Strain Localization and Stress Evolution Along the Yangsan Fault: A Geodetic Approach to Seismic Hazard Assessment
Abstract
1. Introduction
1.1. Scientific Background and Motivation
1.2. Regional Seismotectonic Context of the Korean Peninsula
1.3. Research Gap and Objectives
1.4. Study Areas
2. Materials and Methods
2.1. Fundamentals of Elastic Theory in Lithospheric Mechanics
2.2. Mathematical Representation of Strain and Stress Tensors
2.3. Derivation of Strain from GNSS Baseline Vectors
2.4. Optimal Triangulation Network Design
2.5. Data Collection
2.6. Workflow for GNSS-Based Strain Field Generation and Seismic Hazard Zonation
3. Results
3.1. Assessment of Tectonic Coherence Using GNSS Velocities and Plate Motion Benchmarks
3.2. Analysis of Coordinate Differences
3.3. Strain Tensor Analysis and Spatial Characterization of Deformation
- Triangle 6:
- Maximum Shear Strain: 1.513 µstrain/yr
- Shear Stress Direction: 37.00°
- Principal Strain: 2.498 µstrain/yr and 0.985 µstrain/yr
- Principal Axis Orientation: 99.81°
- Dilatation: 3.482 µstrain/yr
- Triangle 10:
- Maximum Shear Strain: 2.984 µstrain/yr
- Shear Stress Direction: 18.84°
- Principal Strain: 2.367 µstrain/yr and −0.617 µstrain/yr
- Principal Axis Orientation: 68.30°
- Dilatation: 1.750 µstrain/yr
- Triangle 11:
- Maximum Shear Strain: 1.105 µstrain/yr
- Shear Stress Direction: 21.24°
- Principal Strain: −2.241 µstrain/yr and −3.346 µstrain/yr
- Principal Axis Orientation: 72.30°
- Dilatation: −5.588 µstrain/yr
- Triangle 45:
- Maximum Shear Strain: 1.442 µstrain/yr
- Shear Stress Direction: 89.25°
- Principal Strain: 1.906 µstrain/yr and 0.464 µstrain/yr
- Principal Axis Orientation: 125.89°
- Dilatation: 2.370 µstrain/yr
- Triangle 6:
- Maximum Shear Strain: 1.513 µstrain/yr
- Shear Stress Direction: 54.81°
- Principal Strain: 2.498 µstrain/yr and 0.985 µstrain/yr
- Principal Axis Orientation: 99.81°
- Dilatation: 3.482 µstrain/yr
- Triangle 10:
- Maximum Shear Strain: 2.984 µstrain/yr
- Shear Stress Direction: 23.30°
- Principal Strain: 2.367 µstrain/yr and −0.617 µstrain/yr
- Principal Axis Orientation: 68.30°
- Dilatation: 1.750 µstrain/yr
- Triangle 11:
- Maximum Shear Strain: 1.105 µstrain/yr
- Shear Stress Direction: 27.30°
- Principal Strain: −2.241 µstrain/yr and −3.346 µstrain/yr
- Principal Axis Orientation: 72.30°
- Dilatation: −5.588 µstrain/yr
- Triangle 45:
- Maximum Shear Strain: 1.442 µstrain/yr
- Shear Stress Direction: 80.89°
- Principal Strain: 1.906 µstrain/yr and 0.464 µstrain/yr
- Principal Axis Orientation: 125.89°
- Dilatation: 2.370 µstrain/yr
- Triangle 16:
- Shear Stress Direction: 87.31°
- Maximum Shear Strain: 1.675 µstrain/yr
- Principal Strain: 0.107 µstrain/yr and −1.568 µstrain/yr
- Triangle 17:
- Shear Stress Direction: 33.32°
- Maximum Shear Strain: 0.976 µstrain/yr
- Principal Strain: −0.327 µstrain/yr and −1.304 µstrain/yr
- Triangle 16:
- Shear Stress Direction: 87.31°
- Maximum Shear Strain: 1.675 µstrain/yr
- Principal Strain: 0.107 µstrain/yr and −1.568 µstrain/yr
- Triangle 8:
- Shear Stress Direction: 25.81°
- Maximum Shear Strain: 1.133 µstrain/yr
- Principal Strain: 0.535 µstrain/yr and −0.598 µstrain/yr
- Triangle 16:
- Shear Stress Direction (θ7max): 87.59°
- Maximum Shear Strain: 2.325 µstrain/yr
