88–97. [Google Scholar] [CrossRef]
- Nguyen, N.T.M.; Tran, H.K.M.; Tran, T.K.M.; Le, C.B.M. Effect of Wheat Germ on the Properties of Vegetarian Sausage. Chem. Eng. Trans. 2024, 113, 559–564. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, J.; Zhang, S. The Effect of Degree of Esterification of Pectin on the Interaction Between Pectin and Wheat Gluten Protein. Food Hydrocoll. 2023, 136, e108272. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Zhao, J.; Mu, M.; Jia, F.; Wang, Q.; Liang, Y.; Wang, J. Aggregative and Structural Properties of Wheat Gluten Induced by Pectin. J. Cereal Sci. 2021, 100, 103247. [Google Scholar] [CrossRef]
- Gani, A.; Ashwar, B.A. (Eds.) Food Biopolymers: Structural, Functional and Nutraceutial Properties, 1st ed.; Springer: Cham, Switzerland, 2021; p. 441. [Google Scholar]
- Harris, P. (Ed.) Food Gels, 1st ed.; Springer: Dordrecht, The Netherland, 1990; p. 476. [Google Scholar]
- Sehgal, R.; Mehta, A.; Gupta, R. Alginates—General Introduction and Properties. In Alginates—Applications in the Biomedical and Food Industries; Ahmed, S., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019; p. 336. [Google Scholar]
- Haynes, W.M.; Bruno, T.J.; Lide, D.R. (Eds.) CRC Handbook of Chemistry and Physics, 96th ed.; CRC Press/Taylor and Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Draget, K.I.; Ostgaard, K.; Smidsrod, O. Homogeneous Alginate Gels: A Technical Approach. Carbohydr. Polym. 1989, 14, 159–178. [Google Scholar] [CrossRef]
- Vavrusova, M.; Liang, R.; Skibsted, L.H. Thermodynamics of Dissolution of Calcium Hydroxycarboxylates in Water. J. Agric. Food Chem. 2014, 62, 5675–5681. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Xu, P. Efficient Calcium Lactate Production by Fermentation Coupled with Crystallization-Based in Situ Product Removal. Bioresour. Technol. 2014, 163, 33–39. [Google Scholar] [CrossRef]
- Dreher, J.; Blach, C.; Terjung, N.; Gibis, M.; Weiss, J. Formation and Characterization of Plant-Based Emulsified and Crosslinked Fat Crystal Networks to Mimic Animal Fat Tissue. J. Food Sci. 2020, 85, 421–431. [Google Scholar] [CrossRef]
- Herz, E. Plant Protein Gels as Binders in Meat Product Analogues. Ph.D. Dissertation, University of Hohenheim, Stuttgart, Germany, 2023. Available online: https://hohpublica.uni-hohenheim.de/handle/123456789/6894 (accessed on 16 May 2025).
- Feiner, G. Salami—Practical Science and Processing Technology, 1st ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Matissek, R.; Fischer, M.; Steiner, G. Fette, Fettbegleitstoffe. In Lebensmittelanalytik; Springer-Lehrbuch; Springer Spektrum: Berlin/Heidelberg, Germany, 2018; pp. 261–329. [Google Scholar]
- Mosse, J. Nitrogen to Protein Conversion Factor for Ten Cereals and Six Legumes or Oilseeds. A Reappraisal of Its Definition and Determination. Variation According to Species and to Seed Protein Content. J. Agric. Food Chem. 1990, 38, 18–24. [Google Scholar] [CrossRef]
- Mittal, G.S.; Nadulski, R.; Barbut, S.; Negi, S.C. Textural Profile Analysis Test Conditions for Meat Products. Food Res. Int. 1992, 25, 411–417. [Google Scholar] [CrossRef]
- Herz, E.; Herz, L.; Dreher, J.; Gibis, M.; Ray, J.; Pibarot, P.; Schmitt, C.; Weiss, J. Influencing Factors on the Ability to Assemble a Complex Meat Analogue using a Soy-Protein-Binder. Innov. Food Sci. Emerg. Technol. 2021, 73, e102806. [Google Scholar] [CrossRef]
- Florowski, T.; Florowska, A.; Chmiel, M.; Adamczak, L.; Pietrzak, D.; Ostrowska, A.; Szymanska, I. Quality Aspects of Designing Prohealth Liver Sausages Enriched with Walnut Paste. Foods 2022, 11, 3946. [Google Scholar] [CrossRef] [PubMed]
- Thermo Fisher Scientific Inc. Product Information Sheet: Carrageenan, Iota Type. 2025. Available online: https://www.thermofisher.com/order/catalog/product/de/de/J60603.30 (accessed on 18 July 2025).
