Are Commercially Available Orthodontic Adhesive Systems Suitable for Rapid (3 s) High-Intensity Light Curing?
Abstract
1. Introduction
2. Materials and Methods
2.1. Curing Protocols, Sample Preparation, and DC Measurements
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DC | degree of conversion |
LCU | light curing unit |
LED | light emitting diode |
RAFT | reversible addition-fragmentation chain transfer |
PET | polyethylene terephthalate |
FTIR | Fourier-transform infrared spectroscopy |
ATR | attenuated total reflectance |
References
- Ilie, N.; Watts, D.C. Outcomes of Ultra-Fast (3 s) Photo-Cure in a RAFT-Modified Resin-Composite. Dent. Mater. 2020, 36, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.D.; Wolf, B.J.; Leite, L.P.; Zhou, J. Clinical Effect of Reducing Curing Times with High-Intensity LED Lights. Angle Orthod. 2015, 85, 1064–1069. [Google Scholar] [CrossRef]
- Par, M.; Marovic, D.; Attin, T.; Tarle, Z.; Tauböck, T.T. The Effect of Rapid High-Intensity Light-Curing on Micromechanical Properties of Bulk-Fill and Conventional Resin Composites. Sci. Rep. 2020, 10, 10560. [Google Scholar] [CrossRef] [PubMed]
- Lamper, T.; Steinhäuser-Andresen, S.; Huth, K.C.; Ilie, N.; Paschos, E. Does a Reduction of Polymerization Time and Bonding Steps Affect the Bond Strength of Brackets? Clin. Oral Investig. 2012, 16, 665–671. [Google Scholar] [CrossRef]
- Cerekja, E.; Cakirer, B. Effect of Short Curing Times with a High-Intensity Light-Emitting Diode or High-Power Halogen on Shear Bond Strength of Metal Brackets before and after Thermocycling. Angle Orthod. 2011, 81, 510–516. [Google Scholar] [CrossRef]
- Rahiotis, C. Degree of Cure and Monomer Leaching from Orthodontic Adhesive Resins: In Vitro and in Vivo Evidence. Semin. Orthod. 2010, 16, 266–273. [Google Scholar] [CrossRef]
- Gange, P. The Evolution of Bonding in Orthodontics. Am. J. Orthod. Dentofac. Orthop. 2015, 147, S56–S63. [Google Scholar] [CrossRef]
- Grazioli, G.; Cuevas Suárez, C.; Mederos, M.; LEON, E.; Garcia, A.; Zamarripa, E.; Piva, E. Evaluation of Irradiance and Radiant Exposure on the Polymerization and Mechanical Properties of a Resin Composite. Braz. Oral Res. 2022, 36, e082. [Google Scholar] [CrossRef]
- Mavropoulos, A.; Cattani-Lorente, M.; Krejci, I.; Staudt, C.B. Kinetics of Light-Cure Bracket Bonding: Power Density vs Exposure Duration. Am. J. Orthod. Dentofacial Orthop. 2008, 134, 543–547. [Google Scholar] [CrossRef]
- Musanje, L.; Darvell, B.W. Polymerization of Resin Composite Restorative Materials: Exposure Reciprocity. Dent. Mater. 2003, 19, 531–541. [Google Scholar] [CrossRef]
- Emami, N.; Söderholm, K.-J.M.; Berglund, L.A. Effect of Light Power Density Variations on Bulk Curing Properties of Dental Composites. J. Dent. 2003, 31, 189–196. [Google Scholar] [CrossRef]
- Carek, A.; Dukaric, K.; Miler, H.; Marovic, D.; Tarle, Z.; Par, M. Post-Cure Development of the Degree of Conversion and Mechanical Properties of Dual-Curing Resin Cements. Polymers 2022, 14, 3649. [Google Scholar] [CrossRef] [PubMed]
