Current Applications and Development of Radiomics in Osteoporosis: A Narrative Review
Abstract
1. Introduction
2. Literature Search Strategies
3. Radiomics in Bone Strength Assessment
4. Radiomics in Osteoporosis Diagnosis
4.1. Radiomics Based on CT Images in Osteoporosis Diagnosis
4.2. Radiomics Based on Radiographs in Osteoporosis Diagnosis
4.3. Radiomics Based on MRI Images in Osteoporosis Diagnosis
5. Radiomics in Osteoporotic Fractures Classification and Fracture Risk Prediction
5.1. Osteoporotic Fractures Classification
5.2. Osteoporotic Fracture Risk Prediction
6. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
AUC | Area under the curve |
BMD | Bone mineral density |
CT | Computed tomography |
DSC | Dice similarity coefficient |
DXA | Dual-energy X-ray absorptiometry |
FRAX | The fracture risk assessment tool |
GLCM | Gray-level co-occurrence matrix |
HR-pQCT | High-resolution peripheral quantitative computed tomography |
IBSI | Image biomarker standardization initiative |
ICC | Intraclass correlation coefficient |
MRI | Magnetic resonance imaging |
PACS | Picture archiving and communication systems |
QCT | Quantitative computed tomography |
REMS | Radiofrequency ultrasound multispectral analysis |
RIS | Radiology information systems |
RQS | Radiomics quality score |
ROI | Region of interest |
T1WI | T1-weighted images |
T2WI | T2-weighted images |
TBS | Trabecular bone score |
TRIPOD | Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis |
References
- Kanis, J.A.; Norton, N.; Harvey, N.C.; Jacobson, T.; Johansson, H.; Lorentzon, M.; McCloskey, E.V.; Willers, C.; Borgström, F. SCOPE 2021: A new scorecard for osteoporosis in Europe. Arch. Osteopors. 2021, 16, 82. [Google Scholar] [CrossRef]
- Sing, C.W.; Lin, T.C.; Bartholomew, S.; Bell, J.S.; Bennett, C.; Beyene, K.; Bosco-Levy, P.; Bradbury, B.D.; Chan, A.H.Y.; Chandran, M.; et al. Global epidemiology of hip fractures: Secular trends in incidence rate, post-fracture treatment, and all-cause mortality. J. Bone Miner. Res. 2023, 38, 1064–1075. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Slart, R.H.J.A.; Ali, D.S.; Bock, O.; Carey, J.J.; Camacho, P.; Engelke, K.; Erba, P.A.; Harvey, N.C.; Lems, W.F.; et al. Osteoporotic fractures: Diagnosis, evaluation, and significance from the international working group on DXA best practices. Mayo Clin. Proc. 2024, 99, 1127–1141. [Google Scholar] [CrossRef] [PubMed]
- Martineau, P.; Bazarjani, S.; Zuckier, L.S. Artifacts and incidental findings encountered on dual-energy X-ray absorptiometry: Atlas and analysis. Semin. Nucl. Med. 2015, 45, 458–469. [Google Scholar] [CrossRef]
- Leslie, W.D.; ASBMR Task Force on Clinical Algorithms for Fracture Risk. Effect of race/ethnicity on united states FRAX calculations and treatment qualification: A registry-based study. J. Bone Miner. Res. 2023, 38, 1742–1748. [Google Scholar] [CrossRef]
- Hans, D.; Goertzen, A.L.; Krieg, M.A.; Leslie, W.D. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: The Manitoba study. J. Bone Miner. Res. 2011, 26, 2762–2769. [Google Scholar] [CrossRef] [PubMed]
- Camacho, P.M.; Petak, S.M.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; Lewiecki, E.M.; et al. American association of clinical endocrinologists/American college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 Update. Endocr. Pract. 2020, 26, 1–46. [Google Scholar] [CrossRef]
- Adami, G.; Arioli, G.; Bianchi, G.; Brandi, M.L.; Caffarelli, C.; Cianferotti, L.; Gatti, D.; Girasole, G.; Gonnelli, S.; Manfredini, M.; et al. Radiofrequency echographic multi spectrometry for the prediction of incident fragility fractures: A 5-year follow-up study. Bone 2020, 134, 115297. [Google Scholar] [CrossRef]
- Lin, J.K.; Hearn, C.M.; Getzen, E.; Long, Q.; Lee, D.C.; Keaveny, T.M.; Jayadevappa, R.; Robinson, K.W.; Wong, Y.N.; Maxwell, K.N.; et al. Validation of biomechanical computed tomography for fracture risk classification in metastatic hormone-sensitive prostate cancer. Eur. Urol. Oncol. 2024, 7, 794–803. [Google Scholar] [CrossRef]