- Zheng, H.; Gao, M.; Ren, Y.; Lou, R.; Xie, H.; Yu, W.; Liu, X.; Ma, X. An improved pH-responsive carrier based on EDTA-Ca-alginate for oral delivery of Lactobacillus rhamnosus ATCC 53103. Carbohydr. Polym. 2017, 155, 329–335. [Google Scholar] [CrossRef]
- Herz, E.; Kinne, T.; Terjung, N.; Gibis, M.; Weiss, J. Influence of Extrudate to SPI-Gel-Binder Ratios and Transglutaminase Crosslinking on Texture of a Plant-Based Salami Analogue. Future Foods 2023, 7, e100235. [Google Scholar] [CrossRef]
- Herrero, A.M.; Ordonez, J.A.; de Avila, R.; Herranz, B.; de la Hoz, L.; Cambero, M.I. Breaking Strength of Dry Fermented Sausages and their Correlation with Texture Profile Analysis (TPA) and Physico-Chemical Characteristics. Meat Sci. 2007, 77, 331–338. [Google Scholar] [CrossRef]
- Toldrá, F.; Nip, W.-K. Dry-Cured Meat Products, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2004; p. 260. [Google Scholar]
- Zanardi, E.; Ghidini, S.; Conter, M.; Ianieri, A. Mineral Composition of Italian Salami and Effect of NaCl Partial Replacement on Compositional, Physico-Chemical and Sensory Parameters. Meat Sci. 2010, 86, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Grea, C.; Dittmann, A.; Wolff, D.; Werner, R.; Turban, C.; Roser, S.; Hoffmann, I.; Storcksdieck Genannt Bonsmann, S. Comparison of the Declared Nutrient Content of Plant-Based Meat Substitutes and Corresponding Meat Products and Sausages in Germany. Nutrients 2023, 15, 3864. [Google Scholar] [CrossRef]
- Nawrocka, A.; Krekora, M.; Niewiadomski, Z.; Mis, A. FTIR Studies of Gluten Matrix Dehydration after Fibre Polysaccharide Addition. Food Chem. 2018, 252, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Acton, J.C.; Dick, R.L. Composition of Some Commercial Dry Sausages. J. Food Sci. 2008, 41, 971–972. [Google Scholar] [CrossRef]
- Zdolec, N. (Ed.) Fermented Meat Products: Health Aspects; CRC Press Taylor&Francis: Boca Raton, FL, USA, 2016; p. 572. [Google Scholar]
- Woychik, J.H.; Boundy, J.A.; Dimler, R.J. Wheat Gluten Proteins, Amino Acid Composition of Proteins in Wheat Gluten. J. Agric. Food Chem. 2002, 9, 307–310. [Google Scholar] [CrossRef]
- Bhagavan, N.V.; Ha, C.-E. (Eds.) Essentials of Medical Biochemistry—With Clinical Cases, 1st ed.; Elsevier Inc: New York, NY, USA, 2011; p. 600. [Google Scholar]
- Cardoso, S.M.; Coimbra, M.A.; Lopes da Silva, J.A. Calcium-Mediated Gelation of an Olive Pomace Pectic Extract. Carbohydr. Polym. 2003, 52, 125–133. [Google Scholar] [CrossRef]
- Fraeye, I.; Colle, I.; Vandevenne, E.; Duvetter, T.; Van Buggenhout, S.; Moldenaers, P.; Van Loey, A.; Hendrickx, M. Influence of Pectin Structure on Texture of Pectin–Calcium Gels. Innov. Food Sci. Emerg. Technol. 2010, 11, 401–409. [Google Scholar] [CrossRef]
- Yuliarti, O.; Rasul, S.; Salem Albedwawi, H.M.; Tarique, M. Evaluation of low methoxyl pectin concentration and dough chilling treatment in enhancing okara-wheat flour-based cookies structure. Lwt 2024, 213, 117052. [Google Scholar] [CrossRef]
