Corn Oil Supplementation Enhances Locomotor Performance and Mitochondrial Function in Drosophila melanogaster
Abstract
1. Introduction
2. Materials and Methods
2.1. Fly Strain and Rearing
2.2. Phenotypic Analysis
2.3. Validation of APP
2.4. Exposure to a Diet Supplemented with Corn Oil
2.5. Determination of the Pupal Volume of D. melanogaster
2.6. Eclosion Assay
2.7. Starvation Assay
2.8. Survival Assay
2.9. Climbing Assay
2.10. Reduced (GSH) Glutathione Levels
2.11. Lactate Content
2.12. Citrate Synthase (CS) Activity
2.13. Oxygen Consumption
2.14. Acetylcholinesterase (AChE) Activity
2.15. Protein Assay
2.16. Statistical Analysis
3. Results
3.1. Determination of Developmental Parameters of D. melanogaster
3.2. Longevity and Climbing Activity
3.3. Glutathione Reduced Levels
3.4. Lactate
3.5. Mitochondrial Parameters
3.6. Acetylcholinesterase Activity
3.7. Measurement of β42 Fragments in the Flies’ Eyes
4. Discussion
5. Conclusions
6. Study Limitations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michael-Titus, A.T. Omega-3 fatty acids and neurological injury. Prostag. Leukot. Ess. 2007, 77, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Waitzberg, D.L.; Garla, P. Contribution of omega-3 fatty acids for memory and cognitive function. Nutr. Hosp. 2014, 30, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Salem, N.; Palmblad, J. ω-3 Fatty Acids in the Prevention of Cognitive Decline in Humans. Adv. Nutr. 2013, 4, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Phillips, N.; Gray, R.S.; Combert, E.; Witard, O.C. Long-chain n-3 polyunsaturated fatty acids for the management of age- and disease-related declines in skeletal muscle mass, strength and physical function. Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 98–105. [Google Scholar] [CrossRef]
- Araya-Quintanilla, F.; Gutiérrez-Espinoza, H.; Sánchez-Montoya, U.; Muñoz-Yañez, M.J.; Baeza-Vergara, A.; Petersen-Yanjarí, M.; Fernández-Lecaros, L. Effectiveness of omega-3 fatty acid supplementation in patients with Alzheimer disease: A systematic review and meta-analysis. Neurologia 2020, 35, 105–114. [Google Scholar] [CrossRef]
- Silva, J.R.; Prescillio, I.C.; Yamaguchi, K.K.L.; Silva, E.J.A.; Souza, A.O. Beneficial effects of Docosahexaenoic acid consumption on brain health: A mini-review. JFB 2024, 26, 1–6. [Google Scholar] [CrossRef]
- Taha, A.Y. Linoleic acid–good or bad for the brain? NPJ Sci. Food 2020, 4, 1. [Google Scholar] [CrossRef]
- Banaszak, M.; Dobrzynska, M.; Kawka, A.; Górna, I.; Wozniak, D.; Przyslawski, J.; Drzymata-Czyz, S. Role of omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases—Reports from the last 10 years. Clin. Nutr. ESPEN 2024, 63, 240–258. [Google Scholar] [CrossRef]
- Tian, M.; Bai, Y.; Tian, H.; Zhao, X. The Chemical Composition and Health-Promoting Benefits of Vegetable Oils—A Review. Molecules 2023, 28, 6393. [Google Scholar] [CrossRef]
- McKechnie, S.W.; Geer, B.W. Long-chain dietary fatty acids affect the capacity of Drosophila melanogaster to tolerate ethanol. J. Nutr. 1993, 1, 106–116. [Google Scholar] [CrossRef]