- Keaveny, T.M.; Adams, A.L.; Fischer, H.; Brara, H.S.; Burch, S.; Guppy, K.H.; Kopperdahl, D.L. Increased risks of vertebral fracture and reoperation in primary spinal fusion patients who test positive for osteoporosis by Biomechanical Computed Tomography analysis. Spine J. 2023, 23, 412–424. [Google Scholar] [CrossRef]
- Keaveny, T.M.; Clarke, B.L.; Cosman, F.; Orwoll, E.S.; Siris, E.S.; Khosla, S.; Bouxsein, M.L. Biomechanical computed tomography analysis (BCT) for clinical assessment of osteoporosis. Osteoporos. Int. 2020, 31, 1025–1048. [Google Scholar] [CrossRef] [PubMed]
- Mian, A.; Kamnitsas, K. Gordon-weeks a: Radiomics for treatment planning in liver cancers. JAMA Surg. 2025, 160, 708–709. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.J.; Su, G.H.; You, C.; Zhang, X.; Xiao, Y.; Jiang, Y.Z.; Shao, Z.M. Radiomics in breast cancer: Current advances and future directions. Cell Rep. Med. 2024, 5, 101719. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Jiang, T.; Lau, S.H.; Zhang, J.; Chan, L.C.; Wang, W.; Chan, P.K.; Cai, J.; Wen, C. Radiomics signature of osteoarthritis: Current status and perspective. J. Orthop. Transl. 2024, 45, 100–106. [Google Scholar] [CrossRef]
- Gitto, S.; Cuocolo, R.; Huisman, M.; Messina, C.; Albano, D.; Omoumi, P.; Kotter, E.; Maas, M.; Van Ooijen, P.; Sconfienza, L.M. CT and MRI radiomics of bone and soft-tissue sarcomas: An updated systematic review of reproducibility and validation strategies. Insights Imaging 2024, 15, 54. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Shuai, P.; Liu, Y.; Yong, T.; Liu, Y.; Li, H.; Zheng, X. Diagnostic performance of radiomics for predicting osteoporosis in adults: A systematic review and meta-analysis. Osteoporos. Int. 2024, 35, 1693–1707. [Google Scholar] [CrossRef]
- Wang, S.; Tong, X.; Fan, Y.; Hu, M.; Cui, J.; Li, J.; Liu, Y.; Xiao, Q.; Fang, X. Combining deep learning and radiomics for automated, objective, comprehensive bone mineral density assessment from low-dose chest computed tomography. Acad. Radiol. 2024, 31, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Mao, S.S.; Budoff, M.J. Trabecular bone mineral density as measured by thoracic vertebrae predicts incident hip and vertebral fractures: The multi-ethnic study of atherosclerosis. Osteoporos. Int. 2024, 35, 1061–1068. [Google Scholar] [CrossRef]
- Van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging- “how-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
- Hong, N.; Park, H.; Kim, C.O.; Kim, H.C.; Choi, J.Y.; Kim, H.; Rhee, Y. Bone radiomics score derived from DXA hip images enhances hip fracture prediction in older women. J. Bone Miner. Res. 2021, 36, 1708–1716. [Google Scholar] [CrossRef]
- Van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H.J.W.L. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, X.; Cui, W.; Wang, X.; Hu, N.; Tang, H.; Zhang, C.; Shen, J.; Xie, C.; Chen, X. A computed tomography-based radiomics nomogram for predicting osteoporotic vertebral fractures: A longitudinal study. J. Clin. Endocr. Metab. 2023, 108, e283–e294. [Google Scholar] [CrossRef]
- Muehlematter, U.J.; Mannil, M.; Becker, A.S.; Vokinger, K.N.; Finkenstaedt, T.; Osterhoff, G.; Osterhoff, G.; Fischer, M.A.; Guggenberger, R. Vertebral body insufficiency fractures: Detection of vertebrae at risk on standard CT images using texture analysis and machine learning. Eur. Radiol. 2019, 29, 2207–2217. [Google Scholar] [CrossRef]
- Rezaei, A.; Dragomir-Daescu, D. Femoral strength changes faster with age than BMD in both women and men: A biomechanical study. J. Bone Miner. Res. 2015, 30, 2200–2206. [Google Scholar] [CrossRef]