- Principal Strain: 0.107 µstrain/yr and −1.568 µstrain/yr
- Triangle 17:
- Shear Stress Direction (θ7max): 33.32°
- Maximum Shear Strain: 0.976 µstrain/yr
- Principal Strain: −0.327 µstrain/yr and −1.304 µstrain/yr
- Triangle 16:
- Shear Stress Direction (θ7max): 87.59°
- Maximum Shear Strain: 2.325 µstrain/yr
- Principal Strain: 0.107 µstrain/yr and −1.568 µstrain/yr
- Triangle 8:
- Shear Stress Direction (θ7max): 42.56°
- Maximum Shear Strain: 1.182 µstrain/yr
- Principal Strain: 0.535 µstrain/yr and −0.598 µstrain/yr
4. Discussion
4.1. Seismotectonic Implications of GNSS-Based Strain Tensor Analysis
4.2. Localized Strain Anomalies and Fault Interaction Effects on Seismic Hazard
4.3. Temporal Variability and Observational Challenges in GNSS-Derived Strain Field Interpretation
4.4. Toward an Integrated Framework for GNSS-Based Seismic Hazard Modeling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Nishimura, T. Time-Independent Forecast Model for Large Crustal Earthquakes in Southwest Japan Using GNSS Data. Earth Planets Space 2022, 74, 69. [Google Scholar] [CrossRef]
- Carafa, M.M.C.; Vannucci, G.; Burrato, P.; Doglioni, C. Empirical Evidence for Multi-Decadal Transients Affecting Geodetic Velocity Fields and Derived Seismicity Forecasts in Italy. Sci. Rep. 2024, 14, 70816. [Google Scholar] [CrossRef]
- Kim, C.; Cheon, Y.; Lee, T.; Choi, J.; Ha, S.; Jeong, J. Long-Term Weakening Processes and Short-Term Seismic Slip Behavior of an Intraplate Mature Fault Zone: A Case Study of the Yangsan Fault, SE Korea. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023154. [Google Scholar] [CrossRef]
- Cheon, Y.; Cho, H.; Ha, S.; Kang, H.; Kim, J.; Son, M. Tectonically Controlled Multiple Stages of Deformation along the Yangsan Fault Zone, SE Korea, Since Late Cretaceous. J. Asian Earth Sci. 2019, 177, 248–263. [Google Scholar] [CrossRef]
- Naik, S.; Rockwell, T.; Jeong, S.; Kim, Y.; Shin, H.; Choi, J.; Ha, S.; Son, M. Evidence for Large Holocene Earthquakes along the Yangsan Fault in the SE Korean Peninsula Revealed in Three-Dimensional Paleoseismic Trenches. Geol. Soc. Am. Bull. 2024, 136, 512–529. [Google Scholar] [CrossRef]
- Kim, T.; Choi, J.; Cheon, Y.; Lee, T.; Kim, N.; Lee, H.; Kim, C.; Choi, Y.; Bae, H.; Kim, Y.; et al. Correlation of Paleoearthquake Records at Multiple Sites along the Southern Yangsan Fault, Korea: Insights into Rupture Scenarios of Intraplate Strike-Slip Earthquakes. Tectonophysics 2023, 847, 229817. [Google Scholar] [CrossRef]
- Moon, S.; Kim, H.; Kim, C.; Jun, H.; Lee, S.; Joo, H.; Kim, K. The Quaternary Slip Rate of the Yangsan Fault Offshore the SE Korean Peninsula and Implications for Seismic Hazard Assessment. Geomat. Nat. Hazards Risk 2021, 12, 548–565. [Google Scholar] [CrossRef]
- Sim, H.; Song, Y.; Hong, S. Insights of Fault Activities Through 3-D Shape Preferred Orientation and Illite Age Analysis. Geol. Soc. Am. Bull. 2024, 136, 650–668. [Google Scholar] [CrossRef]
- Bilal, A.; Yang, R.; Li, Y.; Zhang, J.; Janjuhah, H.T. Microfacies shift in the Late Paleocene–Early Eocene Patala Formation in the Upper Indus Basin (Pakistan): Implications for development of the Ceno-Tethys Ocean. Mar. Pet. Geol. 2024, 161, 106693. [Google Scholar] [CrossRef]
