Extreme Wind Speed Prediction Based on a Typhoon Straight-Line Path Model and the Monte Carlo Simulation Method: A Case for Guangzhou
Abstract
1. Introduction
2. Methodology
2.1. Data Sources and Processing
2.2. Key Parameters of Typhoons and Probability Distribution Models
2.3. Monte Carlo Simulation
2.4. Wind Field Model
2.4.1. Yan Meng Wind Field Model
2.4.2. Filling Model
2.5. Numerical Simulation of Extreme Wind Speed
3. Results and Discussion
3.1. Fitting and Testing of the Key Parameters
3.2. Filling Model Fitting and Verification
3.3. Estimation and Verification of Extreme Wind Speed
3.4. Sensitivity Analysis
3.4.1. Selection of Simulated Circular Data
3.4.2. Monte Carlo Sampling Starting Point Generation Logic
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, E.; Xiang, Q.; Chan, J.C.L.; Dong, Y.; Tu, S.; Chan, P.-W.; Ni, Y.-Q. Increasing temporal stability of global tropical cyclone precipitation. NPJ Clim. Atmos. Sci. 2025, 8, 11. [Google Scholar] [CrossRef]
- Deng, E.; Dong, Y.; Yue, H.; Ni, Y.-Q. Reflections on potential applications of LiDAR for in-situ observations of high-rise buildings during typhoons: Focusing on wind-driven rain and windborne debris. Adv. Wind Eng. 2024, 1, 100004. [Google Scholar] [CrossRef]
- Russell, L.R. Probability Distributions for Texas Gulf Coast Hurricane Effects of Engineering Interest; Stanford University: Stanford, CA, USA, 1969. [Google Scholar]
- Russell, L.R. Probability distributions for hurricane effects. J. Waterw. Harb. Coast. Eng. Div. 1971, 97, 139–154. [Google Scholar] [CrossRef]
- Batts, M.E.; Simiu, E.; Russell, L.R. Hurricane wind speeds in the United States. J. Struct. Div. 1980, 106, 2001–2016. [Google Scholar] [CrossRef]
- Vickery, P.J.; Twisdale, L.A. Prediction of hurricane wind speeds in the United States. J. Struct. Eng. 1995, 121, 1691–1699. [Google Scholar] [CrossRef]
- Georgiou, P.; Davenport, A.G.; Vickery, B. Design wind speeds in regions dominated by tropical cyclones. J. Wind Eng. Ind. Aerodyn. 1983, 13, 139–152. [Google Scholar] [CrossRef]
- Neumann, C.J. The National Hurricane Center Risk Analysis Program (HURISK); NOAA: Silver Spring, MD, USA, 1987.
- ASCE. Minimum Design Loads for Buildings and Other Structures; ASCE: Reston, VA, USA, 2010. [Google Scholar]
- AS/NZS 1170.2:2002; Structural Design Actions Part2: Wind actions. Standards Association of Australia: Sydney, Australia, 2002.
- Vickery, P.J.; Skerlj, P.; Twisdale, L.A. Simulation of hurricane risk in the US using empirical track model. J. Struct. Eng. 2000, 126, 1222–1237. [Google Scholar] [CrossRef]
- Li, S.; Hong, H. Typhoon wind hazard estimation for China using an empirical track model. Nat. Hazards 2016, 82, 1009–1029. [Google Scholar] [CrossRef]
- Vickery, P.J.; Wadhera, D.; Twisdale Jr, L.A.; Lavelle, F.M. US hurricane wind speed risk and uncertainty. J. Struct. Eng. 2009, 135, 301–320. [Google Scholar] [CrossRef]
- Cui, W.; Caracoglia, L. Exploring hurricane wind speed along US Atlantic coast in warming climate and effects on predictions of structural damage and intervention costs. Eng. Struct. 2016, 122, 209–225. [Google Scholar] [CrossRef]
- Cui, W.; Zhao, L.; Cao, S.; Ge, Y. Bayesian optimization of typhoon full-track simulation on the Northwestern Pacific segmented by QuadTree decomposition. J. Wind Eng. Ind. Aerodyn. 2021, 208, 104428. [Google Scholar] [CrossRef]
- Emanuel, K.; Ravela, S.; Vivant, E.; Risi, C. A statistical deterministic approach to hurricane risk assessment. Bull. Am. Meteorol. Soc. 2006, 87, 299–314. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Q.; Li, Q.; Jing, R.; Lin, N.; Wang, L. Typhoon wind hazard estimation by full-track simulation with various wind intensity models. J. Wind Eng. Ind. Aerodyn. 2021, 218, 104792. [Google Scholar] [CrossRef]