- Draper, H.H.; Philbrick, D.P.; Agarwal, S.; Meidiger, R.; Phillips, J.P. Avid uptake of linoleic acid and vitamin E by Drosophila melanogaster. Nutr. Res. 2000, 20, 113–120. [Google Scholar] [CrossRef]
- Limmer, S.; Weiler, A.; Volkenhoff, A.; Babatz, F.; Klämbt, C. The Drosophila blood-brain barrier: Development and function of a glial endothelium. Front. Neurosci. 2014, 8, 365. [Google Scholar] [CrossRef]
- Pandey, U.B.; Nichols, C.D. Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery. Pharmacol. Rev. 2011, 63, 411–436. [Google Scholar] [CrossRef] [PubMed]
- Ja, W.W.; Carvalho, G.B.; Mak, E.M.; De La Rosa, N.N.; Fang, A.Y.; Liong, J.C.; Brummel, T.; Benzer, S. Prandiology of Drosophila and the CAFE assay. Proc. Nat. Acad. Sci. USA 2007, 104, 8253–8256. [Google Scholar] [CrossRef]
- Deshpande, S.A.; Carvalho, G.B.; Amador, A.; Phillips, A.M.; Hoxha, S.; Lizotte, K.J.; Ja, W.W. Quantifying Drosophila food intake: Comparative analysis of current methodology. Nat. Methods 2014, 11, 535–540. [Google Scholar] [CrossRef]
- Depetris-Chauvin, A.; Galagovsky, D.; Chevalier, C.; Maniere, G.; Grosjean, Y. Olfactory detection of a bacterial short-chain fatty acid acts as an orexigenic signal in Drosophila melanogaster larvae. Sci. Rep. 2017, 7, 14230. [Google Scholar] [CrossRef]
- Alencar, L.P.; Costa, L.L.; Lisboa, D.R.; Silva, J.R.; Santos, S.F.; Pereira, M.P.; Yamaguchi, K.K.L.; Souza, A.O. Piranhea trifoliata extracts ameliorate muscular decline in Drosophila melanogaster exposed to Paraquat. Arch. Insect Biochem. Physiol. 2023, 112, e21994. [Google Scholar] [CrossRef]
- Ramalho, D.L.; Silva, J.R.; Brugnera, M.F.; Moura, S.; Souza, A.O. Neurotoxic and behavioral deficit in Drosophila melanogaster exposed to photocatalytic products of Paraquat. Neurotoxicology 2024, 104, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Klunk, W.E.; Jacob, R.F.; Mason, R.P. Quantifying amyloid by Congo Red spectral shift assay. Methods Enzym. 1999, 309, 285–305. [Google Scholar] [CrossRef]
- Guan, X.; Middlebrooks, B.W.; Alexander, S.; Wasserman, S.A. Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proc. Nat. Acad. Sci. USA 2006, 103, 16794–16799. [Google Scholar] [CrossRef] [PubMed]
- Abhilash, L.; Ghosh, A.; Sheeba, V. Selection for Timing of Eclosion Results in Co-evolution of Temperature Responsiveness in Drosophila melanogaster. J. Biol. Rhythm. 2019, 34, 596–609. [Google Scholar] [CrossRef]
- Brown, E.B.; Slocumb, M.E.; Szuperak, M.; Kerbs, A.; Gibbs, A.G.; Kayser, M.S.; Keene, A.C. Starvation resistance is associated with developmentally specified changes in sleep, feeding and metabolic rate. J. Exp. Biol. 2019, 222, 191049. [Google Scholar] [CrossRef]
- Bosco, G.; Clamer, M.; Messulam, E.; Dare, C.; Yang, Z.; Zordan, M.; Reggiani, C.; Hu, Q.; Megighian, A. Effects of oxygen concentration and pressure on Drosophila melanogaster: Oxidative stress, mitochondrial activity, and survivorship. Arch. Insect Biochem. Physiol. 2015, 88, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.F.; Chou, M.T.; Salazar, E.D.; Nicholson, T.; Saini, N.; Metchev, S.; Krantz, D.E. A simple assay to study social behavior in Drosophila: Measurement of social space within a group. Genes Brain Behav. 2012, 11, 243–252. [Google Scholar] [CrossRef]
