Innovative but Difficult to Replicate: A Systematic Review of the Reporting Quality of Robotic and Conventional Upper-Limb Interventions in Stroke Rehabilitation Randomized Controlled Trials Using the TIDieR-Rehab Checklist
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Data Selection
2.3. Data Extraction and Evaluation
2.4. Data Analysis
3. Results
3.1. Article Selection and Characteristics
3.2. Article Characteristics
3.3. Inter-Rater Agreement of TIDieR-Rehab Ratings
3.4. Quality of Intervention Reporting
Completeness
Consistency of Reporting Location
4. Discussion
4.1. Future Research
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADLs | Activities of Daily Living |
AUT | Auckland University of Technology |
CONSORT | Consolidated Standards of Reporting Trials |
OSF | Open Science Framework |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PRISMA-S | Preferred Reporting Items for Systematic Reviews and Meta-Analyses literature search extension |
RCT | Randomized Controlled Trial |
TIDieR | Template for Intervention Description and Replication |
TIDieR-Rehab | Template for Intervention Description and Replication—Rehabilitation Extension |
References
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.; Sacco, R.L.; Hacke, W.; Fisher, M.; Pandian, J.; Lindsay, P. World Stroke Organization (WSO): Global stroke fact sheet 2022. Int. J. Stroke 2022, 17, 18–29. [Google Scholar] [CrossRef]
- Ingram, L.A.; Butler, A.A.; Brodie, M.A.; Lord, S.R.; Gandevia, S.C. Quantifying upper limb motor impairment in chronic stroke: A physiological profiling approach. J. Appl. Physiol. 2021, 131, 949–965. [Google Scholar] [CrossRef] [PubMed]
- Purton, J.; Sim, J.; Hunter, S.M. Stroke survivors’ views on their priorities for upper-limb recovery and the availability of therapy services after stroke: A longitudinal, phenomenological study. Disabil. Rehabil. 2023, 45, 3059–3069. [Google Scholar] [CrossRef] [PubMed]
- Kwakkel, G.; Kollen, B.J. Predicting activities after stroke: What is clinically relevant? Int. J. Stroke 2013, 8, 25–32. [Google Scholar] [CrossRef]
- Newton, S.P.; Dalton, E.J.; Ang, J.Y.; Klaic, M.; Thijs, V.; Hayward, K.S. Dose, content, and context of usual care in stroke upper limb motor interventions: A systematic review. Clin. Rehabil. 2023, 37, 1437–1450. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ji, J.R.; Liang, C.; Zhang, Y.-Z.; Sun, H.-C.; Yan, Y.-H.; Xing, X.-B. Effects of physical therapy-based rehabilitation on recovery of upper limb motor function after stroke in adults: A systematic review and meta-analysis of randomized controlled trials. Ann. Palliat. Med. 2022, 11, 521–531. [Google Scholar] [CrossRef]
- Loureiro, R.C.; Harwin, W.S.; Nagai, K.; Johnson, M. Advances in upper limb stroke rehabilitation: A technology push. Med. Biol. Eng. Comput. 2011, 49, 1103–1118. [Google Scholar] [CrossRef]
- Chien, W.T.; Chong, Y.Y.; Tse, M.K.; Chien, C.W.; Cheng, H.Y. Robot-assisted therapy for upper-limb rehabilitation in subacute stroke patients: A systematic review and meta-analysis. Brain Behav. 2020, 10, e01742. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Q.; Qiao, J.; Chen, N.; Wu, X. Calligraphy-based rehabilitation exercise for improving the upper limb function of stroke patients: Protocol for an evaluator-blinded randomised controlled trial. BMJ Open 2022, 12, e052046. [Google Scholar] [CrossRef] [PubMed]