- Johannesdottir, F.; Thrall, E.; Muller, J.; Keaveny, T.M.; Kopperdahl, D.L.; Bouxsein, M.L. Comparison of non-invasive assessments of strength of the proximal femur. Bone 2017, 105, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gong, H.; Zhang, K.; Zhang, M. Prediction of lumbar vertebral strength of elderly men based on quantitative computed tomography images using machine learning. Osteoporos. Int. 2019, 30, 2271–2282. [Google Scholar] [CrossRef] [PubMed]
- Chappard, C.; Bousson, V.; Bergot, C.; Mitton, D.; Marchadier, A.; Moser, T.; Benhamou, C.L.; Laredo, J.D. Prediction of femoral fracture load: Cross-sectional study of texture analysis and geometric measurements on plain radiographs versus bone mineral density. Radiology 2010, 255, 536–543. [Google Scholar] [CrossRef]
- Le Corroller, T.; Halgrin, J.; Pithioux, M.; Guenoun, D.; Chabrand, P.; Champsaur, P. Combination of texture analysis and bone mineral density improves the prediction of fracture load in human femurs. Osteoporos. Int. 2012, 23, 163–169. [Google Scholar] [CrossRef]
- Fujii, M.; Aoki, T.; Okada, Y.; Mori, H.; Kinoshita, S.; Hayashida, Y.; Hajime, M.; Tanaka, K.; Tanaka, Y.; Korogi, Y. Prediction of femoral neck strength in patients with diabetes mellitus with trabecular bone analysis and tomosynthesis images. Radiology 2016, 281, 933–939. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, M.; Gong, H.; Jia, S.; Zhang, J.; Jia, Z. Explainable machine-learning-based prediction of QCT/FEA-calculated femoral strength under stance loading configuration using radiomics features. J. Orthop. Res. 2025, 43, 161–172. [Google Scholar] [CrossRef]
- Thevenot, J.; Hirvasniemi, J.; Finnilä, M.; Pulkkinen, P.; Kuhn, V.; Link, T.; Eckstein, F.; Jämsä, T.; Saarakkala, S. Trabecular homogeneity index derived from plain radiograph to evaluate bone quality. J. Bone Miner. Res. 2013, 28, 2584–2591. [Google Scholar] [CrossRef] [PubMed]
- Tameem, H.Z.; Selva, L.E.; Sinha, U.S. Texture measure from low resolution MR images to determine trabecular bone integrity in osteoporosis. Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. 2007, 2007, 2027–2030. [Google Scholar]
- Harrison, L.C.V.; Nikander, R.; Sikiö, M.; Luukkaala, T.; Helminen, M.T.; Ryymin, P.; Soimakallio, S.; Eskola, H.J.; Dastidar, P.; Sievänen, H. MRI texture analysis of femoral neck: Detection of exercise load-associated differences in trabecular bone. J. Magn. Reson. Imaging 2011, 34, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.B.; Carballido-Gamio, J.; Fritscher, K.; Schubert, R.; Haenni, M.; Hengg, C.; Majumdar, S.; Link, T.M. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs. Med. Phys. 2009, 36, 5089–5098. [Google Scholar] [CrossRef]
- Jiang, Y.W.; Xu, X.J.; Wang, R.; Chen, C.M. Radiomics analysis based on lumbar spine CT to detect osteoporosis. Eur. Radiol. 2022, 32, 8019–8026. [Google Scholar] [CrossRef]
- Cheng, L.; Cai, F.; Xu, M.; Liu, P.; Liao, J.; Zong, S. A diagnostic approach integrated multimodal radiomics with machine learning models based on lumbar spine CT and X-ray for osteoporosis. J. Bone Miner. Metab. 2023, 41, 877–889. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, S.; Chen, S.; He, Y.; Gao, H.; Yan, L.; Hu, X.; Li, P.; Shen, H.; Luo, M.; et al. Prediction of osteoporosis using radiomics analysis derived from single source dual energy CT. BMC Musculoskel Dis. 2023, 24, 100. [Google Scholar] [CrossRef]
- Tong, X.; Wang, S.; Zhang, J.; Fan, Y.; Liu, Y.; Wei, W. Automatic osteoporosis screening system using radiomics and deep learning from low-dose chest CT images. Bioengineering 2024, 11, 50. [Google Scholar] [CrossRef]
- Chen, B.; Cui, J.; Li, C.; Xu, P.; Xu, G.; Jiang, J.; Xue, P.; Sun, Y.; Cui, Z. Application of radiomics model based on lumbar computed tomography in diagnosis of elderly osteoporosis. J. Orthop. Res. 2024, 42, 1356–1368. [Google Scholar] [CrossRef]