- Yu, Z.; Yin, N.; Wang, C.; Deng, M.; Lan, W. Active tectonics, paleoseismology and seismic hazards of the piedmont Xizhoushan fault zone in the Shanxi graben system, North China Block. J. Asian Earth Sci. 2021, 205, 104590. [Google Scholar] [CrossRef]
- Sibson, R.H. Preparation zones for large crustal earthquakes consequent on fault-valve action. Earth Planets Space 2020, 72, 31. [Google Scholar] [CrossRef]
- Elliott, J.R.; Walters, R.J.; Wright, T.J. The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat. Commun. 2016, 7, 13844. [Google Scholar] [CrossRef]
- Duong, T.N.; Huang, B.S.; Dinh, V.T.; Lai, H.P.; Bui, V.T.; Sulinthone, O.; Pham, H.T.; Pham, N.D.; Nguyen, V.H.; Duangpaseuth, S. Identification of the active faults and seismotectonic zonation of Laos territory. Vietnam J. Earth Sci. 2024, 46, 489–514. [Google Scholar] [CrossRef]
- Ren, Z.; Zielke, O.; Yu, J. Active tectonics in 4D high-resolution. J. Struct. Geol. 2018, 117, 264–271. [Google Scholar] [CrossRef]
- Liang, S.; Zheng, W.; Zhang, D.; Peng, H.; Sun, X.; Wei, S. Holocene earthquake cycles of an active tectonic block boundary fault zone: A case study in the Qilian–Haiyuan fault zone, Northeastern Tibet Plateau. Lithosphere 2023, 2023, 7919174. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Segall, P.; Johnson, K. A decadal-scale deformation transient prior to the 2011 Mw 9.0 Tohoku-oki earthquake. Geophys. Res. Lett. 2014, 41, 3787–3795. [Google Scholar] [CrossRef]
- Socquet, A.; Marill, L.; Marsan, D.; Rousset, B.; Radiguet, M.; Burgmann, R.; Cotte, N.; Bouchon, M. Revisiting the deformation transients before the 2011 Tohoku-Oki Megathrust Earthquake with GPS. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 4–8 May 2020. EGU2020-21477. [Google Scholar] [CrossRef]
- Kato, A.; Obara, K.; Igarashi, T.; Tsuruoka, H.; Nakagawa, S.; Hirata, N. Propagation of Slow Slip Leading Up to the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science 2012, 335, 705–708. [Google Scholar] [CrossRef]
- Martín-González, F.; Crespo-Martín, C.; Cesca, S.; González-Muñoz, S. Understanding Seismicity and Seismotectonics in a Stable Continental Region (NW Iberian Peninsula): Implications for the Nature of Intraplate Seismicity. Glob. Planet. Change 2023, 226, 104177. [Google Scholar] [CrossRef]
- Parizot, O.; Missenard, Y.; Barbarand, J.; Blaise, T.; Sarda, P.; Benedicto, A.; Haurine, F. How Sensitive Are Intraplate Inherited Structures? Insight from the Cévennes Fault System (Languedoc, SE France). Geol. Mag. 2022, 159, 2033–2049. [Google Scholar] [CrossRef]
- Dyksterhuis, S.; Müller, R.D. Cause and Evolution of Intraplate Orogeny in Australia. Geology 2008, 36, 495–498. [Google Scholar] [CrossRef]
- Choi, S.; Kim, S.; Yoon, J.; Choi, E. Tectonic Evolution of the Yangsan Fault, SE Korea, by Gravity Field Interpretation. Geophys. J. Int. 2023, 236, 1863–1878. [Google Scholar] [CrossRef]
- Ha, S.; Son, M.; Seong, Y. Active Fault Trace Identification Using a LiDAR High-Resolution DEM: A Case Study of the Central Yangsan Fault, Korea. Remote Sens. 2022, 14, 4838. [Google Scholar] [CrossRef]
- Ha, S.; Kang, H.; Lee, S.; Seong, Y.; Choi, J.; Kim, S.; Son, M. Quaternary Surface Ruptures of the Inherited Mature Yangsan Fault: Implications for Intraplate Earthquakes in Southeastern Korea. Solid Earth 2025, 16, 197–217. [Google Scholar] [CrossRef]