- Norouzi-Gheidari, N. Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: Systematic review and meta-analysis of the literature. J. Rehabil. Res. Dev. 2012, 49, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Boardsworth, K.; Rashid, U.; Olsen, S.; Rodriguez-Ramirez, E.; Browne, W.; Alder, G.; Signal, N. Upper limb robotic rehabilitation following stroke: A systematic review and meta-analysis investigating efficacy and the influence of device features and program parameters. J. NeuroEng. Rehabil. 2025, 22, 164. [Google Scholar] [CrossRef]
- Veerbeek, J.M.; Langbroek-Amersfoort, A.C.; van Wegen, E.E.; Meskers, C.G.; Kwakkel, G. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil. Neural Repair 2017, 31, 107–121. [Google Scholar] [CrossRef]
- Lohse, K.R.; Pathania, A.; Wegman, R.; Boyd, L.A.; Lang, C.E. On the reporting of experimental and control therapies in stroke rehabilitation trials: A systematic review. Arch. Phys. Med. Rehabil. 2018, 99, 1424–1432. [Google Scholar] [CrossRef]
- Hayward, K.S.; Churilov, L.; Dalton, E.J.; Brodtmann, A.; Campbell, B.C.; Copland, D.; Dancause, N.; Godecke, E.; Hoffmann, T.C.; Lannin, N.A.; et al. Advancing stroke recovery through improved articulation of nonpharmacological intervention dose. Stroke 2021, 52, 761–769. [Google Scholar] [CrossRef]
- Signal, N.; Gomes, E.; Olsen, S.; Gemma, A. Enhancing the reporting quality of rehabilitation interventions through an extension of the Template for Intervention Description and Replication (TIDieR): The TIDieR-Rehab checklist and supplementary manual. BMJ Open 2024, 14, e084320. [Google Scholar] [CrossRef]
- Hoffmann, T.C.; Glasziou, P.P.; Boutron, I.; Milne, R.; Perera, R.; Moher, D.; Altman, D.G.; Barbour, V.; Macdonald, H.; Johnston, M.; et al. Better reporting of interventions: Template for Intervention Description and Replication (TIDieR) checklist and guide. BMJ 2014, 348, g1687. [Google Scholar] [CrossRef]
- Mehrholz, J.; Pollock, A.; Pohl, M.; Kugler, J.; Elsner, B. Systematic review with network meta-analysis of randomized controlled trials of robotic-assisted arm training for improving activities of daily living and upper limb function after stroke. J. NeuroEng. Rehabil. 2020, 17, 83. [Google Scholar] [CrossRef]
- Johansen, T.; Sørensen, L.; Kolskår, K.K.; Strøm, V.; Wouda, M.F. Effectiveness of robot-assisted arm exercise on arm and hand function in stroke survivors—A systematic review and meta-analysis. J. Rehabil. Assist. Technol. Eng. 2023, 10, 20556683231183639. [Google Scholar] [CrossRef]
- Lee, B.O.; Saragih, I.D.; Batubara, S.O. Robotic arm use for upper limb rehabilitation after stroke: A systematic review and meta-analysis. Kaohsiung J. Med. Sci. 2023, 39, 435–445. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B. PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews. J. Med. Libr. Assoc. 2021, 109, 174–200. [Google Scholar] [CrossRef]
- Whitehead, A.L.; Julious, S.A.; Cooper, C.L.; Campbell, M.J. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat. Methods Med. Res. 2016, 25, 1057–1073. [Google Scholar] [CrossRef]
- Lancaster, G.A.; Thabane, L. Guidelines for reporting non-randomised pilot and feasibility studies. Pilot Feasibility Stud. 2019, 5, 114. [Google Scholar] [CrossRef]
- Burgar, C.G.; Lum, P.S.; Scremin, A.M.E.; Garber, S.L.; Van der Loos, H.F.M.; Kenney, D.; Shor, P. Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial. J. Rehabil. Res. Dev. 2011, 48, 445–458. [Google Scholar] [CrossRef]
- Kim, J.A.; Chun, M.H.; Lee, A.; Ji, Y.; Jang, H.; Han, C. The effect of training using an upper limb rehabilitation robot (HEXO-UR30A) in chronic stroke patients: A randomized controlled trial. Medicine 2023, 102, e33246. [Google Scholar] [CrossRef]
- Hesse, S.; Heß, A.; Werner, C.C.; Kabbert, N.; Buschfort, R. Effect on arm function and cost of robot-assisted group therapy in subacute patients with stroke and a moderately to severely affected arm: A randomized controlled trial. Clin. Rehabil. 2014, 28, 637–647. [Google Scholar] [CrossRef]