- Fang, K.; Zheng, X.; Lin, X.; Dai, Z. Unveiling osteoporosis through radiomics analysis of hip CT imaging. Acad. Radiol. 2024, 31, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Park, M.S.; Ha, H.I.; Lim, H.K.; Han, J.; Pak, S. Femoral osteoporosis prediction model using autosegmentation and machine learning analysis with PyRadiomics on abdomenpelvic computed tomography (CT). Quant. Imag. Med. Surg. 2024, 14, 3959–3969. [Google Scholar] [CrossRef]
- Tong, X.; Wang, S.; Cheng, Q.; Fan, Y.; Fang, X.; Wei, W.; Li, J.; Liu, Y.; Liu, L. Effect of fully automatic classification model from different tube voltage images on bone density screening: A self-controlled study. Eur. J. Radiol. 2024, 177, 111521. [Google Scholar] [CrossRef]
- Wang, J.; He, Y.; Yan, L.; Chen, S.; Zhang, K. Predicting osteoporosis and osteopenia by fusing deep transfer learning features and classical radiomics features based on single-source dual-energy CT imaging. Acad. Radiol. 2024, 31, 4159–4170. [Google Scholar] [CrossRef]
- Areeckal, A.S.; Jayasheelan, N.; Kamath, J.; Zawadynski, S.; Kocher, M.; David, S.S. Early diagnosis of osteoporosis using radiogrammetry and texture analysis from hand and wrist radiographs in Indian population. Osteoporos. Int. 2018, 29, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, B.R.; Chae, H.D.; Lee, J.; Ye, S.J.; Kim, D.H.; Hong, S.H.; Choi, J.Y.; Yoo, H.J. Deep radiomics-based approach to the diagnosis of osteoporosis using hip radiographs. Radiol.-Artif. Intell. 2022, 4, e210212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, Z.; Yan, R.; Lai, B.; Wu, G.; You, J.; Wu, X.; Duan, J.; Zhang, S. Development and validation of a feature-based broad-learning system for opportunistic osteoporosis screening using lumbar spine radiographs. Acad. Radiol. 2024, 31, 84–92. [Google Scholar] [CrossRef]
- He, L.; Liu, Z.; Liu, C.; Gao, Z.; Ren, Q.; Lei, L.; Ren, J. Radiomics based on lumbar spine magnetic resonance imaging to detect osteoporosis. Acad. Radiol. 2021, 28, e165–e171. [Google Scholar] [CrossRef]
- Kang, S.R.; Wang, K. Radiomic nomogram based on lumbar spine magnetic resonance images to diagnose osteoporosis. Acad. Radiol. 2024, 65, 02841851241242052. [Google Scholar] [CrossRef]
- Zhen, T.; Fang, J.; Hu, D.; Shen, Q.; Ruan, M. Comparative evaluation of multiparametric lumbar MRI radiomic models for detecting osteoporosis. BMC Musculoskel Dis. 2024, 25, 185. [Google Scholar] [CrossRef]
- Yuan, X.; Liang, Y.; Yang, H.; Feng, L.; Sun, H.; Li, C.; Qin, J. Applying machine learning analysis based on proximal femur of abdominal computed tomography to screen for abnormal bone mass in femur. Acad. Radiol. 2024, 31, 2003–2010. [Google Scholar] [CrossRef]
- Paderno, A.; Ataide Gomes, E.J.; Gilberg, L.; Maerkisch, L.; Teodorescu, B.; Koç, A.M.; Meyer, M. Artificial intelligence-enhanced opportunistic screening of osteoporosis in CT scan: A scoping review. Osteoporos. Int. 2024, 35, 1681–1692. [Google Scholar] [CrossRef]
- Yaprak, G.; Gemici, C.; Seseogullari, O.O.; Karabag, I.S.; Cini, N. CT derived Hounsfield unit: An easy way to determine osteoporosis and radiation related fracture risk in irradiated patients. Front. Oncol. 2020, 10, 742. [Google Scholar] [CrossRef] [PubMed]
- Sande, E.P.S.; Martinsen, A.C.T.; Hole, E.O.; Olerud, H.M. Interphantom and interscanner variations for Hounsfield units-establishment of reference values for HU in a commercial QA phantom. Phys. Med. Biol. 2010, 55, 5123–5135. [Google Scholar] [CrossRef] [PubMed]
- Levi, R.; Mollura, M.; Savini, G.; Garoli, F.; Battaglia, M.; Ammirabile, A.; Cappellini, L.A.; Superbi, S.; Grimaldi, M.; Barbieri, R.; et al. CT cadaveric dataset for radiomics features stability assessment in lumbar vertebrae. Sci. Data 2024, 11, 366. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lin, J.; Zhu, S.; Zhu, J.; Xu, Z. Deep learning in the radiologic diagnosis of osteoporosis: A literature review. J. Int. Med. Res. 2024, 52, 03000605241244754. [Google Scholar] [CrossRef]