- Chen, Y.; Duan, Z. A statistical dynamics track model of tropical cyclones for assessing typhoon wind hazard in the coast of southeast China. J. Wind Eng. Ind. Aerodyn. 2018, 172, 325–340. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Q.; Jing, R.; Lou, W.; Hong, Y.; Wang, L. Tropical cyclone full track simulation in the western North Pacific based on random forests. J. Wind Eng. Ind. Aerodyn. 2022, 228, 105119. [Google Scholar] [CrossRef]
- Meng, Y.; Matsui, M.; Hibi, K. An analytical model for simulation of the wind field in a typhoon boundary layer. J. Wind Eng. Ind. Aerodyn. 1995, 56, 291–310. [Google Scholar] [CrossRef]
- Shapiro, L.J. The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci. 1983, 40, 1984–1998. [Google Scholar] [CrossRef]
- Cardone, V.J.; Greenwood, C.V.; Greenwood, J.A. Unified Program for the Specification of Hurricane Boundary Layer Winds over Surfaces of Specified Roughness; US Army Engineer Waterways Experiment Station, Coastal Engineering Research: Vicksburg, MS, USA, 1992. [Google Scholar]
- Zhao, L.; Cui, W.; Fang, G.; Cao, S.; Zhu, L.; Song, L.; Ge, Y. State-of-the-art review on typhoon wind environments and their effects on long-span bridges. Adv. Wind Eng. 2024, 1, 100007. [Google Scholar] [CrossRef]
- Lu, X.; Yu, H.; Ying, M.; Zhao, B.; Zhang, S.; Lin, L.; Bai, L.; Wan, R. Western North Pacific Tropical Cyclone Database Created by the China Meteorological Administration. Adv. Atmos. Sci. 2021, 38, 690–699. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An Overview of the China Meteorological Administration Tropical Cyclone Database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef]
- Li, X.; Pan, Z.; She, J. An adjustment method for typhoon parameters. J. Oceanogr. Huanghai Bohai Seas 1995, 13, 11–15. [Google Scholar]
- Li, S.; Hong, H. Observations on a hurricane wind hazard model used to map extreme hurricane wind speed. J. Struct. Eng. 2015, 141, 04014238. [Google Scholar] [CrossRef]
- Vickery, P.J.; Wadhera, D.; Powell, M.D.; Chen, Y. A hurricane boundary layer and wind field model for use in engineering applications. J. Appl. Meteorol. Climatol. 2009, 48, 381–405. [Google Scholar] [CrossRef]
- Holland, G.J. An analytic model of the wind and pressure profiles in hurricanes. Mon. Weather. Rev. 1980, 108, 1212–1218. [Google Scholar] [CrossRef]
- Metropolis, N.; Ulam, S. The monte carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef]
- Meng, Y.; Matsui, M.; Hibi, K. A numerical study of the wind field in a typhoon boundary layer. J. Wind Eng. Ind. Aerodyn. 1997, 67, 437–448. [Google Scholar] [CrossRef]
- Vickery, P.J.; Wadhera, D. Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H* Wind data. J. Appl. Meteorol. Climatol. 2008, 47, 2497–2517. [Google Scholar] [CrossRef]
- Vickery, P.J.; Twisdale, L.A. Wind-field and filling models for hurricane wind-speed predictions. J. Struct. Eng. 1995, 121, 1700–1709. [Google Scholar] [CrossRef]
- Georgiou, P.N. Design Wind Speeds in Tropical Cyclone-Prone Regions. Ph.D. Thesis, University of Western Ontario, London, ON, Canada, 1986. [Google Scholar]
- Simiu, E.; Filliben, J.J. Probability distributions of extreme wind speeds. J. Struct. Div. 1976, 102, 1861–1877. [Google Scholar] [CrossRef]
- Simiu, E.; Changery, M.J.; Filliben, J.J. Extreme wind speeds at 129 airport stations. J. Struct. Div. 1980, 106, 809–817. [Google Scholar] [CrossRef]
- Simiu, E.; Miyata, T. Design of Buildings and Bridges for Wind: A Practical Guide for ASCE-7 Standard Users and Designers of Special Structures; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- GB50009; Load Code for the Design of Building Structures. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2012.