- Kahn, L.E.; Zygman, M.L.; Rymer, W.Z.; Reinkensmeyer, D.J. Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: A randomized controlled pilot study. J. NeuroEng. Rehabil. 2006, 3, 12. [Google Scholar] [CrossRef]
- Kutner, N.G.; Zhang, R.; Butler, A.J.; Wolf, S.L.; Alberts, J.L. Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: A randomized clinical trial. Phys. Ther. 2010, 90, 493–504. [Google Scholar] [CrossRef]
- Tomić, T.J.; Savić, A.M.; Vidaković, A.S.; Rodić, S.Z.; Isaković, M.S.; Rodríguez-De-Pablo, C.; Keller, T.; Konstantinović, L.M. ArmAssist robotic system versus matched conventional therapy for poststroke upper limb rehabilitation: A randomized clinical trial. BioMed Res. Int. 2017, 2017, 7659893. [Google Scholar] [CrossRef]
- Hsieh, Y.W.; Lin, K.C.; Wu, C.Y.; Shih, T.Y.; Li, M.W.; Chen, C.L. Comparison of proximal versus distal upper-limb robotic rehabilitation on motor performance after stroke: A cluster controlled trial. Sci. Rep. 2018, 8, 2091. [Google Scholar] [CrossRef]
- Aprile, I.; Germanotta, M.; Cruciani, A.; Loreti, S.; Pecchioli, C.; Cecchi, F.; Montesano, A.; Galeri, S.; Diverio, M.; Falsini, C.; et al. Upper limb robotic rehabilitation after stroke: A multicenter, randomized clinical trial. J. Neurol. Phys. Ther. 2020, 44, 3–14. [Google Scholar] [CrossRef]
- Crema, A.; Bassolino, M.; Guanziroli, E.; Colombo, M.; Blanke, O.; Serino, A.; Micera, S.; Molteni, F. Neuromuscular electrical stimulation restores upper limb sensory-motor functions and body representations in chronic stroke survivors. Med 2022, 3, 58–74.e10. [Google Scholar] [CrossRef]
- Rodgers, H.; Bosomworth, H.; Krebs, H.I.; van Wijck, F.; Howel, D.; Wilson, N.; Aird, L.; Alvarado, N.; Andole, S.; Cohen, D.L.; et al. Robot assisted training for the upper limb after stroke (RATULS): A multicentre randomised controlled trial. Lancet 2019, 394, 51–62. [Google Scholar] [CrossRef]
- McGoldrick, A.; Byrne, H.; Cadogan, C. An assessment of the reporting of tapering methods in antidepressant discontinuation trials using the TIDieR checklist. Int. J. Clin. Pharm. 2023, 45, 1074–1087. [Google Scholar] [CrossRef]
- Slade, S.C.; Finnegan, S.; Dionne, C.E.; Underwood, M.; Buchbinder, R. The Consensus on Exercise Reporting Template (CERT) applied to exercise interventions in musculoskeletal trials demonstrated good rater agreement and incomplete reporting. J. Clin. Epidemiol. 2018, 103, 120–130. [Google Scholar] [CrossRef]
- Hansford, H.J.; Wewege, M.A.; Cashin, A.G.; Hagstrom, A.D.; Clifford, B.K.; McAuley, J.H.; Jones, M.D. If exercise is medicine, why don’t we know the dose? An overview of systematic reviews assessing reporting quality of exercise interventions in health and disease. Br. J. Sports Med. 2022, 56, 692–700. [Google Scholar] [CrossRef]
- Takebayashi, T.; Takahashi, K.; Amano, S.; Gosho, M.; Sakai, M.; Hashimoto, K.; Hachisuka, K.; Uchiyama, Y.; Domen, K. Robot-assisted training as self-training for upper-limb hemiplegia in chronic stroke: A randomized controlled trial. Stroke 2022, 53, 2182–2191. [Google Scholar] [CrossRef]
- Yuan, R.; Qiao, X.; Tang, C.; Zhou, T.; Chen, W.; Song, R.; Jiang, Y.; Reinhardt, J.D.; Wang, H. Effects of uni- vs. bilateral upper limb robot-assisted rehabilitation on motor function, activities of daily living, and electromyography in hemiplegic stroke: A single-blinded three-arm randomized controlled trial. J. Clin. Med. 2023, 12, 2950. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Barman, A.; Patel, S.; Sahoo, J. The Combined Effect of Robot-assisted Therapy and Activities of Daily Living Training on Upper Limb Recovery in Persons With Subacute Stroke: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2024, 105, 1041–1049. [Google Scholar] [CrossRef]