- Belton, P.S. Mini Review: On the Elasticity of Wheat Gluten. J. Cereal Sci. 1999, 29, 103–107. [Google Scholar] [CrossRef]
- Sartori, T.; Feltre, G.; do Amaral Sobral, P.J.; Lopes da Cunha, R.; Menegalli, F.C. Properties of Films Produced from Blends of Pectin and Gluten. Food Packag. Shelf Life 2018, 18, 221–229. [Google Scholar] [CrossRef]
- Qi, K.; Cao, S.; Li, C. Possible Interaction Between Pectin and Gluten Alters the Starch Digestibility and Texture of Wheat Bread. Int. J. Biol. Macromol. 2024, 269, e131907. [Google Scholar] [CrossRef] [PubMed]
- Oppen, D.; Attig, T.; Weiss, J.; Krupitzer, C. Anticipating Food Structure of Meat Products from Mastication Physics Applying Machine Learning. Food Res. Int. 2023, 174, e113576. [Google Scholar] [CrossRef] [PubMed]
- Dreher, J.; König, M.; Herrmann, K.; Terjung, N.; Gibis, M.; Weiss, J. Varying the Amount of Solid Fat in Animal Fat Mimetics for Plant-Based Salami Analogues influences Texture, Aappearance and Sensory Characteristics. Lwt 2021, 143, e111140. [Google Scholar] [CrossRef]
- Oppen, D.; Weiss, J. Oral Processing, Rheology, and Mechanical Response: Relations in a Two-Phase Food Model with Anisotropic Compounds. J. Texture Stud. 2023, 54, 808–823. [Google Scholar] [CrossRef]
- de Vries, J. Hydrocolloid Gelling Agents and their Applications. In Gums and Stabilizers for the Food Industry; Phillips, G.O., Williams, P.A., Eds.; The Royal Society of Chemistry: London, UK, 2004; Volume 12, pp. 23–31. [Google Scholar]
- Jayakody, M.M.; Kaushani, K.G.; Vanniarachchy, M.P.G.; Wijesekara, I. Hydrocolloid and Water Soluble Polymers used in the Food Industry and their Functional Properties: A Review. Polym. Bull. 2022, 80, 3585–3610. [Google Scholar] [CrossRef]
- Walkenström, P.; Kidman, S.; Hermansson, A.-M.; Rasmussen, P.B.; Hoegh, L. Microstructure and Rheological Behaviour of Alginate/Pectin Mixed Gels. Food Hydrocoll. 2003, 17, 593–603. [Google Scholar] [CrossRef]
- Hilbig, J.; Loeffler, M.; Herrmann, K.; Weiss, J. Application of Exopolysaccharide-Forming Lactic Acid Bacteria in Cooked Ham Model Systems. Food Res. Int. 2019, 119, 761–768. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Wang, S.; Liu, Y.; Li, L.; Gao, M. Lactic Acid Bacteria Synergistic Fermentation Affects the Flavor and Texture of Bread. J. Food Sci. 2022, 87, 1823–1836. [Google Scholar] [CrossRef]
- Kyrylenko, A.; Eijlander, R.T.; Alliney, G.; de Bos, E.L.; Wells-Bennik, M.H.J. Levels and Types of Microbial Contaminants in Different Plant-Based Ingredients used in Dairy Alternatives. Int. J. Food Microbiol. 2023, 407, e110392. [Google Scholar] [CrossRef]
- Kumbar, S.G.; Laurencin, C.T.; Deng, M. (Eds.) Natural and Synthetic Biomedical Polymers; Elsevier Inc.: Burlington, MA, USA, 2014. [Google Scholar]