- Par, M.; Burrer, P.; Prskalo, K.; Schmid, S.; Schubiger, A.-L.; Marovic, D.; Tarle, Z.; Attin, T.; Tauböck, T.T. Polymerization Kinetics and Development of Polymerization Shrinkage Stress in Rapid High-Intensity Light-Curing. Polymers 2022, 14, 3296. [Google Scholar] [CrossRef]
- Çörekçi, B.; Malkoç, S.; Öztürk, B.; Gündüz, B.; Toy, E. Polymerization Capacity of Orthodontic Composites Analyzed by Fourier Transform Infrared Spectroscopy. Am. J. Orthod. Dentofac. Orthop. 2011, 139, e299–e304. [Google Scholar] [CrossRef]
- Rueggeberg, F.A.; Hashinger, D.T.; Fairhurst, C.W. Calibration of FTIR Conversion Analysis of Contemporary Dental Resin Composites. Dent. Mater. Off. Publ. Acad. Dent. Mater. 1990, 6, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, S.; Abbasi, M.; Sadeghi Mahounak, F.; Moradi, Z. Curing Depth and Degree of Conversion of Five Bulk-Fill Composite Resins Compared to a Conventional Composite. Open Dent. J. 2019, 13, 422–429. [Google Scholar] [CrossRef]
- Arana, A.F.M.; Justus, B.; Dávila-Sánchez, A.; Sugahara, M.D.O.; Coelho, U.; Farago, P.V.; Arrais, C. Influence of Radiant Exposure Values from Two Third Generation LED Curing Units on Polymerization Profile and Microhardness of Orthodontic Composite under Ceramic and Metallic Brackets. Dent. Press J. Orthod. 2021, 26, e2119150. [Google Scholar] [CrossRef] [PubMed]
- Jagdish, N.; Padmanabhan, S.; Chitharanjan, A.B.; Revathi, J.; Palani, G.; Sambasivam, M.; Sheriff, K.; Saravanamurali, K. Cytotoxicity and Degree of Conversion of Orthodontic Adhesives. Angle Orthod. 2009, 79, 1133–1138. [Google Scholar] [CrossRef]
- Hadis, M.; Leprince, J.G.; Shortall, A.C.; Devaux, J.; Leloup, G.; Palin, W.M. High Irradiance Curing and Anomalies of Exposure Reciprocity Law in Resin-Based Materials. J. Dent. 2011, 39, 549–557. [Google Scholar] [CrossRef]
- Feng, L.; Suh, B.I. Exposure Reciprocity Law in Photopolymerization of Multi-Functional Acrylates and Methacrylates. Macromol. Chem. Phys. 2007, 208, 295–306. [Google Scholar] [CrossRef]
- Sadeghyar, A.; Watts, D.C.; Schedle, A. Limited Reciprocity in Curing Efficiency of Bulk-Fill Resin-Composites. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2020, 36, 997–1008. [Google Scholar] [CrossRef]
- Palagummi, S.V.; Hong, T.; Wang, Z.; Moon, C.K.; Chiang, M.Y.M. Resin Viscosity Determines the Condition for a Valid Exposure Reciprocity Law in Dental Composites. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2020, 36, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Faria-e-Silva, A.L.; Covell, D.A.; Ferracane, J.L.; Pfeifer, C.S. Effectiveness of High Irradiance for Short-Time Exposures on Polymerization of Composite under Metal Brackets. Angle Orthod. 2017, 87, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Daugherty, M.M.; Lien, W.; Mansell, M.R.; Risk, D.L.; Savett, D.A.; Vandewalle, K.S. Effect of High-Intensity Curing Lights on the Polymerization of Bulk-Fill Composites. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2018, 34, 1531–1541. [Google Scholar] [CrossRef]
- da Silva, E.M.; Poskus, L.T.; Guimarães, J.G.A.; Barcellos, A.d.A.L.; Fellows, C.E. Influence of Light Polymerization Modes on Degree of Conversion and Crosslink Density of Dental Composites. J. Mater. Sci. Mater. Med. 2008, 19, 1027–1032. [Google Scholar] [CrossRef]