- Basu, S.; Mukhopadhyay, S.; Karki, M.; DiBiano, R.; Ganguly, S.; Nemani, R.; Gayaka, S. Deep neural networks for texture classification-a theoretical analysis. Neural Netw. 2018, 97, 173–182. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Shan, X.; Zhang, L.; Cui, S.; Shi, Z.; Liu, Y.; Zhang, Y.; Wang, L. Hybrid transformer convolutional neural network-based radiomics models for osteoporosis screening in routine CT. BMC Med. Imaging 2024, 24, 62. [Google Scholar] [CrossRef]
- Peng, T.; Zeng, X.; Li, Y.; Li, M.; Pu, B.; Zhi, B.; Wang, Y.; Qu, H. A study on whether deep learning models based on CT images for bone density classification and prediction can be used for opportunistic osteoporosis screening. Osteoporos. Int. 2024, 35, 117–128. [Google Scholar] [CrossRef]
- Li, J.; Dong, D.; Fang, M.; Wang, R.; Tian, J.; Li, H.; Gao, J. Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer. Eur. Radiol. 2020, 30, 2324–2333. [Google Scholar] [CrossRef]
- Fang, K.; Zheng, X.; Lin, X.; Dai, Z. A comprehensive approach for osteoporosis detection through chest CT analysis and bone turnover markers: Harnessing radiomics and deep learning techniques. Front. Endocrinol. 2024, 15, 1296047. [Google Scholar] [CrossRef]
- Pulkkinen, P.; Saarakkala, S.; Nieminen, M.T.; Jämsä, T. Standard radiography: Untapped potential in the assessment of osteoporotic fracture risk. Eur. Radiol. 2013, 23, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.W.; Ong, W.; Makmur, A.; Kumar, N.; Low, X.Z.; Shuliang, G.; Liang, T.Y.; Ting, D.F.; Tan, J.H.; Hallinan, J.T. Application of artificial intelligence methods on osteoporosis classification with radiographs-a systematic review. Bioengineering 2024, 11, 484. [Google Scholar] [CrossRef]
- Yeung, Y.; Chiu, K.Y.; Yau, W.P.; Tang, W.M.; Cheung, W.Y.; Ng, T.P. Assessment of the proximal femoral morphology using plain radiograph-can it predict the bone quality? J. Arthroplast. 2006, 21, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Shevroja, E.; Reginster, J.Y.; Lamy, O.; Al-Daghri, N.; Chandran, M.; Demoux-Baiada, A.L.; Kohlmeier, L.; Lecart, M.-P.; Messina, D.; Camargos, B.M.; et al. Update on the clinical use of trabecular bone score (TBS) in the management of osteoporosis: Results of an expert group meeting organized by the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO), and the international osteoporosis foundation (IOF) under the auspices of who collaborating center for epidemiology of musculoskeletal health and aging. Osteoporos. Int. 2023, 34, 1501–1529. [Google Scholar]
- Hong, N.; Cho, S.W.; Shin, S.; Lee, S.; Jang, S.A.; Roh, S.; Lee, Y.H.; Rhee, Y.; Cummings, S.R.; Kim, H.; et al. Deep-learning-based detection of vertebral fracture and osteoporosis using lateral spine X-ray radiography. J. Bone Miner. Res. 2023, 38, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Smets, J.; Shevroja, E.; Hügle, T.; Leslie, W.D.; Hans, D. Machine learning solutions for osteoporosis-a review. J. Bone Miner. Res. 2021, 36, 833–851. [Google Scholar] [CrossRef]
- Xue, L.; Qin, G.; Chang, S.; Luo, C.; Hou, Y.; Xia, Z.; Yuan, J.; Wang, Y.; Liu, S.; Liu, K.; et al. Osteoporosis prediction in lumbar spine X-ray images using the multi-scale weighted fusion contextual transformer network. Artif. Intell. Med. 2023, 143, 102639. [Google Scholar] [CrossRef]
- Modica, R.; Benevento, E.; Altieri, B.; Minotta, R.; Liccardi, A.; Cannavale, G.; Di Iasi, G.; Colao, A. Role of bone metastases in lung neuroendocrine neoplasms: Clinical presentation, treatment and impact on prognosis. Int. J. Mol. Sci. 2024, 25, 8957. [Google Scholar] [CrossRef]
- Modica, R.; Altieri, B.; D’Aniello, F.; Benevento, E.; Cannavale, G.; Minotta, R.; Liccardi, A.; Colao, A.; Faggiano, A. Vitamin D and bone metabolism in adult patients with neurofibromatosis type 1. Metabolites 2023, 13, 255. [Google Scholar] [CrossRef]
