Integrated Photonics for IoT, RoF, and Distributed Fog–Cloud Computing: A Comprehensive Review
Abstract
1. Introduction
2. Hierarchical IoT, Fog/Cloud Computing Architecture
3. Radio-over-Fiber (RoF) for IoT and Fog Computing
4. Photonic Implementations in Fog Computing Domains
4.1. Smart Cities and Urban Infrastructure
4.2. Transportation and Autonomous Systems
4.3. Security and Video Surveillance
4.4. Smart Buildings and Industrial IoT (IIoT)
5. PIC-Enabled IoT Sensors
6. Key Enablers of High-Speed Networks Technology
6.1. Compactness and Scalability
6.2. Energy Performance Trends in Photonic Integration
6.3. Integrating CMOS Photonics with Electronic Control Circuits
6.4. High-Speed Optical Interconnects
6.5. Optical Switching and Routing
6.6. Wavelength Division Multiplexing (WDM)
6.7. Coherent Optics
6.8. Quantum and Advanced Computing
7. Industry Implementations
8. Future Trends
9. Summary of Benefits
10. Implementation Challenges and Emerging Solutions
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morichetti, F. High-performance analog signal processing with photonic integrated circuits. Light Sci. Appl. 2025, 14, 141. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Gong, Y.; Huang, H.; Zhou, Y.; Mao, S.; Wei, Z.; Zhang, Z. Photonics for Neuromorphic Computing: Fundamentals, Devices, and Opportunities. Wiley Adv. Mater. 2024, 37, 2312825. [Google Scholar] [CrossRef] [PubMed]
- Intel Corporation. Intel Demonstrates First Fully Integrated Optical I/O Chiplet. 2025. Available online: https://newsroom.intel.com/artificial-intelligence/intel-unveils-first-integrated-optical-io-chiplet (accessed on 4 May 2025).
- Nvidia Corporation. Nvidia Is Planning Post-Copper 1.6 Tbps Network Tech to Connect Millions of GPUs as It Unveils Photonics Networking Gear at GTC 2025. Available online: https://www.techradar.com/pro/nvidia-is-planning-post-copper-1-6tbps-network-tech-to-connect-millions-of-gpus-as-it-unveils-photonics-networking-gear-at-gtc-2025 (accessed on 11 April 2025).
- Zhang, Y.; Li, R.; Wang, H.; Liu, Y.; Chen, X. Integrated Photonic Processor Implementing Digital Image Convolution. Electronics 2025, 14, 709. [Google Scholar] [CrossRef]
- Chiang, M.; Zhang, T. Fog and IoT: An overview of research opportunities. IEEE Internet Things J. 2016, 3, 854–864. [Google Scholar] [CrossRef]
- Baliga, J.; Ayre, R.W.A.; Hinton, K.; Tucker, R.S. Green Cloud Computing: Balancing Energy in Processing, Storage, and Transport. Proc. IEEE 2011, 99, 149–167. [Google Scholar] [CrossRef]
- Radamson, H.H.; Miao, Y.; Zhou, Z.; Wu, Z.; Kong, Z.; Gao, J.; Yang, H.; Ren, Y.; Zhang, Y.; Shi, J.; et al. CMOS Scaling for the 5 nm Node and Beyond: Device, Process and Technology. Nanomaterials 2024, 14, 837. [Google Scholar] [CrossRef]
- Capmany, J.; Novak, D. Microwave photonics combines two worlds. Nat. Photonics 2007, 1, 319–330. [Google Scholar] [CrossRef]
- Marpaung, D.; Yao, J.; Capmany, J. Integrated microwave photonics. Nat. Photonics 2019, 13, 80–90. [Google Scholar] [CrossRef]
- Qian, T.; Schuler, B.; Gupta, Y.D.; Deumer, M.; Andrianopoulos, E.; Lyras, N.K.; Kresse, M.; Weigel, M.; Reck, J.; Mihov, K.; et al. Hybrid Photonic Integrated Circuits for Wireless Transceivers. Photonics 2025, 12, 371. [Google Scholar] [CrossRef]
- Beas, J.; Castanon, G.; Aldaya, I.; Aragón-Zavala, A.; Campuzano, G. Millimeter-Wave Frequency Radio over Fiber Systems: A Survey. IEEE Commun. Surv. Tutor. 2013, 15, 1593–1619. [Google Scholar] [CrossRef]
- Aldaya, I.; Beas, J.; Castanon, G.; Campuzano, G.; Aragón-Zavala, A. A Survey of Key-Enabling Components for Remote Millimetric Wave Generation in Radio over Fiber Networks. Opt. Laser Technol. 2013, 49, 213–226. [Google Scholar] [CrossRef]
- EMCORE Corporation. PIC Technology :: EMCORE Corporation. 2025. Available online: https://www.emcore.com/support/pic-technology (accessed on 11 April 2025).