- Chough, S.K.; Sohn, Y.K. Tectonic and sedimentary evolution of a Cretaceous continental arc–backarc system in the Korean peninsula: New view. Earth-Sci. Rev. 2010, 101, 225–249. [Google Scholar] [CrossRef]
- Son, M.; Song, C.W.; Kim, M.C.; Cheon, Y.B.; Jung, S.H.; Cho, H.S.; Son, Y.G. Miocene crustal deformation, basin development, and tectonic implication in the southeastern Korean Peninsula. J. Geol. Soc. Korea 2013, 49, 93–118. [Google Scholar] [CrossRef]
- Lee, M.S.; Kang, P.C. Geological Map of Korea, Yangsan Sheet, 1:50,000; Geological Survey of Korea: Seoul, Republic of Korea, 1964. [Google Scholar]
- Kim, N.J.; Kwon, Y.I.; Jin, M.S. Geological Map of Korea, Moryang Sheet, 1:50,000; Geological Survey of Korea: Seoul, Republic of Korea, 1971. [Google Scholar]
- Lee, Y.J.; Lee, I.K. Geological Map of Korea, Eonyang Sheet, 1:50,000; Geological Survey of Korea: Seoul, Republic of Korea, 1972. [Google Scholar]
- Kim, N.; Choi, J.; Park, S.; Lee, T.; Choi, I. Cumulative Offset Analysis of the Central-Southern Yangsan Fault Based on Topography of Quaternary Fluvial Terrace. J. Geol. Soc. Korea 2020, 56, 135–154. [Google Scholar] [CrossRef]
- Turcotte, D.L.; Schubert, G. Geodynamics, 3rd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Segall, P. Earthquake and Volcano Deformation; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Okaya, D.; Vel, S.; Song, W.; Johnson, S. Modification of crustal seismic anisotropy by geological structures (“structural geometric anisotropy”). Geosphere 2019, 15, 1450–1462. [Google Scholar] [CrossRef]
- Ip, S.; Borja, R. Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model. Acta Geotech. 2023, 18, 2547–2564. [Google Scholar] [CrossRef]
- Nogueira, L.; Borges, L.; Castello, D. Integrating MIL and Mori–Tanaka methods for microstructural analysis and mechanical behaviour prediction in heterogeneous materials. Mech. Mater. 2024, 190, 105167. [Google Scholar] [CrossRef]
- Backus, G. Long-Wave Elastic Anisotropy Produced by Horizontal Layering. J. Geophys. Res. 1962, 67, 4427–4440. [Google Scholar] [CrossRef]
- Zhuang, X.; Wang, Q.; Zhu, H. A 3D computational homogenization model for porous material and parameters identification. Comput. Mater. Sci. 2015, 96, 579–591. [Google Scholar] [CrossRef]
- Wang, S.; He, Y.; Deng, Z. Stretching-dominated truss lattice materials: Elastic anisotropy evaluation, control, and design. Compos. Struct. 2022, 299, 116004. [Google Scholar] [CrossRef]
- Ohnaka, M. A physical basis for earthquakes based on the elastic rebound model. Bull. Seismol. Soc. Am. 1976, 66, 533–552. [Google Scholar] [CrossRef]
- Bányai, L. The role of the elastic rebound theory in design and evaluation of deformation surveys. Tectonophysics 1992, 202, 369–375. [Google Scholar] [CrossRef]
- Griffin, J.; Stirling, M.; Wang, T. Periodicity and Clustering in the Long-Term Earthquake Record. Geophys. Res. Lett. 2020, 47, e2020GL089272. [Google Scholar] [CrossRef]
- Maurer, J.; Materna, K. Quantification of geodetic strain rate uncertainties and implications for seismic hazard estimates. Geophys. J. Int. 2023, 235, 1879–1896. [Google Scholar] [CrossRef]
- Kreemer, C.; Blewitt, G.; Klein, E. A geodetic plate motion and Global Strain Rate Model. Geochem. Geophys. Geosyst. 2014, 15, 3849–3889. [Google Scholar] [CrossRef]