- Huang, C.C.; Effendi, F.F.; Kosik, R.O.; Lee, W.J.; Wang, L.J.; Juan, C.J.; Chan, W.P. Utilization of CT and MRI scanning in Taiwan, 2000-2017. Insights Imaging 2023, 14, 23. [Google Scholar] [CrossRef]
- Sneag, D.B.; Abel, F.; Potter, H.G.; Fritz, J.; Koff, M.F.; Chung, C.B.; Pedoia, V.; Tan, E.T. MRI advancements in musculoskeletal clinical and research practice. Radiology 2023, 308, e230531. [Google Scholar] [CrossRef] [PubMed]
- Fathi Kazerooni, A.; Pozo, J.M.; McCloskey, E.V.; Saligheh Rad, H.; Frangi, A.F. Diffusion MRI for assessment of bone quality; a review of findings in healthy aging and osteoporosis. J. Magn. Reson. Imagin. 2020, 51, 975–992. [Google Scholar] [CrossRef] [PubMed]
- Bae, W.C. Advances and shortfalls in MRI evaluation of osteoporosis. Radiology 2023, 307, e223144. [Google Scholar] [CrossRef] [PubMed]
- Kadri, A.; Binkley, N.; Hernando, D.; Anderson, P.A. Opportunistic use of lumbar magnetic resonance imaging for osteoporosis screening. Osteoporos. Int. 2022, 33, 861–869. [Google Scholar] [CrossRef]
- Yoo, H.; Yoo, R.E.; Choi, S.H.; Hwang, I.; Lee, J.Y.; Seo, J.Y.; Koh, S.Y.; Choi, K.S.; Kang, K.M.; Yun, T.J. Deep learning-based reconstruction for acceleration of lumbar spine MRI: A prospective comparison with standard MRI. Eur. Radiol. 2023, 33, 8656–8668. [Google Scholar] [CrossRef]
- Nian, S.; Zhao, Y.; Li, C.; Zhu, K.; Li, N.; Li, W.; Chen, J. Development and validation of a radiomics-based model for predicting osteoporosis in patients with lumbar compression fractures. Spine J. 2024, 24, 1625–1634. [Google Scholar] [CrossRef]
- Zaworski, C.; Cheah, J.; Koff, M.F.; Breighner, R.; Lin, B.; Harrison, J.; Donnelly, E.; Stein, E.M. MRI-based texture analysis of trabecular bone for opportunistic screening of skeletal fragility. J. Clin. Endocr. Metab. 2021, 106, 2233–2241. [Google Scholar] [CrossRef]
- Ollivier, M.; Le Corroller, T.; Blanc, G.; Parratte, S.; Champsaur, P.; Chabrand, P.; Argenson, J.N. Radiographic bone texture analysis is correlated with 3D microarchitecture in the femoral head, and improves the estimation of the femoral neck fracture risk when combined with bone mineral density. Eur. J. Radiol. 2013, 82, 1494–1498. [Google Scholar] [CrossRef]
- Gebre, R.K.; Hirvasniemi, J.; Lantto, I.; Saarakkala, S.; Leppilahti, J.; Jämsä, T. Discrimination of low-energy acetabular fractures from controls using computed tomography-based bone characteristics. Ann. Biomed. Eng. 2021, 49, 367–381. [Google Scholar] [CrossRef]
- Poullain, F.; Champsaur, P.; Pauly, V.; Knoepflin, P.; Le Corroller, T.; Creze, M.; Pithioux, M.; Bendahan, D.; Guenoun, D. Vertebral trabecular bone texture analysis in opportunistic MRI and CT scan can distinguish patients with and without osteoporotic vertebral fracture: A preliminary study. Eur. J. Radiol. 2023, 158, 110642. [Google Scholar] [CrossRef]
- Martel, D.; Monga, A.; Chang, G. Radiomic analysis of the proximal femur in osteoporosis women using 3T MRI. Front. Radiol. 2023, 3, 1293865. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xia, L.; Liu, J.; Niu, X.; Tang, J.; Xia, J.; Liu, Y.; Zhang, W.; Liang, Z.; Zhang, X.; et al. Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images. Front. Endocrinol. 2024, 15, 1370838. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xia, L.; Tang, J.; Xia, J.; Liu, Y.; Zhang, W.; Liu, J.; Liang, Z.; Zhang, X.; Zhang, L.; et al. Constructing a deep learning radiomics model based on X-ray images and clinical data for predicting and distinguishing acute and chronic osteoporotic vertebral fractures: A multicenter study. Acad. Radiol. 2024, 31, 2011–2026. [Google Scholar] [CrossRef]