- Rehm, B.H.A.; Moradali, M.F. (Eds.) Alginates and Their Biomedical Applications; Springer Nature: Singapore, 2017; Volume 11. [Google Scholar]
- Hurtado, A.Q.; Critchley, A.T.; Neish, I.C. (Eds.) Tropical Seaweed Farming: Trends, Problems and Opportunities; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Spyropoulos, F.; Lazidis, A.; Norton, I.T. (Eds.) Handbook of Food Structure Development; Royal Society of Chemistry: London, UK, 2019. [Google Scholar]
- Maree, J.P.; du Plessis, P. Neutralization of Acid Mine Water with Calcium Carbonate. Water Sci. Technol. 1994, 29, 285–296. [Google Scholar] [CrossRef]
- Ichikawa, K. Buffering Dissociation/Formation Reaction of Biogenic Calcium Carbonate. Chemistry 2007, 13, 10176–10181. [Google Scholar] [CrossRef]
- Chen, J.; Cui, Y.; Ma, Y.; Zhang, S. The Gelation Behavior of Thiolated Citrus High-Methoxyl Pectin Induced by Sodium Phosphate Dibasic Dodecahydrate. Carbohydr. Polym. 2022, 277, 118849. [Google Scholar] [CrossRef] [PubMed]
- Gawkowska, D.; Cieśla, J.; Zdunek, A.; Cybulska, J. The Effect of Concentration on the Cross-Linking and Gelling of Sodium Carbonate-Soluble Apple Pectins. Molecules 2019, 24, 1635. [Google Scholar] [CrossRef] [PubMed]
- Boyaval, P.; Goulet, J. Optimal Conditions for Production of Lactic Acid from Cheese Whey Permeate by Ca-Alginate-Entrapped Lactobacillus helveticus. Enzyme Microb. Technol. 1988, 10, 725–728. [Google Scholar] [CrossRef]
- Manev, Z.; Denev, P.; Zsivanovits, G.; Ludneva, D. Structural Mechanical and Gelling Properties of Alginate Beads. Bulgar. J. Agric. Sci. 2013, 19, 770–774. [Google Scholar]
- Roy, D.; Goulet, J.; Le Duy, A. Continuous Production of Lactic Acid from Whey Perméate by Free and Calcium Alginate Entrapped Lactobacillus helveticus. J. Dairy Sci. 1987, 70, 506–513. [Google Scholar] [CrossRef]
- Liu, F.; Hou, P.; Zhang, H.; Tang, Q.; Xue, C.; Li, R.W. Food-Grade Carrageenans and Their Implications in Health and Disease. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3918–3936. [Google Scholar] [CrossRef] [PubMed]
- Moslemi, M. Reviewing the Recent Advances in Application of Pectin for Technical and Health Promotion Purposes: From Laboratory to Market. Carbohydr. Polym. 2021, 254, 117324. [Google Scholar] [CrossRef]
- Pagliaro, M.; Ciriminna, R.; Fidalgo, A.; Delisi, R.; Ilharco, L. Pectin Production and Global Market. Agro Food Ind. Hi-Tech 2016, 27, 17–20. [Google Scholar]
Ingredients | Sausage Composition (%) | |||||
---|---|---|---|---|---|---|
15% Glut. 1% Pec. | 15% Glut 3% Pec. | 15% Glut. 5% Pec. | 10% Glut. 1% Pec. | 10% Glut. 3% Pec. | 10% Glut. 5% Pec. | |
Spices * | 4.04 | 4.04 | 4.04 | 4.04 | 4.04 | 4.04 |
Fat gel | 12.96 | 12.96 | 12.96 | 12.96 | 12.96 | 12.96 |
TVP ** | 14 | 14 | 14 | 14 | 14 | 14 |
Binder | 69 | 69 | 69 | 69 | 69 | 69 |
Binder consisting of | ||||||
Water | 53 | 51 | 49 | 58 | 56 | 54 |