- Bird, P.; Kreemer, C.; Holt, W. A Long-Term Forecast of Shallow Seismicity Based on the Global Strain Rate Map. Seismol. Res. Lett. 2010, 81, 184–194. [Google Scholar] [CrossRef]
- Wu, H. Continuum Mechanics and Plasticity; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Liu, X.; Ji, Y.; Liang, Q. Expression of strain tensor in orthogonal curvilinear coordinates. Geod. Geodyn. 2010, 1, 48–52. [Google Scholar] [CrossRef]
- Ayissi, R. A Rereading and a Mathematical Formulation of Deformations and Strains in Elasticity. Int. J. Math. Anal. Optim. Theory Appl. 2013, 1, 1–14. [Google Scholar]
- Faraji-Oskouie, M.; Ansari, R.; Darvizeh, M. A variational differential quadrature solution to finite deformation problems of hyperelastic shell-type structures: A two-point formulation in Cartesian coordinates. Appl. Math. Mech. 2022, 43, 911–926. [Google Scholar] [CrossRef]
- Doğruoğlu, A.; Komurcu, S. Nonlinear mixed finite element formulations for the analysis of planar curved beams. Comput. Struct. 2019, 224, 106121. [Google Scholar] [CrossRef]
- Fialko, Y. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature 2007, 441, 968–971. [Google Scholar] [CrossRef]
- Serpelloni, E.; Cavaliere, A.; Martelli, L.; Pintori, F.; Anderlini, L.; Borghi, A.; Randazzo, D.; Bruni, S.; Devoti, R.; Perfetti, P.; et al. Surface Velocities and Strain-Rates in the Euro-Mediterranean Region From Massive GPS Data Processing. Front. Earth Sci. 2022, 10, 907897. [Google Scholar] [CrossRef]
- Bawa, S.; Ojigi, L.; Dodo, J.; Lawal, K. Strain rate field on the Nigeria lithosphere derived from GNSS velocity. Appl. Geomat. 2020, 13, 179–193. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Shi, Y. Reconciling high-resolution strain rate of continental China from GNSS data with the spherical spline interpolation. Tectonophysics 2025, 898, 230614. [Google Scholar] [CrossRef]
- Pagani, C.; Bodin, T.; Métois, M.; Lasserre, C. Bayesian Estimation of Surface Strain Rates From Global Navigation Satellite System Measurements: Application to the Southwestern United States. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021905. [Google Scholar] [CrossRef]
- Pérez-Peña, A.; Fernández-Ros, A.; Rosado, B.; De Gil, A.; Prates, G.; Gárate, J.; Berrocoso, M. Integration of GNSS-GPS networks (cGPS) for obtaining stress and strain models for the SPINA region (south of the Iberian Peninsula and North Africa). In Proceedings of the EGU General Assembly Conference Abstracts 2020, Online, 4–8 May 2020. [Google Scholar] [CrossRef]
- Farolfi, G.; Del Ventisette, C. Strain rates in the Alpine Mediterranean region: Insights from advanced techniques of data processing. GPS Solut. 2017, 21, 1013–1023. [Google Scholar] [CrossRef]
- Marotta, G.; França, G.S.; Monico, J.F.G.; Bezerra, F.H.; Fuck, R.A. Strain rates estimated by geodetic observations in the Borborema Province, Brazil. J. S. Am. Earth Sci. 2015, 58, 220–229. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhuang, J. Crustal strain-rate fields estimated from GNSS data with a Bayesian approach and its correlation to seismic activity. Tectonophysics 2021, 815, 229003. [Google Scholar] [CrossRef]