- AIM Photonics. What Is Integrated Photonics. 2025. Available online: https://www.aimphotonics.com/what-is-integrated-photonics (accessed on 11 April 2025).
- Castanon, G.; Campuzano, G.; Tonguz, O.K. High reliability and availability in radio over fiber networks. J. Opt. Netw. 2008, 7, 603–617. [Google Scholar] [CrossRef]
- Moon, S.R.; Sung, M.; Kim, E.; Lee, J.K.; Cho, S.H.; Kim, J. Hybrid radio-over-fiber transport system to support heterogeneous indoor mobile network environments. J. Opt. Commun. Netw. 2024, 16, 71–80. [Google Scholar] [CrossRef]
- Kase, Y.; Hori, S.; Oshima, N.; Kunihiro, K. Radio-over-Fiber Systems with 1-bit Outphasing Modulation for 5G/6G Indoor Wireless Communication. NEC Tech. J. 2023, 17, 1–6. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Rodriguez, J.; Elfergani, I.; Teixeira, A. Optical and Wireless Convergence for 5G Access Networks, 1st ed.; Wiley-IEEE Press: Piscataway, NJ, USA, 2019. [Google Scholar]
- Pech, M.; Vrchota, J.; Bednář, J. Predictive Maintenance and Intelligent Sensors in Smart Factory: Review. Sensors 2021, 21, 1470. [Google Scholar] [CrossRef]
- Mouradian, C.; Naboulsi, D.; Yangui, S.; Glitho, R.H.; Morrow, M.J.; Polakos, P.A. A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 416–464. [Google Scholar] [CrossRef]
- Xu, J.; Dong, W.; Huang, Q.; Zhang, Y.; Yin, Y.; Zhao, Z.; Zeng, D.; Gao, X.; Gu, W.; Yang, Z.; et al. Progress in silicon-based reconfigurable and programmable all-optical signal processing chips. Front. Optoelectron. 2025, 18, 10. [Google Scholar] [CrossRef]
- Lin, Y.; Yong, Z.; Luo, X.; Azadeh, S.S.; Mikkelsen, J.C.; Sharma, A.; Chen, H.; Mak, J.C.C.; Lo, P.G.Q.; Sacher, W.D.; et al. Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform. Nat. Commun. 2022, 13, 6636. [Google Scholar] [CrossRef]
- Cao, R.; He, Y.; Zhu, Q.; Li, J.; An, S.; Zhang, Y.; Su, Y. Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control. J. Semicond. 2019, 40, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Y.; Chen, L.; Shi, J. A Stackelberg Game-Based Caching Incentive Scheme for Roadside Units in VANETs. Sensors 2020, 20, 6625. [Google Scholar] [CrossRef]
- Anderson, P.; Aranas, E.B.; Assaf, Y.; Behrendt, R.; Black, R.; Caballero, M.; Cameron, P.; Canakci, B.; De Carvalho, T.; Chatzieleftheriou, A. Project Silica: Towards Sustainable Cloud Archival Storage in Glass. In Proceedings of the SOSP 23: Proceedings of the 29th Symposium on Operating Systems Principles, Koblenz, Germany, 23–26 October 2023; Volume 29, pp. 166–181. [Google Scholar] [CrossRef]
- Ahmad, A.; Jan, M.U.; Shah, S.A.; Kaleem, Z.; Ahmad, B.; Ahmed, I.; Alam, M.M.; Khan, I. Edge Intelligence in Private Mobile Networks for Next-Generation Railway Systems. Front. Commun. Netw. 2021, 2, 769299. [Google Scholar] [CrossRef]
- Butt, M.A.; Mateos, X.; Piramidowicz, R. Photonics sensors: A perspective on current advancements, emerging challenges, and potential solutions (Invited). Phys. Lett. A 2024, 516, 129633. [Google Scholar] [CrossRef]
- Antonacci, G.; Goyvaerts, J.; Zhao, H.; Baumgartner, B.; Lendl, B.; Baets, R. Ultra-sensitive refractive index gas sensor with functionalized silicon nitride photonic circuits. APL Photonics 2020, 5, 081301. [Google Scholar] [CrossRef]
- PhotonFirst. Fiber Optic Sensing Solutions. 2025. Available online: https://www.photonfirst.com/ (accessed on 21 April 2025).