- Lang, M.; Hirner, S.; Wiesbrock, F.; Fuchs, P. A Review on Modeling Cure Kinetics and Mechanisms of Photopolymerization. Polymers 2022, 14, 2074. [Google Scholar] [CrossRef] [PubMed]
- Çörekçi, B.; Irgın, C.; Halıcıoğlu, K.; Dursun, S.; Yavuz, M. Effects of Plasma-Emulating Light-Emitting Diode (LED) versus Conventional LED on Cytotoxic Effects and Polymerization Capacity of Orthodontic Composites. Hum. Exp. Toxicol. 2014, 33, 1000–1007. [Google Scholar] [CrossRef]
- Romo-Huerta, M.J.; del Refugio Cervantes-Urenda, A.; Velasco-Neri, J.; Torres-Bugarin, O.; Valdivia, A.D.C.M. Genotoxicity Associated with Residual Monomers in Restorative Dentistry: A Systematic Review. Oral Health Prev. Dent. 2021, 19, b2081469. [Google Scholar] [CrossRef]
- Ilie, N.; Diegelmann, J. Impact of Ultra-Fast (3 s) Light-Cure on Cell Toxicity and Viscoelastic Behavior in a Dental Resin-Based Composite with RAFT-Mediated Polymerization. J. Mech. Behav. Biomed. Mater. 2021, 124, 104810. [Google Scholar] [CrossRef]
- Eliades, T. Polymerization Lamps and Photocuring in Orthodontics. Semin. Orthod. 2010, 16, 83–90. [Google Scholar] [CrossRef]
- Profeta Krznar, I.; Par, M.; Tarle, Z.; Meštrović, S. Influence of the Bracket Material on the Post-Cure Degree of Conversion of Resin-Based Orthodontic Adhesive Systems. Polymers 2024, 16, 318. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.F.; Martins, L.P.; Martins, R.P. Effects of Reducing Light-Curing Time of a High-Power LED Device on Shear Bond Strength of Brackets. J. Orofac. Orthop. Fortschritte Kieferorthopädie 2018, 79, 352–358. [Google Scholar] [CrossRef]
- Mohammed, O.K.; Younis, M.T.; Dawood, A.E. The Effect of Light Curing Time and Intensity on the Bond Strength and Fracture Resistance of Orthodontic Adhesive. J. Dent. Res. Dent. Clin. Dent. Prospect. 2023, 17, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Paolone, G.; Mandurino, M.; Baldani, S.; Paolone, M.G.; Goracci, C.; Scolavino, S.; Gherlone, E.; Cantatore, G.; Gastaldi, G. Quantitative Volumetric Enamel Loss after Orthodontic Debracketing/Debonding and Clean-Up Procedures: A Systematic Review. Appl. Sci. 2023, 13, 5369. [Google Scholar] [CrossRef]
- Kauppi, M.R.; Combe, E.C. Polymerization of Orthodontic Adhesives Using Modern High-Intensity Visible Curing Lights. Am. J. Orthod. Dentofac. Orthop. 2003, 124, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Niepraschk, M.; Rahiotis, C.; Bradley, T.G.; Eliades, T.; Eliades, G. Effect of Various Curing Lights on the Degree of Cure of Orthodontic Adhesives. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 382–384. [Google Scholar] [CrossRef]
- Par, M.; Tarle, Z.; Hickel, R.; Ilie, N. Polymerization Kinetics of Experimental Bioactive Composites Containing Bioactive Glass. J. Dent. 2018, 76, 83–88. [Google Scholar] [CrossRef]
- Üşümez, S.; Büyükyilmaz, T.; Karaman, A.İ.; Gündüz, B. Degree of Conversion of Two Lingual Retainer Adhesives Cured with Different Light Sources. Eur. J. Orthod. 2005, 27, 173–179. [Google Scholar] [CrossRef]