- Burian, E.; Subburaj, K.; Mookiah, M.R.K.; Rohrmeier, A.; Hedderich, D.M.; Dieckmeyer, M.; Diefenbach, M.N.; Ruschke, S.; Rummeny, E.J.; Zimmer, C.; et al. Texture analysis of vertebral bone marrow using chemical shift encoding-based water-fat MRI: A feasibility study. Osteoporos. Int. 2019, 30, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Becherucci, E.A.; Boehm, C.; Husseini, M.E.; Ruschke, S.; Burian, E.; Kirschke, J.S.; Link, T.M.; Subburaj, K.; Karampinos, D.C.; et al. Texture analysis using CT and chemical shift encoding-based water-fat MRI can improve differentiation between patients with and without osteoporotic vertebral fractures. Front. Endocrinol. 2022, 12, 778537. [Google Scholar] [CrossRef]
- Schini, M.; Johansson, H.; Harvey, N.C.; Lorentzon, M.; Kanis, J.A.; McCloskey, E.V. An overview of the use of the fracture risk assessment tool (FRAX) in osteoporosis. J. Endocrinol. Invest. 2024, 47, 501–511. [Google Scholar] [CrossRef]
- Whittier, D.E.; Samelson, E.J.; Hannan, M.T.; Burt, L.A.; Hanley, D.A.; Biver, E.; Szulc, P.; Sornay-Rendu, E.; Merle, B.; Chapurlat, R.; et al. Bone microarchitecture phenotypes identified in older adults are associated with different levels of osteoporotic fracture risk. J. Bone Miner. Res. 2022, 37, 428–439. [Google Scholar] [CrossRef]
- Hong, N.; Whittier, D.E.; Glüer, C.C.; Leslie, W.D. The potential role for artificial intelligence in fracture risk prediction. Lancet Diabetes Endocrinol. 2024, 12, 596–600. [Google Scholar] [CrossRef]
- Lu, S.; Fuggle, N.R.; Westbury, L.D.; Ó Breasail, M.; Bevilacqua, G.; Ward, K.A.; Dennison, E.M.; Mahmoodi, S.; Niranjan, M.; Cooper, C. Machine learning applied to HR-pQCT images improves fracture discrimination provided by DXA and clinical risk factors. Bone 2023, 168, 116653. [Google Scholar] [CrossRef]
- Farzi, M.; Pozo, J.M.; McCloskey, E.; Eastell, R.; Harvey, N.C.; Frangi, A.F.; Wilkinson, J.M. Quantitating age-related BMD textural variation from DXA region-free-analysis: A study of hip fracture prediction in three cohorts. J. Bone Miner. Res. 2022, 37, 1679–1688. [Google Scholar] [CrossRef] [PubMed]
- Ferizi, U.; Besser, H.; Hysi, P.; Jacobs, J.; Rajapakse, C.S.; Chen, C.; Saha, P.K.; Honig, S.; Chang, G. Artificial intelligence applied to osteoporosis: A performance comparison of machine learning algorithms in predicting fragility fractures from MRI data. J. Magn. Reson. Imaging 2019, 49, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xia, L.; Zhang, X.; Liu, J.; Tang, J.; Xia, J.; Liu, Y.; Zhang, W.; Liang, Z.; Tang, G.; et al. Development and validation of a predictive model for vertebral fracture risk in osteoporosis patients. Eur. Spine J. 2024, 33, 3242–3260. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tang, J.; Xia, B.; Gu, Z.; Yin, H.; Zhang, H.; Yang, H.; Song, B. Novel radiomics-clinical model for the noninvasive prediction of new fractures after vertebral augmentation. Acad. Radiol. 2023, 30, 1092–1100. [Google Scholar] [CrossRef]
- Ibrahim, A.; Vallières, M.; Woodruff, H.; Primakov, S.; Beheshti, M.; Keek, S.; Refaee, T.; Sanduleanu, S.; Walsh, S.; Morin, O.; et al. Radiomics analysis for clinical decision support in nuclear medicine. Semin. Nucl. Med. 2019, 49, 438–449. [Google Scholar] [CrossRef]
- Lohmann, P.; Franceschi, E.; Vollmuth, P.; Dhermain, F.; Weller, M.; Preusser, M.; Smits, M.; Galldiks, N. Radiomics in neuro-oncological clinical trials. Lancet Digit. Health 2022, 4, e841–e849. [Google Scholar] [CrossRef]
- Santinha, J.; Pinto dos Santos, D.; Laqua, F.; Visser, J.J.; Groot Lipman, K.B.W.; Dietzel, M.; Smits, M.; Galldiks, N. ESR essentials: Radiomics-practice recommendations by the European Society of Medical Imaging Informatics. Eur. Radiol. 2025, 35, 1122–1132. [Google Scholar] [CrossRef]
- Limkin, E.J.; Sun, R.; Dercle, L.; Zacharaki, E.I.; Robert, C.; Reuzé, S.; Schernberg, A.; Paragios, N.; Deutsch, E.; Ferté, C.; et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann. Oncol. 2017, 28, 1191–1206. [Google Scholar] [CrossRef]
Reference | Body Part | Imaging Modality | Data Source | Data Amount | Segmentation Method | Observer Variability | Input Feature | Classification Algorithm | Type of Validation | * Best Performance |