- Budhota, A.; Chua, K.S.; Hussain, A.; Kager, S.; Cherpin, A.; Contu, S.; Vishwanath, D.; Kuah, C.W.K.; Ng, C.Y.; Yam, L.H.L.; et al. Robotic Assisted Upper Limb Training Post Stroke: A Randomized Control Trial Using Combinatory Approach Toward Reducing Workforce Demands. Front. Neurol. 2021, 12, 622014. [Google Scholar] [CrossRef]
- Calabro, R.S.; Accorinti, M.; Porcari, B.; Carioti, L.; Ciatto, L.; Billeri, L.; Andronaco, V.A.; Galletti, F.; Filoni, S.; Naro, A. Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a randomised-clinical-trial. Clin. Neurophysiol. 2019, 130, 767–780. [Google Scholar] [CrossRef]
- Carpinella, I.; Lencioni, T.; Bowman, T.; Bertoni, R.; Turolla, A.; Ferrarin, M.; Jonsdottir, J. Effects of robot therapy on upper body kinematics and arm function in persons post stroke: A pilot randomized controlled trial. J. NeuroEng. Rehabil. 2020, 17, 10. [Google Scholar] [CrossRef]
- Chang, J.Y.; Chun, M.H.; Lee, A.; Lee, A.; Lee, C.M. Effects of training with a rehabilitation device (Rebless®) on upper limb function in patients with chronic stroke: A randomized controlled trial. Medicine 2024, 103, e38753. [Google Scholar] [CrossRef]
- Chen, Z.J.; He, C.; Xu, J.; Zheng, C.-J.; Wu, J.; Xia, N.; Hua, Q.; Xia, W.-G.; Xiong, C.-H.; Huang, X.-L. Exoskeleton-assisted anthropomorphic movement training for the upper limb after stroke: The EAMT randomized trial. Stroke 2023, 54, 1464–1473. [Google Scholar] [CrossRef]
- Choi, J.B.; Cho, K.I. Effects of virtual reality-based robot therapy combined with task-oriented therapy on upper limb function and cerebral cortex activation in patients with stroke. Medicine 2024, 103, e38723. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Chiu, H.Y.; Kuan, T.S.; Tsai, C.L.; Su, F.C.; Kuo, L.C. Robotic-assisted therapy with bilateral practice improves task and motor performance in the upper extremities of chronic stroke patients: A randomised controlled trial. Aust. Occup. Ther. J. 2019, 66, 637–647. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Yang, K.C.; Yeh, C.H.; Lin, Y.C.; Lin, K.R.; Su, F.C.; Kuo, L.C. A Tenodesis-Induced-Grip exoskeleton robot (TIGER) for assisting upper extremity functions in stroke patients: A randomized control study. Disabil. Rehabil. 2022, 44, 7078–7086. [Google Scholar] [CrossRef]
- Kim, J.H.; Ko, M.H.; Park, J.W.; Lee, H.J.; Nam, K.Y.; Nam, Y.-G.; Oh, C.-H.; Kwon, B.S.; Park, J.H. Efficacy of electromechanically-assisted rehabilitation of upper limb function in post-stroke patients: A randomized controlled study. J. Rehabil. Med. Clin. Commun. 2021, 4, 1000074. [Google Scholar] [CrossRef]
- Lee, M.J.; Lee, J.H.; Lee, S.M. Effects of robot-assisted therapy on upper extremity function and activities of daily living in hemiplegic patients: A single-blinded, randomized, controlled trial. Technol. Health Care 2018, 26, 659–666. [Google Scholar] [CrossRef]
- Li, Y.; Lian, Y.; Chen, X.; Zhang, H.; Xu, G.; Duan, H.; Xie, X.; Li, Z. Effect of task-oriented training assisted by force feedback hand rehabilitation robot on finger grasping function in stroke patients with hemiplegia: A randomised controlled trial. J. Neuroeng. Rehabil. 2024, 21, 77. [Google Scholar] [CrossRef]
- Lin, Y.; Li, Q.Y.; Qu, Q.; Ding, L.; Chen, Z.; Huang, F.; Hu, S.; Deng, W.; Guo, F.; Wang, C.; et al. Comparative Effectiveness of Robot-Assisted Training Versus Enhanced Upper Extremity Therapy on Upper and Lower Extremity for Stroke Survivors: A Multicentre Randomized Controlled Trial. J. Rehabil. Med. 2022, 54, jrm00314. [Google Scholar] [CrossRef]