- Hänsel, A.; Adamu, A.I.; Markos, C.; Feilberg, A.; Bang, O.; Heck, M.J.R. Integrated Ammonia Sensor Using a Telecom Photonic Integrated Circuit and a Hollow Core Fiber. Photonics 2020, 7, 93. [Google Scholar] [CrossRef]
- Surfix Diagnostics. Photonic Diagnostics Platform for Point-of-Care Testing. 2025. Available online: https://www.surfixdx.com/ (accessed on 21 April 2025).
- PHOSFOS Consortium. PHOSFOS—Photonic Skins for Optical Sensing. Available online: https://en.wikipedia.org/wiki/PHOSFOS (accessed on 21 April 2025).
- Shamy, R.S.E.; Swillam, M.A.; Li, X. Optimization of Silicon Nitride Waveguide Platform for On-Chip Virus Detection. Sensors 2022, 22, 1152. [Google Scholar] [CrossRef]
- Shamy, R.S.E.; Swillam, M.A.; Li, X. Comparative Study of Photonic Platforms and Devices for On-Chip Sensing. Photonics 2023, 10, 1233. [Google Scholar] [CrossRef]
- Nava, M.; Castanon, G. Numerical analysis of a SiN digital Fourier transform spectrometer for a non-invasive glucose monitor. Appl. Opt. 2025, 64, 1–5. [Google Scholar] [CrossRef]
- Reuters. EU-Backed Consortium to Develop Efficient Sensors for Satellite Navigation. 2024. Available online: https://www.reuters.com/technology/space/eu-backed-consortium-develop-efficient-sensors-satellite-navigation-2024-07-03/ (accessed on 21 April 2025).
- Han, K.; Long, D.A.; Bresler, S.M.; Song, J.; Bao, Y.; Reschovsky, B.J.; Srinivasan, K.; Gorman, J.J.; Aksyuk, V.A.; LeBrun, T.W. Low-power, agile electro-optic frequency comb spectrometer for integrated sensors. Optica 2024, 11, 392–398. [Google Scholar] [CrossRef]
- Narukage, N.; Ishikawa, Y.; Sakao, T.; Wang, X. High-speed back-illuminated CMOS sensor for photon-counting-type imaging-spectroscopy in the soft X-ray range. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 940, 162974. [Google Scholar] [CrossRef]
- Ponizovskaya-Devine, E.; Mayet, A.S.; Rawat, A.; Ahamed, A.; Wang, S.Y.; Elrefaie, A.F.; Yamada, T.; Islam, M.S. Single microhole per pixel for thin Ge-on-Si complementary metal-oxide semiconductor image sensor with enhanced sensitivity up to 1700 nm. J. Nanophotonics 2023, 17, 016012. [Google Scholar] [CrossRef]
- Hakkel, K.D.; Petruzzella, M.; Ou, F.; van Klinken, A.; Pagliano, F. Integrated near-infrared spectral sensing. Nat. Commun. 2022, 13, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Van Gerven, P. Amazec Recycles ASML Technology to Diagnose Heart Failure. Available online: https://bits-chips.nl/artikel/amazec-recycles-asml-technology-to-diagnose-heart-failure/ (accessed on 21 April 2025).