- Eliades, T. Degree of Cure of Orthodontic Adhesives with Various Polymerization Initiation Modes. Eur. J. Orthod. 2000, 22, 395–399. [Google Scholar] [CrossRef]
- Soyland, R.; Currier, G.F.; Kadioglu, O.; Li, J.; Esteban Florez, F.L.; Rueggeberg, F.A.; Khajotia, S.S. Pairing Orthodontic Adhesive Resins and Light-Curing Units for Optimal Degree of Conversion. J. World Fed. Orthod. 2020, 9, 68–74. [Google Scholar] [CrossRef]
- Bolaños-Carmona, V.; Zein, B.; Menéndez-Núñez, M.; Sánchez-Sánchez, P.; Ceballos-García, L.; González-López, S. Influence of the Bracket on Bonding and Physical Behavior of Orthodontic Resin Cements. Dent. Mater. J. 2015, 34, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Shinya, M.; Shinya, A.; Lassila, L.V.J.; Varrela, J.; Vallittu, P.K. Enhanced Degree of Monomer Conversion of Orthodontic Adhesives Using a Glass-Fiber Layer under the Bracket. Angle Orthod. 2009, 79, 546–550. [Google Scholar] [CrossRef]
- Andrzejewska, E. Photopolymerization Kinetics of Multifunctional Monomers. Prog. Polym. Sci. 2001, 26, 605–665. [Google Scholar] [CrossRef]
- Par, M.; Gamulin, O.; Marovic, D.; Klaric, E.; Tarle, Z. Effect of Temperature on Post-Cure Polymerization of Bulk-Fill Composites. J. Dent. 2014, 42, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Fidalgo-Pereira, R.; Carvalho, Ó.; Catarino, S.O.; Henriques, B.; Torres, O.; Braem, A.; Souza, J.C.M. Effect of Inorganic Fillers on the Light Transmission through Traditional or Flowable Resin-Matrix Composites for Restorative Dentistry. Clin. Oral Investig. 2023, 27, 5679–5693. [Google Scholar] [CrossRef]
- Turssi, C.P.; Ferracane, J.L.; Vogel, K. Filler Features and Their Effects on Wear and Degree of Conversion of Particulate Dental Resin Composites. Biomaterials 2005, 26, 4932–4937. [Google Scholar] [CrossRef] [PubMed]
- Eliades, G.C.; Vougiouklakis, G.J.; Caputo, A.A. Degree of Double Bond Conversion in Light-Cured Composites. Dent. Mater. 1987, 3, 19–25. [Google Scholar] [CrossRef]
- Watts, D.C.; Amer, O.; Combe, E.C. Characteristics of Visible-Light-Activated Composite Systems. Br. Dent. J. 1984, 156, 209–215. [Google Scholar] [CrossRef]
- Heyder, M.; Kranz, S.; Beck, J.; Wettemann, M.; Hennig, C.-L.; Schulze-Späte, U.; Sigusch, B.W.; Reise, M. Influence of Layer Thickness and Shade on the Transmission of Light through Contemporary Resin Composites. Materials 2024, 17, 1554. [Google Scholar] [CrossRef]
- Mohamad, D.; Young, R.J.; Mann, A.B.; Watts, D.C. Post-Polymerization of Dental Resins Composite Evaluated with Nanoindentation and Micro-Raman Spectroscopy. Arch. Orofac. Sci. 2007, 2, 26–31. [Google Scholar]
- Par, M.; Marovic, D.; Attin, T.; Tarle, Z.; Tauböck, T.T. Effect of Rapid High-Intensity Light-Curing on Polymerization Shrinkage Properties of Conventional and Bulk-Fill Composites. J. Dent. 2020, 101, 103448. [Google Scholar] [CrossRef] [PubMed]