- Ranzani, R.; Lambercy, O.; Metzger, J.C.; Califfi, A.; Regazzi, S.; Dinacci, D.; Petrillo, C.; Rossi, P.; Conti, F.M.; Gassert, R. Neurocognitive robot-assisted rehabilitation of hand function: A randomized control trial on motor recovery in subacute stroke. J. NeuroEng. Rehabil. 2020, 17, 115. [Google Scholar] [CrossRef]
- Şenocak, E.; Korkut, E.; Aktürk, A.; Ozer, A.Y. Is the robotic rehabilitation that is added to intensive body rehabilitation effective for maximization of upper extremity motor recovery following a stroke? A randomized controlled study. Neurol. Sci. 2023, 44, 2835–2843. [Google Scholar] [CrossRef]
- Takahashi, K.; Domen, K.; Sakamoto, T.; Toshima, M.; Otaka, Y.; Seto, M.; Irie, K.; Haga, B.; Takebayashi, T.; Hachisuka, K. Efficacy of upper extremity robotic therapy in subacute poststroke hemiplegia: An exploratory randomized trial. Stroke 2016, 47, 1385–1388. [Google Scholar] [CrossRef]
- Térémetz, M.; Hamdoun, S.; Colle, F.; Gerardin, E.; Desvilles, C.; Carment, L.; Charron, S.; Cuenca, M.; Calvet, D.; Baron, J.-C.; et al. Efficacy of interactive manual dexterity training after stroke: a pilot single-blinded randomized controlled trial. J. Neuroeng. Rehabil. 2023, 20, 93. [Google Scholar] [CrossRef]
- Villafañe, J.H.; Taveggia, G.; Galeri, S.; Bissolotti, L.; Mullè, C.; Imperio, G.; Valdes, K.; Borboni, A.; Negrini, S. Efficacy of Short-Term Robot-Assisted Rehabilitation in Patients With Hand Paralysis After Stroke: A Randomized Clinical Trial. Hand 2018, 13, 95–102. [Google Scholar] [CrossRef]
- Wolf, S.L.; Sahu, K.; Bay, R.C.; Buchanan, S.; Reiss, A.; Linder, S.; Rosenfeldt, A.; Alberts, J. The HAAPI (Home Arm Assistance Progression Initiative) trial: A novel robotics delivery approach in stroke rehabilitation. Neurorehabil. Neural Repair 2015, 29, 958–968. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, H.; Zhang, J.; Yang, S.; Cai, S. Robot-assisted therapy for upper extremity motor impairment after stroke: A systematic review and meta-analysis. Phys. Ther. 2021, 101, pzab010. [Google Scholar] [CrossRef]
- Alder, G.; Taylor, D.; Rashid, U.; Olsen, S.; Brooks, T.; Terry, G.; Niazi, I.K.; Signal, N. A brain computer interface neuromodulatory device for stroke rehabilitation: Iterative user-centered design approach. JMIR Rehabil. Assist. Technol. 2023, 10, e49702. [Google Scholar] [CrossRef]
- Stephenson, A.; Stephens, J. An exploration of physiotherapists’ experiences of robotic therapy in upper limb rehabilitation within a stroke rehabilitation centre. Disabil. Rehabil. Assist. Technol. 2018, 13, 245–252. [Google Scholar] [CrossRef]
- Nik Ramli, N.N.; Asokan, A.; Mayakrishnan, D.; Annamalai, H. Exploring stroke rehabilitation in malaysia: Are robots better than humans for stroke recuperation? Malays. J. Med. Sci. 2021, 28, 14–23. [Google Scholar] [CrossRef]
- Gomes, E.; Alder, G.; Bright, F.A.S.; Signal, N. Understanding task “challenge” in stroke rehabilitation: An interdisciplinary concept analysis. Disabil. Rehabil. 2025, 47, 560–570. [Google Scholar] [CrossRef]
- Metzger, J.-C.; Lambercy, O.; Califfi, A.; Dinacci, D.; Petrillo, C.; Rossi, P.; Conti, F.M.; Gassert, R. Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: A pilot study with a hand rehabilitation robot. J. NeuroEng. Rehabil. 2014, 11, 154. [Google Scholar] [CrossRef]
- Li, L.; Tyson, S.; Weightman, A. Professionals’ views and experiences of using rehabilitation robotics with stroke survivors: A mixed methods survey. Front. Med. Technol. 2021, 3, 780090. [Google Scholar] [CrossRef]
- Maier, M.; Ballester, B.R.; Verschure, P. Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front. Syst. Neurosci. 2019, 13, 74. [Google Scholar] [CrossRef]