- Zhao, Y.; Zhao, M.; Fu, J.; Yang, X.; Yang, S.; Xu, Y.; Wang, X.; Zhang, S.; Song, T.; Liu, Y.; et al. Nanostructured Temperature Indicator for Cold Chain Logistics. ACS Nano 2022, 16, 8641–8650. [Google Scholar] [CrossRef]
- Hong, M.; Sima, C.; Sun, Y.; Xu, J.; Li, K.; Zhang, L.; Wang, L.; Ming, Z.; Lu, P. Monolithically integrated passive photonic silicon chip for nano-g level acceleration tri-axial detection. Opt. Express 2025, 33, 5945–5957. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Wei, W.; Dai, Y.; Feng, X.; Zhu, W.; Wang, Y.; Zhang, Z.; Guan, X.; He, J. Detection of Volatile Organic Compounds Using Mid-Infrared Silicon Nitride Waveguides. Sci. Rep. 2022, 12, 9597. [Google Scholar] [CrossRef]
- Thomson, D.; Zilkie, A.; Bowers, J.E.; Komljenovic, T.; Reed, G.T. Roadmap on silicon photonics. J. Opt. 2016, 18, 073003. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Wan, Y.; Yu, Y.; Zhang, Y.; Hu, X.; Xiao, X.; Xu, H.; Zhang, L.; Pan, B. Silicon photonics for high-capacity data communications. Photonics Res. 2022, 10, A106–A134. [Google Scholar] [CrossRef]
- Smit, M.K.; Williams, K.; van der Tol, J. Past, present, and future of InP-based photonic integration. APL Photonics 2019, 4, 050901. [Google Scholar] [CrossRef]
- Shekhar, S.; Bogaerts, W.; Chrostowski, L.; Bowers, J.E.; Hochberg, M.; Soref, R.; Shastri, B.J. Roadmapping the next generation of silicon photonics. Nat. Commun. 2024, 15, 751. [Google Scholar] [CrossRef]
- Margalit, N.; Xiang, C.; Bowers, S.M.; Bjorlin, A.; Blum, R.; Bowers, J.E. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 2021, 118, 220501. [Google Scholar] [CrossRef]
- Reed, G.T.; Knights, A.P. Silicon Photonics: An Introduction, 2nd ed.; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Rahim, A.; Hermans, A.; Wohlfeil, B.; Petousi, D.; Kuyken, B.; Thourhout, D.V.; Baets, R. Taking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologies. Adv. Photonics 2021, 3, 024003. [Google Scholar] [CrossRef]
- Hochberg, M.; Baehr-Jones, T. Silicon Photonics: The Next Fabless Semiconductor Industry. IEEE Solid-State Circuits Mag. 2013, 5, 48–58. [Google Scholar] [CrossRef]
- Doany, F.E.; Schow, C.L.; Lee, B.G.; Budd, R.A.; Kash, J.A. Terabit/s-Class Optical PCB Links Incorporating 360-Gb/s Bidirectional 850 nm Parallel Optical Transceivers. J. Light. Technol. 2012, 30, 560–571. [Google Scholar] [CrossRef]
- Cisco Systems and Accelink Technologies. Accelink and Cisco Collaborate on 1.6 T OSFP-XD Silicon Photonics Transceiver. 2024. Available online: https://www.accelink.com/en/lighting_your_dreams/1772863410472550402.html (accessed on 16 April 2025).
- IBM Corporation. IBM Brings the Speed of Light to the Generative AI Era with Optics Breakthrough. 2024. Available online: https://newsroom.ibm.com/2024-12-09-ibm-brings-the-speed-of-light-to-the-generative-ai-era-with-optics-breakthrough (accessed on 16 April 2025).
- NVIDIA Corporation. NVIDIA Announces Spectrum-X Photonics, Co-Packaged Optics Networking Switches for AI Factories. 2025. Available online: https://nvidianews.nvidia.com/news/nvidia-spectrum-x-co-packaged-optics-networking-switches-ai-factories (accessed on 16 April 2025).
- Tan, M.; Xu, J.; Liu, S.; Feng, J.; Zhang, H.; Yao, C.; Chen, S.; Guo, H.; Han, G.; Wen, Z.; et al. Co-packaged optics (CPO): Status, challenges, and solutions. Front. Optoelectron. 2023, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Broadcom Inc. Broadcom Delivers Industry’s First 51.2-Tbps Co-Packaged Optics Switch. 2024. Available online: https://investors.broadcom.com/news-releases/news-release-details/broadcom-delivers-industrys-first-512-tbps-co-packaged-optics (accessed on 16 April 2025).
- Marvell Technology Group Ltd. Marvell Demonstrates Silicon Photonics Light Engine for Low-Power, Rack-Scale Interconnect in AI Networks. 2025. Available online: https://www.marvell.com/company/newsroom/marvell-demonstrates-silicon-photonics-light-engine-for-low-power-rack-scale-interconnect-in-ai-networks.html (accessed on 16 April 2025).
- Infinera Corporation. Photonic Integrated Circuits Pioneered by Infinera. 2025. Available online: https://www.infinera.com/innovation/photonic-integrated-circuit/ (accessed on 16 April 2025).