- Xie, R. Numerical Simulation and Typhoon Wind Hazard Analysis Based on CE Wind-Field Model and Yan Meng Wind-Field Model; Harbin Institute of Technology: Harbin, China, 2008. [Google Scholar]
- Choi, H.; Kanda, J. Characteristics of the vertical wind profile for wind load estimation. Wind Eng. JAWE 1990, 1990, 23–43. [Google Scholar] [CrossRef]
- Xiao, Y.; Duan, Z.; Xiao, Y.; Ou, J.; Chang, L.; Li, Q. Typhoon wind hazard analysis for southeast China coastal regions. Struct. Saf. 2011, 33, 286–295. [Google Scholar] [CrossRef]
- Ginger, J.; Holmes, J. Research and Revisions in AS/NZS 1170.2-2021. CONSTRUCTION 2022, 2, 78–82. [Google Scholar] [CrossRef]
- Li, S.H.; Suresh Kumar, K. Cyclone wind hazard assessments for eastern coastal cities in India using a fast-predictive model. J. Wind Eng. Ind. Aerodyn. 2021, 218, 104760. [Google Scholar] [CrossRef]
Key Parameters | Alternative Probability Distribution | p-Value | Test Statistic | Critical Value (5%) | Critical Value (1%) | Optimal Probability Distribution | Distribution Parameters |
---|---|---|---|---|---|---|---|
λ | Poisson | 0.9516 | 0.0182 | 0.1568 | 0.1880 | Poisson | λ = 2.52 |
Binomial | 0.9098 | 0.0251 | |||||
Δp | Lognorm | ~0 | 0.0459 | 0.0255 | 0.0306 | Empirical | - |
Gamma | ~0 | 0.0662 | |||||
Weibull | ~0 | 0.0946 | |||||
VT | Lognorm | ~0 | 0.0530 | 0.0255 | 0.0306 | Gamma | k = 3.988 θ = 4.477 |
Gamma | 0.1193 | 0.0194 | |||||
Normal | ~0 | 0.0708 | |||||
θ | Normal | ~0 | 0.1623 | 0.0255 | 0.0306 | Empirical | - |
von Mises | ~0 | 0.0922 | |||||
BimodalVM | ~0 | 0.0436 | |||||
Dmin | Uniform | ~0 | 0.0860 | 0.0255 | 0.0306 | General linear | c = 2.527 d = 1.451 |
Trapezoid | ~0 | 0.0644 | |||||
General linear | 0.1391 | 0.0187 |
City | a0 | a1 | σε |
---|---|---|---|
Guangzhou | 0.008277 | 0.001085 | 0.022545 |
Return Period (Year) | 10 | 30 | 50 | 100 | 200 |
---|---|---|---|---|---|
Basic wind pressure (kN/m2) | 0.30 | 0.44 | 0.50 | 0.60 | 0.70 |
Basic wind speed (m/s) | 21.94 | 26.62 | 28.37 | 31.08 | 33.40 |
Return Period (Year) | 10 | 30 | 50 | 100 | 200 |
---|---|---|---|---|---|
Weibull (m/s) | 18.02 | 21.15 | 22.39 | 23.92 | 25.32 |
Gumbel (m/s) | 17.32 | 21.50 | 23.40 | 25.96 | 28.52 |
Empirical (m/s) | 18.28 | 22.30 | 23.62 | 26.57 | 27.95 |
Probability Distribution | p Value | Test Statistic | Critical Value (5%) | Critical Value (1%) |
---|---|---|---|---|
Weibull | 0.0005 | 0.0676 | 0.0454 | 0.0544 |
Gumbel | 0.0624 | 0.0437 |
Return Period (Year) | 10 | 30 | 50 | 100 | 200 |
---|---|---|---|---|---|
Weibull (m/s) | 18.44 | 21.87 | 23.24 | 24.94 | 26.51 |
Gumbel (m/s) | 17.03 | 20.98 | 22.78 | 25.21 | 27.62 |
Empirical(m/s) | 18.25 | 22.30 | 23.94 | 25.05 | 29.76 |
Probability Distribution | p Value | Test Statistic | Critical Value (5%) | Critical Value (1%) |
---|---|---|---|---|
Weibull | ~0 | 0.1002 | 0.0444 | 0.0532 |
Gumbel | 0.0665 | 0.0424 |
Return Period (Year) | 10 | 30 | 50 | 100 | 200 |
---|---|---|---|---|---|
Weibull (m/s) | 17.66 | 20.92 | 22.23 | 23.84 | 25.32 |
Gumbel (m/s) | 16.71 | 20.78 | 22.64 | 25.14 | 27.64 |
Empirical(m/s) | 17.65 | 21.96 | 24.00 | 27.16 | 28.63 |
Probability Distribution | p Value | Test Statistic | Critical Value (5%) | Critical Value (1%) |
---|---|---|---|---|
Weibull | ~0 | 0.0843 | 0.0449 | 0.0538 |
Gumbel | 0.0652 | 0.0430 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Zhang, X.; Hong, J.; Xu, W. Extreme Wind Speed Prediction Based on a Typhoon Straight-Line Path Model and the Monte Carlo Simulation Method: A Case for Guangzhou. Appl. Sci. 2025, 15, 8486. https://doi.org/10.3390/app15158486
Lu Z, Zhang X, Hong J, Xu W. Extreme Wind Speed Prediction Based on a Typhoon Straight-Line Path Model and the Monte Carlo Simulation Method: A Case for Guangzhou. Applied Sciences. 2025; 15(15):8486. https://doi.org/10.3390/app15158486
Chicago/Turabian StyleLu, Zhike, Xinrui Zhang, Junling Hong, and Wanhai Xu. 2025. "Extreme Wind Speed Prediction Based on a Typhoon Straight-Line Path Model and the Monte Carlo Simulation Method: A Case for Guangzhou" Applied Sciences 15, no. 15: 8486. https://doi.org/10.3390/app15158486
APA StyleLu, Z., Zhang, X., Hong, J., & Xu, W. (2025). Extreme Wind Speed Prediction Based on a Typhoon Straight-Line Path Model and the Monte Carlo Simulation Method: A Case for Guangzhou. Applied Sciences, 15(15), 8486. https://doi.org/10.3390/app15158486