- Mubin, O.; Alnajjar, F.; Jishtu, N.; Alsinglawi, B.; Al Mahmud, A. Exoskeletons with virtual reality, augmented reality, and gamification for stroke patients’ rehabilitation: Systematic review. JMIR Rehabil. Assist. Technol. 2019, 6, e12010. [Google Scholar] [CrossRef]
- Jamin, P.; Duret, C.; Hutin, E.; Bayle, N.; Koeppel, T.; Gracies, J.-M.; Pila, O. Using robot-based variables during upper limb robot-assisted training in subacute stroke patients to quantify treatment dose. Sensors 2022, 22, 2989. [Google Scholar] [CrossRef]
- Olsen, S.; Alder, G.; Rashid, U.; Gomes, E.; Aislabie, M.; Chee, F.; Smith, C.; Kean, B.; Towersey, N.; Signal, N. Challenge level contributes to the efficacy of treadmill interventions after stroke: A systematic review and meta-analysis. Brain Sci. 2023, 13, 1729. [Google Scholar] [CrossRef]
- Olsen, S.; Lim, X.M.L.; Alder, G.; Stavric, V.; Signal, N. Factors influencing adoption and sustained use of rehabilitation technologies: A scoping review and qualitative analysis. Disabil. Rehabil. Assist. Technol. 2024, 20, 804–822. [Google Scholar] [CrossRef]
- Lo, K.; Stephenson, M.; Lockwood, C. Adoption of robotic stroke rehabilitation into clinical settings: A qualitative descriptive analysis. JBI Evid. Implement. 2020, 18, 376–390. [Google Scholar] [CrossRef]
- Proulx, C.E.; Higgins, J.; Gagnon, D.H. Occupational therapists’ evaluation of the perceived usability and utility of wearable soft robotic exoskeleton gloves for hand function rehabilitation following a stroke. Disabil. Rehabil. Assist. Technol. 2023, 18, 953–962. [Google Scholar] [CrossRef]
- Charlesworth, K.; Kumar, E.; Olsen, S.; Collis, J.; Rodriguez-Ramirez, E.; Browne, W.; Signal, N. Stroke rehabilitation clinicians’ perspectives of device and programme requirements for effective upperlimb robotic rehabilitation following stroke. In Proceedings of the Smart Strokes 2024, Gold Coast, Australia, 29–30 August 2024. [Google Scholar]
- Banyai, A.D.; Brișan, C. Robotics in physical rehabilitation: Systematic review. Healthcare 2024, 12, 1720. [Google Scholar] [CrossRef] [PubMed]
- van Ommeren, A.L.; Smulders, L.C.; Prange-Lasonder, G.B.; Buurke, J.H.; Veltink, P.H.; Rietman, J.S. Assistive technology for the upper extremities after stroke: Systematic review of users’ needs. JMIR Rehabil. Assist. Technol. 2018, 5, e10510. [Google Scholar] [CrossRef]
- Akalin, N.; Kristoffersson, A.; Loutfi, A. Do you feel safe with your robot? Factors influencing perceived safety in human-robot interaction based on subjective and objective measures. Int. J. Hum.-Comput. Stud. 2022, 158, 102744. [Google Scholar] [CrossRef]
- Boutron, I.; Altman, D.G.; Moher, D.; Schulz, K.F.; Ravaud, P. CONSORT statement for randomized trials of nonpharmacologic treatments: A 2017 update and a CONSORT extension for nonpharmacologic trial abstracts. Ann. Intern. Med. 2017, 167, 40–47. [Google Scholar] [CrossRef] [PubMed]
Inclusion | Exclusion | |
---|---|---|
Participants | Adults over the age of 18 with stroke resulting in reduced upper-limb function. | Cerebellar or brainstem stroke. |
Experimental intervention | Robotic exoskeleton or end-effector rehabilitation targeting the upper limb for one or more sessions. | Robotic rehabilitation combined with another non-conventional, exploratory intervention, such as transcranial direct current stimulation or brain–computer interfaces. |
