PCES-YOLO: High-Precision PCB Detection via Pre-Convolution Receptive Field Enhancement and Geometry-Perception Feature Fusion
Abstract
1. Introduction
- (1)
- Enhanced Feature Extraction: The C3k2-PRFE module combines the C3k2 framework with the constructed PRFE module. In this design, a 3 × 3 convolution is placed before the Receptive Field Enhancement (RFE) module to perform initial local context fusion. This effectively reduces the pixel-level interference at the edges of small targets. The pre-processing enables cleaner and more semantically explicit feature processing in subsequent receptive field enhancement while preventing detail feature dilution caused by large receptive fields. Moreover, the ConvNeXtBlock modules are integrated into the backbone network to capture more extensive semantic information. The synergistic operation between C3k2-PRFE and ConvNeXtBlock evidently lessens the complex PCB background interference during the feature extraction process.
- (2)
- Advanced Feature Fusion: The innovative EFAN feature fusion network presents three new fusion paths. They can effectively combine the shallow, detail-rich backbone features with the deep-network information, thus preserving the critical PCB defect characteristics across multiple feature levels. To handle the increase in parameters resulting from these additional paths, the Spatial-Channel Decoupled Downsampling (SCDown) module is employed. This two-pronged approach resolves the issue of small-target feature loss and, at the same time, optimizes the efficiency of model parameters.
- (3)
- Loss function optimization: The introduced Shape-IoU loss function greatly improves bounding box regression accuracy by incorporating both shape and scale characteristics into its loss calculations, which endows the model with geometry-aware capability for diverse bounding boxes. Furthermore, comparative analyses with other loss functions demonstrate its superior performance for PCB defect detection tasks, particularly in precise defect localization.
2. Related Work
2.1. Receptive Field Enhancement
2.2. Feature Fusion
2.3. Loss Function
3. Methodology
3.1. PCES-YOLO Network
3.2. C3k2-PRFE Module
3.3. ConvNeXtBlock Module
3.4. EFAN Neck Network
3.5. Shape-IoU Loss Function
4. Experiments and Analysis of Results
4.1. Experimental Environment
4.2. Experiment Dataset
4.3. Evaluation Metrics
4.4. Ablation Experiments
4.5. Comparison Experiments
4.5.1. Comparison of Different Receptive Field Enhancement Modules
4.5.2. Comparison of Different Loss Functions
4.5.3. Comparison of Different Detector Models
4.6. Experiments Based on the DeepPCB Dataset
4.7. Limitation of the PCES-YOLO
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, R.; Dai, L.; Li, G.; Liu, H. TDD-net: A tiny defect detection network for printed circuit boards. CAAI Trans. Intell. Technol. 2019, 4, 110–116. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Cao, Y.; Sun, J.; Chen, D.; Kuang, L. DVCW-YOLO for printed circuit board surface defect detection. Appl. Sci. 2024, 15, 327. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, J.; Pan, P.; Zhang, X. YOLO-RRL: A lightweight algorithm for PCB surface defect detection. Appl. Sci. 2024, 14, 7460. [Google Scholar] [CrossRef]
- Yuan, Z.; Tang, X.; Ning, H.; Yang, Z. LW-YOLO: Lightweight Deep Learning Model for Fast and Precise Defect Detection in Printed Circuit Boards. Symmetry 2024, 16, 418. [Google Scholar] [CrossRef]