---|---|---|---|---|---|---|---|---|---|---|
Jiang et al. [36] | Vertebra | CT | Single center | 386 | Semi-automatic | ICC > 0.750 | 12 radiomics features | LR | Cross-validation | AUC = 0.920, Accuracy = 0.871 |
Cheng et al. [37] | Vertebra | CT | Single center | 616 | Manual | ICC > 0.750 | 21 radiomics features, 4 clinical features | LR, SVM, RF | Internal-validation | AUC = 0.910, Accuracy = 0.843 |
Wang et al. [38] | Vertebra | CT | Single center | 164 | Manual | ICC > 0.800 | 14 radiomics features, 1 clinical feature | LR | Cross-validation | AUC = 0.988, Accuracy = 0.940 |
Tong et al. [39] | Vertebra | CT | Single center | 434 | Automatic | DSC: 096 ± 0.020 | 6 radiomics features | RF | Internal-validation | AUC = 0.943, Accuracy = 0.733 |
Chen et al. [40] | Vertebra | CT | Single center | 182 | Semi-automatic | NA | 14 radiomics features | RF, SVM, KNN | Cross-validation | AUC = 0.917, Accuracy = 0.863 |
Fang et al. [41] | Hip | CT | Single center | 474 | Semi-automatic | ICC > 0.900 | 16 radiomics features, 2 clinical features | LR, NB, SVM, KNN, RF, ET, XGBoost, LightGBM, GBT, MLP | No-validation | AUC = 0.886, Accuracy = 0.882 |
Park et al. [42] | Vertebra | CT | Single center | 1122 | Automatic | ICC = 0.960 | 183 radiomics features, 2 clinical features | RF | Cross-validation | AUC = 0.946, Accuracy = 0.945 |
Tong et al. [43] | Vertebra | CT | Single center | 313 | Automatic | DSC: 0.950 ± 0.060 | LDCT: 9 radiomics features; SDCT: 8 radiomics features | RF | Cross-validation | LDCT: AUC = 0.960, Accuracy = 0.897; SDCT: AUC = 0.920, Accuracy = 0.897 |
Wang et al. [44] | Vertebra | CT | Single center | 606 | Manual | ICC > 0.800 | 9 radiomics features, 26 deep transfer learning features | SVM | Cross-validation | AUC = 0.979 |
Areeckal et al. [45] | Hand and wrist | X-ray | Single center | 117 | Automatic | NA | 13 radiomics features | ANN | Internal-validation | Accuracy = 0.885 |
Kim et al. [46] | Proximal femur | X-ray | Multi center | 5421 | Automatic | DSC: 0.98 | 16 radiomics features, 10 deep learning features, 3 clinical features | MLP | Internal-validation | AUC = 0.950 |
Zhang et al. [47] | Vertebra | X-ray | Multi center | 1325 | Manual | NA | radiomics features, deep learning features | BLS | No-validation | AUC = 0.802 |
He et al. [48] | Vertebra | MRI | Single center | 327 | Manual | NA | 2 radiomics features from T1WI, 2 radiomics features from T2WI | LR | Cross-validation | AUC = 0.797, Accuracy = 0.789 |
Kang et al. [49] | Vertebra | MRI | Single center | 1455 | Manual | ICC ≥ 0.750 | 11 radiomics features from T1WI, 6 radiomics features from T2WI, 3 clinical features | LR | Cross-validation | AUC = 0.917, Accuracy = 0.917 |
Zhen et al. [50] | Vertebra | MRI | Multi-center | 640 | Manual | ICC ≥ 0.750 | 5 radiomics features from T1WI, 4 radiomics features from T2WI | LR | External-validation | AUC = 0.860, Accuracy = 0.833 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Gong, H.; Shi, P.; Li, C.; Zhang, Q.; Zhang, J. Current Applications and Development of Radiomics in Osteoporosis: A Narrative Review. Appl. Sci. 2025, 15, 7604. https://doi.org/10.3390/app15137604
Liu S, Gong H, Shi P, Li C, Zhang Q, Zhang J. Current Applications and Development of Radiomics in Osteoporosis: A Narrative Review. Applied Sciences. 2025; 15(13):7604. https://doi.org/10.3390/app15137604
Chicago/Turabian StyleLiu, Shuyu, He Gong, Peipei Shi, Chenchen Li, Qi Zhang, and Jinming Zhang. 2025. "Current Applications and Development of Radiomics in Osteoporosis: A Narrative Review" Applied Sciences 15, no. 13: 7604. https://doi.org/10.3390/app15137604
APA StyleLiu, S., Gong, H., Shi, P., Li, C., Zhang, Q., & Zhang, J. (2025). Current Applications and Development of Radiomics in Osteoporosis: A Narrative Review. Applied Sciences, 15(13), 7604. https://doi.org/10.3390/app15137604