Control intervention | Conventional occupational therapy or physiotherapy rehabilitation targeting the upper limb, such as task-specific training, strength training, repetitive practice, constraint-induced movement therapy, or a combination. Dose-matched with the experimental robotic intervention in terms of total training time. | Conventional rehabilitation that also uses robotics, unless the robotic component was very brief (<10 min). Conventional rehabilitation combined with another non-conventional, exploratory intervention such as transcranial direct current stimulation or brain computer interfaces. |
Outcomes | Evaluation of ‘activity’ level outcomes including (a) upper-limb capacity or (b) activities of daily living as classified by the International Classification of Functioning Disability and Health model. | ‘Impairment’ level outcomes only, such as muscle strength, passive range of motion, or muscle tone. |
Study design | Randomized controlled trials with a parallel-group trial design. | Randomized crossover trials. Randomized controlled trials with less than 30 participants and/or without a sample size calculation *. |
Publication | Full-text peer-reviewed journal articles published in English. | Articles published prior to 2015 *. |
Aspect of Reporting Quality | Definition | Evaluation |
---|---|---|
Completeness of reporting | The completeness of reported intervention information according to the TIDieR-Rehab item and table of reference. | Complete = Full and clear description, to an extent which would allow it to be replicated. Incomplete = Partial or ambiguous description. Absent = No description. |
Consistency of reporting location | The consistency of article location where key intervention information for replication was reported. | After all relevant descriptions pertaining to a TIDieR-Rehab item were extracted, the key location containing the most pertinent information for replication was identified (e.g., Methods). Intervention groups that had ‘absent’ reporting of an item were not included in the evaluation of consistency for that item. |
Authors | Intervention | TIDieR-Rehab Item | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Brief name | Why | Who | When | What—Materials | What—Procedures | Who provided | How | Where | How much—Session(s) duration | How much—Essential element(s) | How much—Frequency | How much—Intervention length | How challenging | Regression/ Progression | Personalisation—Needs | Personalisation—Preferences | Protocol deviations | How well—Plan | How well—Actual | Harms—Plan | Harms—Actual | Intervention group % complete | Article total % complete | ||
Aprile et al. (2020) [31] | Experimental | 64% | 54% | ||||||||||||||||||||||
Control | 45% | ||||||||||||||||||||||||
Bhattacharjee et al. (2024) [39] | Experimental | 55% | 45% | ||||||||||||||||||||||
Control | 36% | ||||||||||||||||||||||||
Budhota et al. (2021) [40] | Experimental | 55% | 45% | ||||||||||||||||||||||
Control | 36% | ||||||||||||||||||||||||
Calabrò et al. (2019) [41] | Experimental | 59% | 45% | ||||||||||||||||||||||
Control | 32% | ||||||||||||||||||||||||
Carpinella et al. (2020) [42] | Experimental | 68% | 50% | ||||||||||||||||||||||
Control | 32% | ||||||||||||||||||||||||
Chang et al. (2024) [43] | Experimental | 59% | 48% | ||||||||||||||||||||||
Control | 36% | ||||||||||||||||||||||||
Chen et al. (2023) [44] | Experimental | 64% | 52% | ||||||||||||||||||||||
Control | 41% | ||||||||||||||||||||||||
Choi et al. (2024) [45] | Experimental | 41% | 41% | ||||||||||||||||||||||
Control | 41% | ||||||||||||||||||||||||
Crema et al. (2022) [32] | Experiment 1 | 36% | 35% | ||||||||||||||||||||||
Experiment 2 | 36% | ||||||||||||||||||||||||
Control 1 | 41% | ||||||||||||||||||||||||
Control 2 | 27% | ||||||||||||||||||||||||
Hsu et al. (2019) [46] | Experimental | 59% | 57% | ||||||||||||||||||||||
Control | 55% | ||||||||||||||||||||||||