Gluten | 15 | 15 | 15 | 10 | 10 | 10 |
Pectin | 1 | 3 | 5 | 1 | 3 | 5 |
Dry matter | 36 | 38 | 40 | 31 | 33 | 35 |
Batch Composition | aw Values (-) | ||
---|---|---|---|
In Raw Batter | At 55% Dry Matter | At 65% Dry Matter | |
15% glut.–1% pec. | 0.971 ± 0.001 | 0.933 ± 0.003 | 0.922 ± 0.002 |
15% glut.–3% pec. | 0.968 ± 0.001 | 0.931 ± 0.001 | 0.920 ± 0.001 |
15% glut.–5% pec. | 0.967 ± 0.001 | 0.927 ± 0.001 | 0.916 ± 0.002 |
10% glut.–1% pec. | 0.979 ± 0.000 | 0.937 ± 0.003 | 0.926 ± 0.000 |
10% glut.–3% pec. | 0.977 ± 0.001 | 0.935 ± 0.001 | 0.926 ± 0.002 |
10% glut.–5% pec. | 0.966 ± 0.001 | 0.932 ± 0.000 | 0.922 ± 0.001 |
Batch Composition | Water Content (%) | Protein (%) | Ash (%) | Fat (%) | Carbohydrates * (%) |
---|---|---|---|---|---|
15% glut.–1% pec. | 59.90 ± 0.31 | 19.39 ± 1.52 | 2.89 ± 0.02 | 10.69 ± 0.03 | 7.13 ± 1.87 |
15% glut.–3% pec. | 58.06 ± 0.33 | 19.68 ± 0.33 | 2.90 ± 0.03 | 10.14 ± 0.03 | 9.22 ± 0.72 |
15% glut.–5% pec. | 56.18 ± 0.07 | 19.34 ± 0.39 | 2.85 ± 0.01 | 10.56 ± 1.25 | 11.07 ± 1.72 |
10% glut.–1% pec. | 65.94 ± 0.23 | 15.11 ± 0.78 | 2.58 ± 0.02 | 9.94 ± 0.56 | 6.43 ± 1.59 |
10% glut.–3% pec. | 63.15±0.28 | 14.89 ± 0.55 | 2.61 ± 0.02 | 10.21 ± 0.11 | 9.14 ± 0.96 |
10% glut.–5% pec. | 60.66 ± 0.19 | 14.96 ± 0.48 | 2.65 ± 0.04 | 10.48 ± 0.13 | 11.25 ± 0.84 |
Batch Composition | Aerobic Mesophilic Colony Count ‘Fermentation Flora’ (CFU/g) | Escherichia coli (CFU/g) | Listeria mono- cytogenes (CFU/g) | Salmonella spp. (CFU/25 g) |
---|---|---|---|---|
15% glut.–1% pec. | 2.4 × 108 | n.d. (<101) | n.d. (<101) | n.d. (<101) |
15% glut.–3% pec. | 5.8 × 107 | n.d. (<101) | n.d. (<101) | n.d. (<101) |
15% glut.–5% pec. | 4.1 × 108 | n.d. (<101) | n.d. (<101) | n.d. (<101) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koenig, M.; Ahlborn, K.; Herrmann, K.; Loeffler, M.; Weiss, J. Time-Delayed Cold Gelation of Low-Ester Pectin and Gluten with CaCO3 to Facilitate Manufacture of Raw-Fermented Vegan Sausage Analogs. Appl. Sci. 2025, 15, 8510. https://doi.org/10.3390/app15158510
Koenig M, Ahlborn K, Herrmann K, Loeffler M, Weiss J. Time-Delayed Cold Gelation of Low-Ester Pectin and Gluten with CaCO3 to Facilitate Manufacture of Raw-Fermented Vegan Sausage Analogs. Applied Sciences. 2025; 15(15):8510. https://doi.org/10.3390/app15158510
Chicago/Turabian StyleKoenig, Maurice, Kai Ahlborn, Kurt Herrmann, Myriam Loeffler, and Jochen Weiss. 2025. "Time-Delayed Cold Gelation of Low-Ester Pectin and Gluten with CaCO3 to Facilitate Manufacture of Raw-Fermented Vegan Sausage Analogs" Applied Sciences 15, no. 15: 8510. https://doi.org/10.3390/app15158510
APA StyleKoenig, M., Ahlborn, K., Herrmann, K., Loeffler, M., & Weiss, J. (2025). Time-Delayed Cold Gelation of Low-Ester Pectin and Gluten with CaCO3 to Facilitate Manufacture of Raw-Fermented Vegan Sausage Analogs. Applied Sciences, 15(15), 8510. https://doi.org/10.3390/app15158510