- Abedin, F.; Ye, Q.; Camarda, K.; Spencer, P. Impact of Light Intensity on the Polymerization Kinetics and Network Structure of Model Hydrophobic and Hydrophilic Methacrylate Based Dental Adhesive Resin. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 1666–1678. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Fidalgo-Pereira, R.; Torres, O.; Carvalho, O.; Henriques, B.; Özcan, M.; Souza, J.C.M. The Impact of Inorganic Fillers, Organic Content, and Polymerization Mode on the Degree of Conversion of Monomers in Resin-Matrix Cements for Restorative Dentistry: A Scoping Review. Clin. Oral Investig. 2024, 28, 454. [Google Scholar] [CrossRef] [PubMed]
- Kelch, M.; Stawarczyk, B.; Mayinger, F. Time-Dependent Degree of Conversion, Martens Parameters, and Flexural Strength of Different Dual-Polymerizing Resin Composite Luting Materials. Clin. Oral Investig. 2022, 26, 1067–1076. [Google Scholar] [CrossRef]
- Aldossary, M.S.; Abu Hajia, S.S.; Santini, A. Light Energy Transmission through Six Different Makes of Ceramic Orthodontic Brackets. Int. Orthod. 2018, 16, 638–651. [Google Scholar] [CrossRef]
Material Name | Manufacturer (LOT No.) | Resin Matrix Composition | Filler Load and Composition |
---|---|---|---|
Enlight | Ormco, Brea, CA, USA (9708681) | Dimethacrylate monomer 20–30% | 70–80% silane-treated silica |
Heliosit | Ivoclar, Schaan, Liechtenstein (Z04SHW) | Bis-GMA, UDMA, decandiol dimethacrylate (85%) | 14% silane-treated silica |
Transbond XT | 3M Unitek, Monrovia, CA, USA (9478429) | 10–20% Bis-GMA, 5–10% Bis-EMA | 70–80% silane-treated quartz |
Factor | p-Value * | Partial η2 |
---|---|---|
Material | <0.001 | 0.933 |
Bracket | <0.001 | 0.968 |
Curing protocol | <0.001 | 0.901 |
Time point | <0.001 | 0.840 |
Material × Bracket | <0.001 | 0.931 |
Material × Curing protocol | <0.001 | 0.221 |
Bracket × Time point | <0.001 | 0.080 |
Material × Bracket × Curing protocol | <0.001 | 0.417 |
Factor | p-Value * | Partial η2 |
---|---|---|
Material | <0.001 | 0.994 |
Bracket | <0.001 | 0.603 |
Curing mode | <0.001 | 0.615 |
Material × Bracket | <0.001 | 0.259 |
Material × Curing protocol | <0.001 | 0.201 |
Bracket × Curing protocol | <0.001 | 0.247 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Profeta Krznar, I.; Meštrović, S.; Miler, H.; Marovic, D.; Tarle, Z.; Par, M. Are Commercially Available Orthodontic Adhesive Systems Suitable for Rapid (3 s) High-Intensity Light Curing? Appl. Sci. 2025, 15, 7641. https://doi.org/10.3390/app15147641
Profeta Krznar I, Meštrović S, Miler H, Marovic D, Tarle Z, Par M. Are Commercially Available Orthodontic Adhesive Systems Suitable for Rapid (3 s) High-Intensity Light Curing? Applied Sciences. 2025; 15(14):7641. https://doi.org/10.3390/app15147641
Chicago/Turabian StyleProfeta Krznar, Ivona, Senka Meštrović, Helena Miler, Danijela Marovic, Zrinka Tarle, and Matej Par. 2025. "Are Commercially Available Orthodontic Adhesive Systems Suitable for Rapid (3 s) High-Intensity Light Curing?" Applied Sciences 15, no. 14: 7641. https://doi.org/10.3390/app15147641
APA StyleProfeta Krznar, I., Meštrović, S., Miler, H., Marovic, D., Tarle, Z., & Par, M. (2025). Are Commercially Available Orthodontic Adhesive Systems Suitable for Rapid (3 s) High-Intensity Light Curing? Applied Sciences, 15(14), 7641. https://doi.org/10.3390/app15147641