- Shen, K.; Li, Y.; Liu, T.; Zuo, J.; Yang, Z. Adaptive-Robust Fusion Strategy for Autonomous Navigation in GNSS-Challenged Environments. IEEE Internet Things J. 2024, 11, 6817–6832. [Google Scholar] [CrossRef]
- Jarosiński, M.; Araszkiewicz, A.; Bobek, K.; Gogołek, T. Contemporary state of stress in a stable plate interior (northern Poland): The integration of satellite geodesy, borehole and seismological data. Tectonophysics 2022, 838, 229336. [Google Scholar] [CrossRef]
- Rashidi, A.; Derakhshani, R. Strain and Moment Rates from GPS and Seismological Data in Northern Iran: Implications for an Evaluation of Stress Trajectories and Probabilistic Fault Rupture Hazard. Remote Sens. 2022, 14, 2219. [Google Scholar] [CrossRef]
- Palano, M.; Cannavò, F.; Ferranti, L.; Mattia, M.; Mazzella, M. Strain and stress fields in the Southern Apennines (Italy) constrained by geodetic, seismological and borehole data. Geophys. J. Int. 2011, 187, 1451–1460. [Google Scholar] [CrossRef]
- Haines, A.; Wallace, L. New Zealand-Wide Geodetic Strain Rates Using a Physics-Based Approach. Geophys. Res. Lett. 2020, 47, e2019GL084606. [Google Scholar] [CrossRef]
- Castaldo, R.; Nardis, R.; de Novellis, V.; Ferrarini, F.; Lanari, R.; Lavecchia, G.; Pepe, S.; Solaro, G.; Tizzani, P. Coseismic Stress and Strain Field Changes Investigation Through 3-D Finite Element Modeling of DInSAR and GPS Measurements and Geological/Seismological Data: The L’Aquila (Italy) 2009 Earthquake Case Study. J. Geophys. Res. Solid Earth 2018, 123, 2017JB014453. [Google Scholar] [CrossRef]
- Chai, C.; Delorey, A.; Maceira, M.; Levandowski, W.; Guyer, R.; Zhang, H.; Coblentz, D.; Johnson, P.A. A 3D Full Stress Tensor Model for Oklahoma. J. Geophys. Res. Solid Earth 2020, 126, e2020JB021113. [Google Scholar] [CrossRef]
- Johnson, K. Disagreements in Geodetically Inferred Strain Rates in the Western US With Stress Orientations and Geologic Moment Rates. J. Geophys. Res. Solid Earth 2024, 129, e2023JB027472. [Google Scholar] [CrossRef]
- Okazaki, T.; Nishimura, T.; Yarai, H. Consistent estimation of strain-rate fields from GNSS velocity data using basis function expansion with ABIC. Earth Planets Space 2021, 73, 174. [Google Scholar] [CrossRef]
- Riguzzi, F.; Devoti, R.; Doglioni, C.; Pietrantonio, G.; Pisani, A.R.; Serpelloni, E. Geodetic strain rate and earthquake size: New clues for seismic hazard studies. Tectonophysics 2012, 530–531, 63–71. [Google Scholar] [CrossRef]
- Bilal, A.; Yang, R.; Lenhardt, N.; Han, Z.; Luan, X. The Paleocene Hangu Formation: A Key to Unlocking the Mysteries of Paleo-Tethys Tectonism. Mar. Pet. Geol. 2023, 157, 106508. [Google Scholar] [CrossRef]
- Nucci, R.; Serpelloni, E.; Faenza, L.; Garcia, A.; Belardinelli, M.E. Comparative Analysis of Methods to Estimate Geodetic Strain Rates from GNSS Data in Italy. Ann. Geophys. 2023, 66, DM531. [Google Scholar] [CrossRef]
- Gao, Y.; Qu, W.; Zhang, Q.; Li, J.; Li, D.; Wang, Y.; Hao, M. Assessment of the Seismic Hazard in North China by Combining Micro-Seismicity Records and Geodetic Observations. Tectonophysics 2023, 869, 230130. [Google Scholar] [CrossRef]
- Lee, S.; Yoon, H. Analysis of Crustal Deformation Parameters in the Southeastern Region of the Korean Peninsula Using GNSS. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2020, 38, 697–705. [Google Scholar] [CrossRef]
