A Scalable and Consistent Method for Multi-Component Gravity-Gradient Data Processing
Abstract
1. Introduction
2. Methodology
2.1. Gravity-Gradient Data
2.2. Classical Equivalent Layer
2.3. Convolutional Equivalent Layer in Rotated Coordinates
2.4. Computational Performance
Algorithm 1 Convolutional equivalent-layer for gravity-gradient data in rotated coordinates. |
|
2.5. Criterion for Selecting Layer Depth
2.6. Interpolating Data
3. Synthetic Data Application
3.1. Falcon AGG Data
3.2. FTG Data
4. Real Data Applications
4.1. Kauring
4.2. Vinton
4.3. Canobie
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Droujinine, A.; Vasilevsky, A.; Evans, R. Feasibility of using full tensor gradient (FTG) data for detection of local lateral density contrasts during reservoir monitoring. Geophys. J. Int. 2007, 169, 795–820. [Google Scholar] [CrossRef]
- Uieda, L.; Barbosa, V.C.F. Robust 3D gravity gradient inversion by planting anomalous densities. Geophysics 2012, 77, G55–G66. [Google Scholar] [CrossRef]
- Oliveira, V.C., Jr.; Barbosa, V.C.F. 3-D radial gravity gradient inversion. Geophys. J. Int. 2013, 195, 883–902. [Google Scholar] [CrossRef]
- Carlos, D.U.; Uieda, L.; Barbosa, V.C.F. Imaging iron ore from the Quadrilátero Ferrífero (Brazil) using geophysical inversion and drill hole data. Ore Geol. Rev. 2014, 61, 268–285. [Google Scholar] [CrossRef]
- Martinez, C.; Li, Y. Denoising of gravity gradient data using an equivalent source technique. Geophysics 2016, 81, G67–G79. [Google Scholar] [CrossRef]
- Vera, N.; Couder-Castañeda, C.; Hernández, J.; Trujillo-Alcántara, A.; Orozco-del Castillo, M.; Ortiz-Aleman, C. OpenMP implementation of a novel potential-field-data source-growth-based inversion approach for 3D salt imaging in deepwater gulf of Mexico. Appl. Sci. 2020, 10, 4798. [Google Scholar] [CrossRef]
- Maag-Capriotti, E.; Li, Y. Understanding the information content in gravity gradiometry data through constrained inversions for salt bodies. Geophysics 2021, 86, G35–G53. [Google Scholar] [CrossRef]
- Soulaimani, A.; Chakiri, S.; Soulaimani, S.; Bejjaji, Z.; Miftah, A.; Manar, A. Gradiometry Processing Techniques for Large-Scale of Aeromagnetic Data for Structural and Mining Implications: The Case Study of Bou Azzer Inlier, Central Anti-Atlas, Morocco. Appl. Sci. 2023, 13, 9962. [Google Scholar] [CrossRef]
- Mickus, K.L.; Hinojosa, J.H. The complete gravity gradient tensor derived from the vertical component of gravity: A Fourier transform technique. J. Appl. Geophys. 2001, 46, 159–174. [Google Scholar] [CrossRef]
- Piauilino, L.S.; Siqueira, F.C.L.; Oliveira, V.C., Jr.; Barbosa, V.C.F. Estimative of gravity-gradient tensor components via fast iterative equivalent-layer technique. In SEG Technical Program Expanded Abstracts 2019; Society of Exploration Geophysicists: Tulsa, OK, USA, 2019; pp. 1714–1718. [Google Scholar] [CrossRef]
- Lyrio, J.C.S.O.; Tenorio, L.; Li, Y. Efficient automatic denoising of gravity gradiometry data. Geophysics 2004, 69, 772–782. [Google Scholar] [CrossRef]
- Jiang, F.Y.; Huang, Y.; Yan, K. Full gravity gradient tensors from vertical gravity by cosine transform. Appl. Geophys. 2012, 9, 247–260. [Google Scholar] [CrossRef]
- Abtahi, S.M.; Pedersen, L.B.; Kamm, J.; Kalscheuer, T. Consistency investigation, vertical gravity estimation, and inversion of airborne gravity gradient data—A case study from northern Sweden. Geophysics 2016, 81, B65–B76. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, D.; Yu, P.; Yuan, Y. Translation-invariant wavelet denoising of full-tensor gravity–gradiometer data. Appl. Geophys. 2017, 14, 606–619. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, J.; Meng, X.; Zheng, S.; Tang, H. An efficient cross-gradient joint inversion algorithm for gravity and magnetic data using a sequential strategy. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Yuan, Y.; Qin, G.; Li, D.; Zhong, M.; Shen, Y.; Ouyang, Y. Real-time joint filtering of gravity and gravity gradient data based on improved Kalman filter. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–12. [Google Scholar] [CrossRef]