Hsu et al. (2022) [47] | Experimental | 59% | 50% | ||||||||||||||||||||||
Control | 41% | ||||||||||||||||||||||||
Kim et al. (2021) [48] | Experimental | 50% | 43% | ||||||||||||||||||||||
Control | 36% | ||||||||||||||||||||||||
Kim et al. (2023) [25] | Experimental | 45% | 43% | ||||||||||||||||||||||
Control | 27% | ||||||||||||||||||||||||
Lee et al. (2018) [49] | Experimental | 32% | 27% | ||||||||||||||||||||||
Control | 23% | ||||||||||||||||||||||||
Li et al. (2024) [50] | Experimental | 45% | 48% | ||||||||||||||||||||||
Control | 50% | ||||||||||||||||||||||||
Lin et al. (2022) [51] | Experimental | 41% | 36% | ||||||||||||||||||||||
Control | 32% | ||||||||||||||||||||||||
Ranzani et al. (2020) [52] | Experimental | 64% | 59% | ||||||||||||||||||||||
Control | 55% | ||||||||||||||||||||||||
Rodgers et al. (2019) [33] | Experimental | 73% | 52% | ||||||||||||||||||||||
Control 1 | 68% | ||||||||||||||||||||||||
Control 2 | 14% | ||||||||||||||||||||||||
Şenocak et al. (2023) [53] | Experimental | 45% | 34% | ||||||||||||||||||||||
Control | 23% | ||||||||||||||||||||||||
Takahashi et al. (2016) [54] | Experimental | 55% | 48% | ||||||||||||||||||||||
Control | 41% | ||||||||||||||||||||||||
Takebayashi et al. (2022) [37] | Experiment 1 | 45% | 41% | ||||||||||||||||||||||
Experiment 2 | 41% | ||||||||||||||||||||||||
Control | 36% | ||||||||||||||||||||||||
Térémetz et al. (2023) [55] | Experimental | 36% | 27% | ||||||||||||||||||||||
Control | 18% | ||||||||||||||||||||||||
Villafañe et al. (2018) [56] | Experimental | 27% | 25% | ||||||||||||||||||||||
Control | 23% | ||||||||||||||||||||||||
Wolf et al. (2015) [57] | Experimental | 59% | 52% | ||||||||||||||||||||||
Control | 45% | ||||||||||||||||||||||||
Yuan et al. (2023) [38] | Experiment 1 | 36% | 33% | ||||||||||||||||||||||
Experiment 2 | 36% | ||||||||||||||||||||||||
Control | 27% | ||||||||||||||||||||||||
% complete by item | 64% | 47% * | 85% | 100% | 55% | 36% * | 20% * | 40% * | 33% * | 98% | 25% * | 87% | 91% | 9% * | 9% * | 7% * | 0% * | 13% * | 27% * | 22% * | 16% * | 62% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, E.; Alder, G.; Boardsworth, K.; Anderson, K.L.; Olsen, S.; Signal, N. Innovative but Difficult to Replicate: A Systematic Review of the Reporting Quality of Robotic and Conventional Upper-Limb Interventions in Stroke Rehabilitation Randomized Controlled Trials Using the TIDieR-Rehab Checklist. Appl. Sci. 2025, 15, 8487. https://doi.org/10.3390/app15158487
Gomes E, Alder G, Boardsworth K, Anderson KL, Olsen S, Signal N. Innovative but Difficult to Replicate: A Systematic Review of the Reporting Quality of Robotic and Conventional Upper-Limb Interventions in Stroke Rehabilitation Randomized Controlled Trials Using the TIDieR-Rehab Checklist. Applied Sciences. 2025; 15(15):8487. https://doi.org/10.3390/app15158487
Chicago/Turabian StyleGomes, Emeline, Gemma Alder, Kate Boardsworth, Kate L. Anderson, Sharon Olsen, and Nada Signal. 2025. "Innovative but Difficult to Replicate: A Systematic Review of the Reporting Quality of Robotic and Conventional Upper-Limb Interventions in Stroke Rehabilitation Randomized Controlled Trials Using the TIDieR-Rehab Checklist" Applied Sciences 15, no. 15: 8487. https://doi.org/10.3390/app15158487
APA StyleGomes, E., Alder, G., Boardsworth, K., Anderson, K. L., Olsen, S., & Signal, N. (2025). Innovative but Difficult to Replicate: A Systematic Review of the Reporting Quality of Robotic and Conventional Upper-Limb Interventions in Stroke Rehabilitation Randomized Controlled Trials Using the TIDieR-Rehab Checklist. Applied Sciences, 15(15), 8487. https://doi.org/10.3390/app15158487