- Ziegler, A.B.; Ménagé, C.; Grégoire, S.; Garcia, T.; Ferveur, J.F.; Bretillon, L.; Grosjean, Y. Lack of Dietary Polyunsaturated Fatty Acids Causes Synapse Dysfunction in the Drosophila Visual System. PLoS ONE 2015, 10, e0135353. [Google Scholar] [CrossRef]
- Hissin, P.J.; Hilf, R. A Fluorometric Method for Determination of Oxidized and Reduced Glutathione in Tissues. Anal. Biochem. 1976, 74, 214–226. [Google Scholar] [CrossRef]
- Spinazzi, M.; Casarin, A.; Pertegato, V.; Salviati, L.; Angelini, C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 2012, 7, 1235–1246. [Google Scholar] [CrossRef]
- Srere, P.A. Citrate synthase. Methods Enzymol. 1969, 13, 3–11. [Google Scholar] [CrossRef]
- Souza, A.O.; Couto-Lima, C.A.; Machado, M.C.R.; Espreafico, E.M.; Ramos, R.G.P.; Alberici, L.C. Protective action of Omega-3 on paraquat intoxication in Drosophila melanogaster. J. Toxicol. Environ. Health A 2017, 80, 1050–1063. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.O.; Couto-Lima, C.A.; Catalão, C.H.R.; Santos-Júnior, N.N.; Santos, J.F.; Rocha, M.J.A.; Alberici, L.C. Neuroprotective action of Eicosapentaenoic (EPA) and Docosahexaenoic (DHA) acids on Paraquat intoxication in Drosophila melanogaster. Neurotoxicology 2019, 70, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Martin, C.A.; Almeida, V.V.; Ruiz, M.R.; Visentainer, J.E.L.; Matshushita, M.; Souza, N.E.; Visentainer, J.V. Omega-3 and ômega-6 polyunsaturated fatty acids: Importance and occurrence in foods. Rev. Nutr. 2006, 19, 761–770. [Google Scholar] [CrossRef]
- House, R.L.; Cassady, J.P.; Eisen, E.J.; Mcintosh, M.K.; Odle, J. Conjugated linoleic acid evokes de-lipidation through the regulation of genes controlling lipid metabolism in adipose and liver tissue. Obes. Rev. 2005, 6, 247–258. [Google Scholar] [CrossRef]
- Santos-Zago, L.F.; Botelho, A.P.; Oliveira, A.C. Effects of conjugated linoleic acid on animal metabolism: Advances in research and perspectives for the future. Rev. Nutr. 2008, 21, 195–221. [Google Scholar] [CrossRef]
- Lee, M.J.; Park, S.H.; Han, J.H.; Hong, Y.K.; Hwang, S.; Lee, S.; Kim, D.; Han, S.Y.; Kim, E.S.; Cho, K.S. The Effects of Hempseed Meal Intake and Linoleic Acid on Drosophila Models of Neurodegenerative Diseases and Hypercholesterolemia. Mol. Cells 2011, 31, 337–342. [Google Scholar] [CrossRef]
- Enriquez, T.; Lievens, V.; Nieberding, C.M.; Visser, B. Pupal size as a proxy for fat content in laboratory-reared and field-collected Drosophila species. Sci. Rep. 2002, 12, 12855. [Google Scholar] [CrossRef]
- Giacomini, A.; Stagni, F.; Emili, M.; Guidi, S.; Salvalai, M.E.; Grilli, M.; Vidal-Sanchez, V.; Martinez-Cué, C.; Bartesaghi, R. Treatment with corn oil improves neurogenesis and cognitive performance in the Ts65Dn mouse model of Down syndrome. Brain Res. Bull. 2018, 140, 378–391. [Google Scholar] [CrossRef]