- Jiang, T.; Ke, B.; Yu, X.; Yu, L.; Yang, M.; Fan, J.; Hu, C.; Feng, W.; Liu, H.; Zhong, M.; et al. Gravity gradient signal extraction based on time-frequency feature threshold method. J. Appl. Geophys. 2025, 234, 105643. [Google Scholar] [CrossRef]
- Dampney, C.N.G. The equivalent source technique. Geophysics 1969, 34, 39–53. [Google Scholar] [CrossRef]
- Leão, J.W.D.; Silva, J.B.C. Discrete linear transformations of potential field data. Geophysics 1989, 54, 497–507. [Google Scholar] [CrossRef]
- Xia, J.; Sprowl, D.R. Correction of topographic distortion in gravity data. Geophysics 1991, 56, 537–541. [Google Scholar] [CrossRef]
- Xia, J.; Sprowl, D.R.; Adkins-Heljeson, D. Correction of topographic distortions in potential-field data—A fast and accurate approach. Geophysics 1993, 58, 515–523. [Google Scholar] [CrossRef]
- Cordell, L. A scattered equivalent-source method for interpolation and gridding of potential-field data in three dimensions. Geophysics 1992, 57, 629–636. [Google Scholar] [CrossRef]
- Mendonça, C.A.; Silva, J.B.C. The equivalent data concept applied to the interpolation of potential field data. Geophysics 1994, 59, 722–732. [Google Scholar] [CrossRef]
- Dransfield, M.H.; Lee, J.B. The FALCON airborne gravity gradiometer survey systems. In Airborne Gravity 2004—Abstracts from the ASEG-PESA Airborne Gravity 2004 Workshop; Lane, R., Ed.; Geoscience Australia Record 2004/18; Geoscience Australia: Canberra, Australia, 2004; pp. 15–19. [Google Scholar]
- Guspí, F.; Novara, I. Reduction to the pole and transformations of scattered magnetic data using Newtonian equivalent sources. Geophysics 2009, 74, L67–L73. [Google Scholar] [CrossRef]
- Li, Y.; Oldenburg, D.W. Rapid construction of equivalent sources using wavelets. Geophysics 2010, 75, L51–L59. [Google Scholar] [CrossRef]
- Barnes, G.; Lumley, J. Processing gravity gradient data. Geophysics 2011, 76, I33–I47. [Google Scholar] [CrossRef]
- Siqueira, F.C.L.; Oliveira, V.C., Jr.; Barbosa, V.C.F. Fast iterative equivalent-layer technique for gravity data processing: A method grounded on excess mass constraint. Geophysics 2017, 82, G57–G69. [Google Scholar] [CrossRef]
- Jirigalatu; Ebbing, J. A fast equivalent source method for airborne gravity gradient data. Geophysics 2019, 84, G75–G82. [Google Scholar] [CrossRef]
- Mendonça, C.A. Subspace method for solving large-scale equivalent layer and density mapping problems. Geophysics 2020, 85, G57–G68. [Google Scholar] [CrossRef]
- Soler, S.R.; Uieda, L. Gradient-boosted equivalent sources. Geophys. J. Int. 2021, 227, 1768–1783. [Google Scholar] [CrossRef]
- Bu, J.; Ye, Z.; Liang, X.; Liu, L.; Liu, J.; Fu, T.; Zhang, C.; Zhu, Y. Marine gravity gradient model calculation based on wavelet numerical integration and CUDA parallel. Comput. Geosci. 2025, 196, 105852. [Google Scholar] [CrossRef]
- Takahashi, D.; Oliveira, V.C., Jr.; Barbosa, V.C.F. Convolutional equivalent layer for gravity data processing. Geophysics 2020, 85, G129–G141. [Google Scholar] [CrossRef]
- Takahashi, D.; Oliveira, V.C., Jr.; Barbosa, V.C.F. Convolutional equivalent layer for magnetic data processing. Geophysics 2022, 87, 1–59. [Google Scholar] [CrossRef]
- Pedersen, L.B.; Rasmussen, T.M. The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps. Geophysics 1990, 55, 1558–1566. [Google Scholar] [CrossRef]
- Dransfield, M.H. Airborne gravity gradiometry in the search for mineral deposits. In Exploration in the New Millenium: Proceedings of Exploration 07, Fifth Decennial International Conference on Mineral Exploration, Toronto, ON, Canada, 9–12 September 2007; Milkereit, B., Ed.; Decennial Mineral Exploration Conferences: Toronto, ON, Canada, 2007; pp. 341–354. [Google Scholar]