- Chin, R.T.; Harlow, C.A. Automated visual inspection: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 1982, 4, 557–573. [Google Scholar] [CrossRef]
- Deng, Y.S.; Luo, A.C.; Dai, M.J. Building an automatic defect verification system using deep neural network for pcb defect classification. In Proceedings of the 4th International Conference on Frontiers of Signal Processing (ICFSP), Poitiers, France, 24–27 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 145–149. [Google Scholar]
- Chen, X.; Wu, Y.; He, X.; Ming, W. A comprehensive review of deep learning-based PCB defect detection. IEEE Access 2023, 11, 139017–139038. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, J.; Huang, F.; Li, Q. Surface defect inspection of industrial products with object detection deep networks: A systematic review. Artif. Intell. Rev. 2024, 57, 333. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 8–13 December 2014; ACM: New York, NY, USA; pp. 91–99. [Google Scholar]
- Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 6154–6162. [Google Scholar]
- Chen, J.; Wang, S.; Chen, Z.; Huang, W.; Lin, L.; Hong, H.; Chen, G.; Jiang, Z. MAFF-Net: PCB defect detection via feature-enhancement fusion. Meas. Sci. Technol. 2025, 36, 026137. [Google Scholar] [CrossRef]
- Xie, Y.; Dong, Y.; He, H. Defect detection of printed circuit board based on small target recognition network. In Proceedings of the 2022 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, China, 10–13 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar]
- Hu, B.; Wang, J. Detection of PCB surface defects with improved faster-RCNN and feature pyramid network. IEEE Access 2020, 8, 108335–108345. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Shi, S.; Wang, Q.; Chen, X.; Zhang, Z.; Wang, C.; Liu, S. SF-YOLO: Designed based on tiny feature for PCB surface defect detection and deployment in embedded systems. Signal Image Video Proc. 2025, 19, 263. [Google Scholar] [CrossRef]
- Yuan, T.; Jiao, Z.; Diao, N. YOLO-SSW: An improved detection method for printed circuit board surface defects. Mathematics 2025, 13, 435. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, X.; Ma, Z.; Huang, K.; Xie, H. Efficient detection method for tiny defects on printed circuit boards based on focus information transfer and structurally flexible head. Meas. Sci. Technol. 2024, 36, 016004. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Sharid Kayes, D.M.; Song, Z.; Wang, Y. Research on PCB defect detection algorithm based on LPCB-YOLO. Front. Phys. 2025, 12, 1472584. [Google Scholar] [CrossRef]
- Li, K.; Zhong, X.; Han, Y. A high-performance small target defect detection method for PCB boards based on a novel YOLO-DFA algorithm. IEEE Trans. Instru. Meas. 2025, 74, 2008312. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, H.; Lv, J.; Liu, Y.; Xu, H.; Zhang, Y. PCB fault identification with multiscale feature fusion and heat source attention based on multimodal infrared thermal imaging. IEEE Trans. Instru. Meas. 2025, 74, 3515613. [Google Scholar] [CrossRef]
- Wang, J.; Ma, L.; Li, Z.; Cao, Y.; Zhang, H. SSHP-YOLO: A High Precision Printed Circuit Board (PCB) Defect Detection Algorithm with a Small Sample. Electronics 2025, 14, 217. [Google Scholar] [CrossRef]