- Nelliot, A.; Bond, N.; Hoshizaki, D.K. Fat-body remodeling in Drosophila melanogaster. Genesis 2006, 44, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.P.; Jang, T. Exploring the nutritional basis of starvation resistance in Drosophila melanogaster. Funct. Ecol. 2014, 28, 1144–1155. [Google Scholar] [CrossRef]
- Loo, J.; Bana, M.A.F.S.; Tan, J.K.; Goon, J.A. Effect of dietary restriction on health span in Caenorhabditis elegans: A systematic review. Exp. Gerontol. 2023, 182, 112294. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Candioto, C.G.; Santos, D.M.S.; Pereira, J.G.; Sousa, A.L.; Machado, C.R. Effects of fasting and refeeding on the metabolic functions of the turtle Kinosternon scorpioides (Linnaeus, 1766) raised in captivity. Pesq. Vet. Bras. 2013, 33, 8. [Google Scholar] [CrossRef]
- Francesco, A.D.; Deighan, A.G.; Litichevskiy, L.; Chen, Z.; Luciano, A.; Robinson, L.; Garland, G.; Donato, H.; Vincent, M.; Schott, W.; et al. Dietary restriction impacts health and lifespan of genetically diverse mice. Nature 2024, 634, 684–692. [Google Scholar] [CrossRef]
- Aguila, J.R.; Suszko, J.; Gibbs, A.G.; Hoshizaki, D.K. The role of larval fat cells in adult Drosophila melanogaster. J. Exp. Biol. 2007, 210, 956–963. [Google Scholar] [CrossRef]
- Ventura, A.L.M.; Abreu, P.A.; Freitas, R.C.C.; Sathler, P.C.; Loureiro, N.; Castro, H.C. Colinergic system: Revisiting receptors, regulation and the relationship with Alzheimer disease, schizophrenia, epilepsy and smoking. Arch. Clin. Psychiatry 2010, 37, 66–72. [Google Scholar] [CrossRef]
- Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the Cholinergic System. Curr. Neuropharmacol. 2016, 14, 101–115. [Google Scholar] [CrossRef]
- Willis, L.M.; Shukitt-Hale, B.; Joseph, J.A. Dietary polyunsaturated fatty acids improve cholinergic transmission in the aged brain. Genes Nutr. 2009, 4, 309–314. [Google Scholar] [CrossRef]
- Bélanger, M.; Allaman, I.; Magistretti, P.J. Brain Energy Metabolism: Focus on Astrocyte-Neuron Metabolic Cooperation. Cell Metab. 2011, 14, 724–738. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A. What the Lactate Shuttle Means for Sports Nutrition. Nutrients 2023, 15, 2178. [Google Scholar] [CrossRef]
- Yamada, T.; Habara, O.; Yoshii, Y.; Matsushita, R.; Kubo, H.; Nojima, Y.; Nishimura, T. Role of glycogen in development and adult fitness in Drosophila. Development 2019, 146, 176149. [Google Scholar] [CrossRef]
- Rai, M.; Carter, S.M.; Shefali, S.A.; Chawla, G.; Tennessen, J.M. Characterization of genetic and molecular tools for studying the endogenous expression of lactate dehydrogenase in Drosophila melanogaster. BioRxiv 2023, 19, e0287865. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, S.; Takada, S.; Nambu, H.; Furihata, T.; Kakutani, N.; Setoyama, D.; Ueyanagi, Y.; Kang, D.; Sabe, H.; Kinugawa, S. Linoleic acid improves assembly of the CII subunit and CIII2/CIV complex of the mitochondrial oxidative phosphorylation system in heart failure. Cell Commun. Signal. 2019, 17, 128. [Google Scholar] [CrossRef]
- Pizzorno, J. Glutathione! Integr. Med. 2014, 13, 8–12. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC4684116/ (accessed on 1 July 2025).