- Stevens, V.L.; Avouac, J.-P. On the Relationship between Strain Rate and Seismicity in the India–Asia Collision Zone: Implications for Probabilistic Seismic Hazard. Geophys. J. Int. 2021, 226, 220–245. [Google Scholar] [CrossRef]
- Maurer, J.; Johnson, K.; Wallace, L.M.; Hamling, I.; Williams, C.A.; Rollins, C.; Gerstenberger, M.; Van Dissen, R. Geodetic Strain Rates for the 2022 Update of the New Zealand National Seismic Hazard Model. Bull. Seismol. Soc. Am. 2024, 114, 57–77. [Google Scholar] [CrossRef]
- Rong, Y.; Xu, X.; Cheng, J.; Chen, G.; Magistrale, H.; Shen, Z.-K. A Probabilistic Seismic Hazard Model for Mainland China. Earthq. Spectra 2020, 36 (Suppl. 1), 1–29. [Google Scholar] [CrossRef]
Triangle ID | ε1 (10−6/yr) | ε2 (10−6/yr) | θp (°) | γmax (10−6/yr) | θ_γmax (°) | Δ (10−6/yr) |
---|---|---|---|---|---|---|
1 | 0.592 | 0.261 | 59.20 | 0.332 | 14.20 | 0.853 |
2 | −0.269 | −0.478 | 120.40 | 0.209 | 75.40 | −0.746 |
3 | 0.548 | −0.040 | 85.66 | 0.588 | 40.66 | 0.507 |
4 | −0.242 | −0.984 | 129.61 | 0.742 | 84.61 | −1.226 |
5 | −0.322 | −0.797 | 49.17 | 0.475 | 4.17 | −1.119 |
6 | 0.359 | −0.025 | 82.00 | 0.383 | 37.00 | 0.334 |
7 | −0.046 | −0.186 | 84.10 | 0.140 | 39.10 | −0.232 |
8 | 0.535 | −0.598 | 70.81 | 1.133 | 25.81 | −0.064 |
9 | 1.278 | 0.276 | 86.00 | 1.001 | 41.00 | 1.554 |
10 | 2.820 | 0.015 | 63.84 | 2.805 | 18.84 | 2.835 |
11 | −1.811 | −2.865 | 66.24 | 1.055 | 21.24 | −4.676 |
12 | 1.501 | −0.857 | 69.32 | 2.357 | 24.32 | 0.644 |
13 | −0.618 | −0.785 | 96.84 | 0.167 | 51.84 | −1.404 |
14 | −0.134 | −0.625 | 94.21 | 0.491 | 49.21 | −0.759 |
15 | 0.390 | 0.308 | 54.20 | 0.082 | 9.20 | 0.698 |
16 | 0.107 | −1.568 | 132.31 | 1.675 | 87.31 | −1.461 |
17 | −0.327 | −1.304 | 78.32 | 0.976 | 33.32 | −1.631 |
18 | −0.401 | −1.116 | 134.25 | 0.716 | 89.25 | −1.517 |
19 | −0.259 | −1.339 | 58.76 | 1.080 | 13.76 | −1.598 |
20 | 0.872 | 0.106 | 59.31 | 0.767 | 14.31 | 0.978 |
21 | −0.711 | −1.436 | 125.10 | 0.725 | 80.10 | −2.147 |
22 | 0.533 | −0.345 | 93.82 | 0.878 | 48.82 | 0.187 |
23 | 0.739 | 0.067 | 45.28 | 0.672 | 0.28 | 0.806 |
24 | 0.370 | −0.078 | 97.95 | 0.447 | 52.95 | 0.292 |
25 | −0.069 | −0.441 | 94.62 | 0.372 | 49.62 | −0.510 |
26 | 0.637 | −0.833 | 64.97 | 1.470 | 19.97 | −0.195 |
27 | −0.342 | −2.606 | 56.65 | 2.264 | 11.65 | −2.948 |
28 | −0.165 | −1.053 | 52.83 | 0.888 | 7.83 | −1.218 |
29 | 0.643 | −0.143 | 84.97 | 0.786 | 39.97 | 0.499 |
30 | 1.570 | 0.225 | 46.61 | 1.346 | 1.61 | 1.795 |
31 | 0.322 | −1.032 | 129.49 | 1.355 | 84.49 | −0.710 |
32 | 0.456 | −0.338 | 65.79 | 0.794 | 20.79 | 0.119 |
Average | 0.267 | −0.644 | 82.27 | 0.912 | 37.27 | −0.377 |
Triangle ID | ε1 (10−6/yr) | ε2 (10−6/yr) | θp (°) | γmax (10 −6/yr) | θ_γmax (°) | Δ (10−6/yr) |
---|---|---|---|---|---|---|
1 | 0.485 | −0.394 | 106.90 | 0.880 | 61.90 | 0.091 |
2 | −0.479 | −0.721 | 45.41 | 0.242 | 0.41 | −1.201 |
3 | 0.154 | −0.701 | 70.56 | 0.855 | 25.56 | −0.547 |
4 | 1.412 | −0.293 | 122.73 | 1.705 | 77.73 | 1.119 |
5 | −0.179 | −0.338 | 107.13 | 0.159 | 62.13 | −0.517 |
6 | 2.498 | 0.985 | 99.81 | 1.513 | 54.81 | 3.482 |
7 | −0.536 | −1.077 | 132.52 | 0.541 | 87.52 | −1.613 |
8 | −0.062 | −1.244 | 87.56 | 1.182 | 42.56 | −1.306 |
9 | 1.668 | 0.885 | 101.10 | 0.782 | 56.10 | 2.553 |