- Yin, X.; Zhao, Z.; Weng, L. MAS-YOLO: A Lightweight Detection Algorithm for PCB Defect Detection Based on Improved YOLOv12. Appl. Sci. 2025, 15, 6238. [Google Scholar] [CrossRef]
- Wang, Z.; Ji, S. Smoothed dilated convolutions for improved dense prediction. Data Min. Knowl. Discov. 2021, 35, 1470–1496. [Google Scholar] [CrossRef]
- Tang, Q.; Cao, G.; Jo, K.H. Integrated feature pyramid network with feature aggregation for traffic sign detection. IEEE Access 2021, 9, 117784–117794. [Google Scholar] [CrossRef]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 8759–8768. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. arXiv 2022, arXiv:1911.09070. [Google Scholar] [CrossRef]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2767–2778. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; AAAI: Palo Alto, CA, USA; pp. 12993–13000. [Google Scholar]
- Gevorgyan, Z. SIoU loss: More powerful learning for bounding box regression. arXiv 2022, arXiv:2205.12740. [Google Scholar] [CrossRef]
- Tong, Z.; Chen, Y.; Xu, Z.; Yu, R. Wise-IoU: Bounding box regression loss with dynamic focusing mechanism. arXiv 2023, arXiv:2301.10051v1. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S. Shape-iou: More accurate metric considering bounding box shape and scale. arXiv 2023, arXiv:2312.17663. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.; Zhao, X.; Hong, D.; Cai, W.; Yang, N.; Wang, B. Multi-scale receptive fields: Graph attention neural network for hyperspectral image classification. Exp. Sys. Appl. 2023, 223, 119858. [Google Scholar] [CrossRef]
- Yu, Z.; Huang, H.; Chen, W.; Su, Y.; Liu, Y.; Wang, X. Yolo-facev2: A scale and occlusion aware face detector. Pattern Recogn. 2024, 155, 110714. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 11976–11986. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-time end-to-end object detection. arXiv 2024, arXiv:2405.14458. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, X.; Guo, H.; Xie, X.; Chen, X.; Quan, X. FishFocusNet: An improved method based on YOLOv8 for underwater tropical fish identification. IET Image Proc. 2024, 18, 3634–3649. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot Multibox Detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Proceedings, Part I 14, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Tang, S.; He, F.; Huang, X.; Yang, J. Online PCB defect detector on a new PCB defect dataset. arXiv 2019, arXiv:1902.06197. [Google Scholar] [CrossRef]
Environment | Configuration |
---|---|
Operating system | Ubuntu 18.04.5 LTS |
CPU | Intel(R) Xeon(R) Gold 6226R CPU @ 2.90 GHz × 4 |
GPU | Tesla V100S-PCIE-32 GB × 1 |
Programming environment | Python 3.8.5 |
Deep learning framework | Pytorch 1.10.0 |
CUDA | 11.0 |
RAM | 32 GB |
Added Modules | P/% | R/% | mAP50/% | mAP50–95/% | |||
---|---|---|---|---|---|---|---|
C3k2-PRFE | ConvNeXtBlock | EFAN | Shape-IoU | ||||
96.1 | 89.7 | 93.7 | 62.0 | ||||
√ | 96.8 | 90.9 | 94.6 | 64.8 | |||
√ | 97.2 | 89.9 | 94.3 | 64.3 | |||
√ | 96.2 | 91.6 | 94.5 | 64.6 | |||
√ | 97.0 | 92.2 | 94.9 | 62.4 | |||
√ | √ | 97.6 | 91.2 | 95.1 | 67.0 | ||
√ | √ | √ | 98.5 | 93.0 | 96.3 | 72.5 | |
√ | √ | √ | √ | 98.6 | 94.6 | 97.3 | 77.2 |
Models | P/% | R/% | mAP50/% | mAP50–95/% |
---|---|---|---|---|
YOLOv11n | 96.1 | 89.7 | 93.7 | 62.0 |
YOLOv11n + C3k2-RFE | 96.4 | 88.2 | 93.2 | 61.9 |
YOLOv11n + C3k2-PRFE | 96.8 | 90.9 | 94.6 | 64.8 |
Loss Function | P/% | R/% | mAP50/% | mAP50–95/% |