- Aster, R.; Borchers, B.; Thurber, C. Parameter Estimation and Inverse Problems; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2013. [Google Scholar]
- Oliveira Junior, V.C.; Takahashi, D.; Reis, A.L.; Barbosa, V.C. Computational aspects of the equivalent-layer technique. Front. Earth Sci. 2023, 11, 1253148. [Google Scholar] [CrossRef]
- Martinez, C.; Li, Y. Gravity gradiometry processing and interpretation at the Kauring Test Site. In Proceedings of the 2012 SEG Annual Meeting, Las Vegas, NV, USA, 4–9 November 2012; OnePetro: Richardson, TX, USA, 2012. [Google Scholar] [CrossRef]
- Ennen, C.; Hall, S. Structural mapping of the Vinton salt dome, Louisiana, using gravity gradiometry data. In SEG Technical Program Expanded Abstracts 2011; Society of Exploration Geophysicists: Tulsa, OK, USA, 2011; pp. 830–835. [Google Scholar] [CrossRef]
- Howard, D.; Grujic, M.; Lane, R. The Kauring airborne gravity and airborne gravity gradiometer test site, Western Australia. In Proceedings of the Airborne Gravity 2010—Abstracts from the ASEG-PESA Airborne Gravity 2010 Workshop; Lane, R., Ed.; Number 2010/23 in Geoscience Australia Record; Geoscience Australia: Canberra, Australia, 2010; pp. 107–114. [Google Scholar]
- Howard, D.; Brett, J. The Kauring Airborne Geophysical Test Range, Western Australia: A Non-Technical Overview; Report; Geological Survey of Western Australia: Perth, Australia, 2010.
- Liu, J.Z.; Li, H.L. Separation and interpretation of gravity field data based on two dimensional normal space-scale transform (NSST2D) algorithm: A case study of Kauring airborne gravity test site, western Australia. Pure Appl. Geophys. 2019, 176, 2513–2528. [Google Scholar] [CrossRef]
- Coker, M.O.; Bhattacharya, J.P.; Marfurt, K.J. Fracture Patterns Within Mudstones on the Flanks of a Salt Dome: Syneresis or Slumping? 2007. Available online: https://mcee.ou.edu/aaspi/publications/2007/coker_etal_GCAGST2007.pdf (accessed on 23 July 2025).
- Niu, T.; Zhang, G.; Zhang, M.; Zhang, G. Joint inversion of gravity and gravity gradient data using smoothed L 0 norm regularization algorithm with sensitivity matrix compression. Front. Earth Sci. 2023, 11, 1283238. [Google Scholar] [CrossRef]
- Geoscience Australia. Canobie Airborne Gravity Gradiometer Survey, 2021. Dataset, 2021. Project Number: P5021. Includes Point-Located Data, Gridded Products, and QA Report. Available online: https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/146760 (accessed on 23 July 2025).
- Reid, N.; Thorne, R.L.; Tang, J.; Purdy, D.; Brown, D.; Plet, C.; Kamber, B.; Pinchand, T. Hydrogeochemistry of Eastern Isa Block; Technical Report 2021/03, CSIRO Report EP2021-1969; Geological Survey of Queensland: Brisbane, Australia, 2021.
- Geological Survey of Queensland. North-West Queensland Mineral and Energy Province Report and Data Package; Technical Report 1; CD-ROM; Queensland Department of Employment, Economic Development and Innovation: Brisbane, Australia, 2011; Volume 1.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piauilino, L.S.; Oliveira Junior, V.C.; Barbosa, V.C.F. A Scalable and Consistent Method for Multi-Component Gravity-Gradient Data Processing. Appl. Sci. 2025, 15, 8396. https://doi.org/10.3390/app15158396
Piauilino LS, Oliveira Junior VC, Barbosa VCF. A Scalable and Consistent Method for Multi-Component Gravity-Gradient Data Processing. Applied Sciences. 2025; 15(15):8396. https://doi.org/10.3390/app15158396
Chicago/Turabian StylePiauilino, Larissa Silva, Vanderlei Coelho Oliveira Junior, and Valeria Cristina Ferreira Barbosa. 2025. "A Scalable and Consistent Method for Multi-Component Gravity-Gradient Data Processing" Applied Sciences 15, no. 15: 8396. https://doi.org/10.3390/app15158396
APA StylePiauilino, L. S., Oliveira Junior, V. C., & Barbosa, V. C. F. (2025). A Scalable and Consistent Method for Multi-Component Gravity-Gradient Data Processing. Applied Sciences, 15(15), 8396. https://doi.org/10.3390/app15158396