- Tahara, E.B.; Navarete, F.D.T.; Kowaltowski, A.J. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic. Biol. Med. 2009, 46, 1283–1297. [Google Scholar] [CrossRef]
- Molina, M.F.; Sanchez-Reus, I.; Iglesias, I.; Benedi, J. Quercetin, a Flavonoid Antioxidant, Prevents and Protects against Ethanol-Induced Oxidative Stress in Mouse Liver. Biol. Pharm. Bull. 2003, 26, 1398–1402. [Google Scholar] [CrossRef] [PubMed]
- Genç, B.; Karaman, M. Effect of Ascorbic Acid on Oxidative Stress Parameters of Fruit Fly in the Presence of Fe (II). Biol. Trace Elem. Res. 2024, 202, 3810–3815. [Google Scholar] [CrossRef] [PubMed]
- Khaziev, E.; Samigullin, D.; Zhilyakov, N.; Fatikhov, N.; Bukharaeva, E.; Verkhratsky, A.; Nikolsky, E. Acetylcholine-Induced Inhibition of Presynaptic Calcium Signals and Transmitter Release in the Frog Neuromuscular Junction. Front. Physiol. 2016, 7, 621. [Google Scholar] [CrossRef]
- Cummings, J.L. Cholinesterase inhibitors: A new class of psychotropic compounds. Am. J. Psychiatry 2000, 1, 4–15. [Google Scholar] [CrossRef]
- Busquets-Cortés, C.; Capó, X.; Martorell, M.; Tur, J.A.; Sureda, A.; Pons, A. Training enhances imune cells mitochondrial biosynthesis, fission, fusion, and their antioxidant capabilities synergistically with dietary docosahexaenoic supplementation. Oxid. Med. Cell Longev. 2016, 2016, 8950384. [Google Scholar] [CrossRef]
- Galeano, P.; Ceglia, M.; Mastrogiovanni, M.; Campanelli, L.; Medina–Vera, D.; Campolo, N.; Novack, G.V.; Rosell-Valle, C.; Suárez, J.; Aicardo, A.; et al. The Effect of Fat Intake with Increased Omega-6-to-Omega-3 Polyunsaturated Fatty Acid Ratio in Animal Models of Early and Late Alzheimer's Disease-like Pathogenesis. Int. J. Mol. Sci. 2023, 24, 17009. [Google Scholar] [CrossRef]
- Mi-Mba, M.F.O.M.; Lebbadi, M.; Alata, W.; Julien, C.; Emond, V.; Tremblay, C.; Fortin, S.; Barrow, C.J.; Bilodeau, J.F.; Calon, F. Differential impact of eicosapentaenoic acid and docosahexaenoic acid in an animal model of Alzheimer’s disease. J. Lipid Res. 2024, 65, 100682. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.R.; Alves, T.H.O.; Santos, E.B.S.; Lima, M.M.; Spegiorim, G.C.; Couto-Lima, C.A.; Alberici, L.C.; Jacinto, M.J.; Souza, A.O. Corn Oil Supplementation Enhances Locomotor Performance and Mitochondrial Function in Drosophila melanogaster. Appl. Sci. 2025, 15, 7607. https://doi.org/10.3390/app15137607
Silva JR, Alves THO, Santos EBS, Lima MM, Spegiorim GC, Couto-Lima CA, Alberici LC, Jacinto MJ, Souza AO. Corn Oil Supplementation Enhances Locomotor Performance and Mitochondrial Function in Drosophila melanogaster. Applied Sciences. 2025; 15(13):7607. https://doi.org/10.3390/app15137607
Chicago/Turabian StyleSilva, Jadyellen Rondon, Thiago Henrique Oliveira Alves, Eric Bruno Silva Santos, Marylu Mardegan Lima, Giulia Covolo Spegiorim, Carlos Antônio Couto-Lima, Luciane Carla Alberici, Marcos José Jacinto, and Anderson Oliveira Souza. 2025. "Corn Oil Supplementation Enhances Locomotor Performance and Mitochondrial Function in Drosophila melanogaster" Applied Sciences 15, no. 13: 7607. https://doi.org/10.3390/app15137607
APA StyleSilva, J. R., Alves, T. H. O., Santos, E. B. S., Lima, M. M., Spegiorim, G. C., Couto-Lima, C. A., Alberici, L. C., Jacinto, M. J., & Souza, A. O. (2025). Corn Oil Supplementation Enhances Locomotor Performance and Mitochondrial Function in Drosophila melanogaster. Applied Sciences, 15(13), 7607. https://doi.org/10.3390/app15137607