10 | 2.367 | −0.617 | 68.30 | 2.984 | 23.30 | 1.750 |
11 | −2.241 | −3.346 | 72.30 | 1.105 | 27.30 | −5.588 |
12 | 2.095 | −0.889 | 68.37 | 2.984 | 23.37 | 1.207 |
13 | −0.762 | −1.186 | 48.41 | 0.424 | 3.41 | −1.947 |
14 | 0.079 | −1.065 | 114.86 | 1.145 | 69.86 | −0.986 |
15 | 0.284 | 0.182 | 81.76 | 0.102 | 36.76 | 0.466 |
16 | 0.871 | −1.455 | 132.59 | 2.325 | 87.59 | −0.584 |
17 | −0.267 | −1.708 | 55.47 | 1.441 | 10.47 | −1.975 |
18 | −0.509 | −1.448 | 132.59 | 0.940 | 87.59 | −1.957 |
19 | −0.846 | −1.324 | 81.86 | 0.478 | 36.86 | −2.169 |
20 | 1.210 | 0.274 | 61.08 | 0.936 | 16.08 | 1.484 |
21 | −1.390 | −2.607 | 119.23 | 1.217 | 74.23 | −3.997 |
22 | −0.114 | −0.247 | 114.76 | 0.133 | 69.76 | −0.361 |
23 | 0.535 | 0.033 | 120.16 | 0.502 | 75.16 | 0.569 |
24 | 0.712 | −0.285 | 88.56 | 0.997 | 43.56 | 0.427 |
25 | 1.011 | −1.037 | 103.15 | 2.048 | 58.15 | −0.026 |
26 | 0.340 | −0.806 | 80.72 | 1.146 | 35.72 | −0.466 |
27 | 0.964 | −0.317 | 67.97 | 1.281 | 22.97 | 0.647 |
28 | 0.371 | −0.255 | 54.89 | 0.626 | 9.89 | 0.116 |
29 | 1.625 | 1.003 | 81.83 | 0.623 | 36.83 | 2.628 |
30 | 1.673 | 0.654 | 112.57 | 1.019 | 67.57 | 2.327 |
31 | −0.304 | −2.756 | 123.03 | 2.452 | 78.03 | −3.060 |
32 | 1.142 | −0.499 | 62.98 | 1.641 | 17.98 | 0.643 |
33 | 0.435 | 0.129 | 120.38 | 0.306 | 75.38 | 0.564 |
34 | −0.110 | −0.693 | 127.81 | 0.583 | 82.81 | −0.803 |
35 | 0.915 | −0.384 | 130.52 | 1.299 | 85.52 | 0.531 |
36 | −0.924 | −2.719 | 47.28 | 1.795 | 2.28 | −3.643 |
37 | −0.283 | −0.434 | 77.59 | 0.152 | 32.59 | −0.717 |
38 | 0.302 | −0.120 | 65.07 | 0.422 | 20.07 | 0.182 |
39 | −0.010 | −0.710 | 71.05 | 0.700 | 26.05 | −0.719 |
40 | 0.367 | −0.182 | 48.48 | 0.549 | 3.48 | 0.185 |
41 | −0.186 | −0.909 | 122.02 | 0.724 | 77.02 | −1.095 |
42 | 1.365 | 0.588 | 85.76 | 0.777 | 40.76 | 1.953 |
43 | 0.369 | 0.143 | 119.47 | 0.226 | 74.47 | 0.512 |
44 | 0.072 | −0.562 | 69.23 | 0.634 | 24.23 | −0.489 |
45 | 1.906 | 0.464 | 125.89 | 1.442 | 80.89 | 2.370 |
46 | 0.749 | 0.357 | 128.51 | 0.392 | 83.51 | 1.105 |
47 | 1.028 | 0.304 | 131.46 | 0.724 | 86.46 | 1.332 |
48 | 0.212 | −0.024 | 108.70 | 0.236 | 63.70 | 0.187 |
49 | 0.409 | 0.051 | 56.68 | 0.358 | 11.68 | 0.460 |
Average | 0.412 | −0.557 | 93.00 | 0.974 | 48.00 | −0.143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-J.; Yun, H.-S.; Shin, D.-H.; Lee, S.-H. Strain Localization and Stress Evolution Along the Yangsan Fault: A Geodetic Approach to Seismic Hazard Assessment. Appl. Sci. 2025, 15, 7541. https://doi.org/10.3390/app15137541
Lee S-J, Yun H-S, Shin D-H, Lee S-H. Strain Localization and Stress Evolution Along the Yangsan Fault: A Geodetic Approach to Seismic Hazard Assessment. Applied Sciences. 2025; 15(13):7541. https://doi.org/10.3390/app15137541
Chicago/Turabian StyleLee, Seung-Jun, Hong-Sik Yun, Dal-Ho Shin, and Sang-Hoon Lee. 2025. "Strain Localization and Stress Evolution Along the Yangsan Fault: A Geodetic Approach to Seismic Hazard Assessment" Applied Sciences 15, no. 13: 7541. https://doi.org/10.3390/app15137541
APA StyleLee, S.-J., Yun, H.-S., Shin, D.-H., & Lee, S.-H. (2025). Strain Localization and Stress Evolution Along the Yangsan Fault: A Geodetic Approach to Seismic Hazard Assessment. Applied Sciences, 15(13), 7541. https://doi.org/10.3390/app15137541