---|---|---|---|---|
CIoU | 96.1 | 89.7 | 93.7 | 62.0 |
SIoU | 95.7 | 89.4 | 93.5 | 61.8 |
WIoU | 96.9 | 91.0 | 94.6 | 65.1 |
Shape-IoU | 97.0 | 92.2 | 94.9 | 62.4 |
Algorithm | AP50/% | P/% | R/% | mAP50 /% | mAP50–95/% | Params /M | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Missing Hole | Mouse Bite | Open Circuit | Short | Spur | Spurious Copper | ||||||
FR-CNN | 93.3 | 81.3 | 82.8 | 91.7 | 80.2 | 85.1 | 88.4 | 82.6 | 85.7 | 47.3 | 136.5 |
SSD | 85.5 | 71.2 | 75.4 | 81.4 | 65.4 | 79.0 | 79.4 | 71.8 | 76.3 | 39.7 | 24.28 |
YOLOv5n | 99.3 | 90.7 | 91.4 | 96.6 | 85.7 | 96.9 | 95.8 | 87.9 | 93.4 | 60.6 | 2.65 |
YOLOv8n | 99.4 | 92.3 | 90.6 | 97.8 | 84.0 | 96.6 | 95.7 | 88.1 | 93.5 | 61.4 | 3.16 |
YOLOv9t | 99.3 | 89.7 | 87.7 | 97.0 | 84.2 | 94.6 | 95.4 | 86.9 | 92.1 | 58.6 | 2.13 |
YOLOv10n | 99.3 | 89.4 | 87.1 | 96.5 | 83.4 | 94.7 | 94.4 | 86.7 | 91.7 | 60.0 | 2.78 |
YOLOv11n | 99.4 | 91.7 | 91.1 | 98.1 | 84.5 | 97.5 | 96.1 | 89.7 | 93.7 | 62.0 | 2.62 |
YOLOv12n | 98.8 | 87.8 | 88.8 | 95.7 | 80.4 | 89.3 | 94.3 | 84.6 | 90.1 | 54.5 | 2.55 |
YOLOv11s | 99.5 | 95.5 | 96.1 | 99.3 | 88.2 | 99.0 | 97.7 | 93.5 | 96.3 | 71.6 | 9.46 |
PCES-YOLO | 99.5 | 96.7 | 98.2 | 99.4 | 90.7 | 99.4 | 98.6 | 94.6 | 97.3 | 77.2 | 2.60 |
Performance | 50 Epochs | 100 Epochs | 150 Epochs | 200 Epochs | 250 Epochs | 300 Epochs |
---|---|---|---|---|---|---|
Loss | 0.096 | 0.083 | 0.075 | 0.070 | 0.062 | 0.086 |
Precision/% | 96.06 | 98.04 | 98.23 | 98.62 | 98.55 | 98.61 |
Recall/% | 91.01 | 93.22 | 94.29 | 94.30 | 94.42 | 94.57 |
mAP50/% | 94.69 | 96.44 | 96.87 | 97.04 | 97.16 | 97.34 |
Performance | 50 Epochs | 100 Epochs | 150 Epochs | 200 Epochs | 250 Epochs | 300 Epochs |
---|---|---|---|---|---|---|
Loss | 0.731 | 0.634 | 0.563 | 0.502 | 0.448 | 1.087 |
Precision/% | 91.01 | 94.14 | 95.45 | 96.33 | 96.44 | 96.09 |
Recall/% | 80.24 | 85.51 | 87.07 | 87.41 | 88.44 | 89.69 |
mAP50/% | 86.17 | 90.76 | 92.09 | 92.62 | 93.28 | 93.72 |
Algorithm | P/% | R/% | mAP50/% | mAP50–95/% |
---|---|---|---|---|
YOLOv9t | 97.0 | 94.8 | 98.3 | 74.2 |
YOLOv10n | 94.9 | 93.9 | 98.1 | 76.9 |
YOLOv11n | 97.3 | 96.3 | 98.7 | 77.1 |
PCES-YOLO | 98.0 | 96.9 | 98.9 | 77.4 |
Algorithm | FPS | GPU Memory Usage/% |
---|---|---|
YOLOv11n | 139 | 18 |
YOLOv11s | 115 | 32 |
PCES-YOLO | 133 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Dong, J.; Wang, C.; Lian, Z.; Chang, H. PCES-YOLO: High-Precision PCB Detection via Pre-Convolution Receptive Field Enhancement and Geometry-Perception Feature Fusion. Appl. Sci. 2025, 15, 7588. https://doi.org/10.3390/app15137588
Yang H, Dong J, Wang C, Lian Z, Chang H. PCES-YOLO: High-Precision PCB Detection via Pre-Convolution Receptive Field Enhancement and Geometry-Perception Feature Fusion. Applied Sciences. 2025; 15(13):7588. https://doi.org/10.3390/app15137588
Chicago/Turabian StyleYang, Heqi, Junming Dong, Cancan Wang, Zhida Lian, and Hui Chang. 2025. "PCES-YOLO: High-Precision PCB Detection via Pre-Convolution Receptive Field Enhancement and Geometry-Perception Feature Fusion" Applied Sciences 15, no. 13: 7588. https://doi.org/10.3390/app15137588
APA StyleYang, H., Dong, J., Wang, C., Lian, Z., & Chang, H. (2025). PCES-YOLO: High-Precision PCB Detection via Pre-Convolution Receptive Field Enhancement and Geometry-Perception Feature Fusion. Applied Sciences, 15(13), 7588. https://doi.org/10.3390/app15137588