- MACOM Technology Solutions. MACOM Enabling Rapid Transition to 400G for Cloud Data Centers with L-PIC Platform. 2017. Available online: https://ir.macom.com/news-releases/news-release-details/macom-enabling-rapid-transition-400g-cloud-data-centers-l-pictm (accessed on 16 April 2025).
- Lightmatter. Lightmatter Unveils Passage M1000 Photonic Superchip, World’s Fastest AI Interconnect. 2025. Available online: https://lightmatter.co/press-release/lightmatter-unveils-passage-m1000-photonic-superchip-worlds-fastest-ai-interconnect/ (accessed on 16 April 2025).
- RANOVUS Inc. ODIN® Single-chip Optical Engine. 2025. Available online: https://ranovus.com/odin/ (accessed on 16 April 2025).
- DustPhotonics. DustPhotonics Expands Silicon Photonics Portfolio with 2xFR4 Products for AI and Hyperscale Data Centers. 2025. Available online: https://www.dustphotonics.com/dustphotonics-expands-silicon-photonics-portfolio-with-2xfr4-products-for-ai-and-hyperscale-data-centers/ (accessed on 17 April 2025).
- Miller, D.A.B. Optical interconnects to electronic chips. Appl. Opt. 2010, 49, F59–F70. [Google Scholar] [CrossRef]
- Shastri, B.J.; Tait, A.N.; Ferreira de Lima, T.B.; Pernice, W.H.P.; Bhaskaran, H.; Wright, C.D.; Prucnal, P.R. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 2021, 15, 102–114. [Google Scholar] [CrossRef]
- Tait, A.N.; Nahmias, M.A.; Tian, Y.; Shastri, B.J.; Prucnal, P.R. Photonic Neuromorphic Signal Processing and Computing. In Nanophotonic Information Physics: Nanointelligence and Nanophotonic Computing; Naruse, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 183–222. [Google Scholar] [CrossRef]
- Mekawey, H.; Elsayed, M.; Ismail, Y.; Swillam, M.A. Optical Interconnects Finally Seeing the Light in Silicon Photonics: Past the Hype. Nanomaterials 2022, 12, 485. [Google Scholar] [CrossRef]
- Bahadori, M.; Rumley, S.; Nikolova, D.; Bergman, K. Comprehensive Design Space Exploration of Silicon Photonic Interconnects. J. Light. Technol. 2016, 34, 2975–2987. [Google Scholar] [CrossRef]
- Rumley, S.; Bahadori, M.; Polster, R.; Hammond, S.D.; Calhoun, D.M.; Wen, K.; Rodrigues, A.; Bergman, K. Optical interconnects for extreme scale computing systems. Parallel Comput. 2017, 64, 65–80. [Google Scholar] [CrossRef]
- Shacham, A.; Bergman, K.; Carloni, L.P. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput. 2008, 57, 1246–1260. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, Z.; Chen, H.; Tsang, H.K.; Tong, Y. Ultra-compact and efficient integrated multichannel mode multiplexer in silicon for few-mode fibers. Laser Photonics Rev. 2024, 18, 2300460. [Google Scholar] [CrossRef]
- IEEE. 2023 IRDS Outside System Connectivity–Co-Packaged Optics and Beyond. 2023. Available online: https://irds.ieee.org/images/files/pdf/2023/2023IRDS_OSC.pdf (accessed on 16 April 2025).
- Dong, P.; Chen, Y.K.; Duan, G.H.; Neilson, D.T. Silicon photonic devices and integrated circuits. Nanophotonics 2014, 3, 215–228. [Google Scholar] [CrossRef]
- Félix Rosa, M.; Rathgeber, L.; Elster, R.; Hoppe, N.; Föhn, T.; Schmidt, M.; Vogel, W.; Berroth, M. Design of a carrier-depletion Mach-Zehnder modulator in 250 nm silicon-on-insulator technology. Adv. Radio Sci. 2017, 15, 269–281. [Google Scholar] [CrossRef]
- Yuan, Y.; Peng, Y.; Sorin, W.V.; Cheung, S.; Huang, Z.; Liang, D.; Fiorentino, M.; Beausoleil, R.G. A 5 × 200 Gbps microring modulator silicon chip empowered by two-segment Z-shape junctions. Nat. Commun. 2024, 15, 918. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Huang, X.; Cui, W.; Ling, Y.; Xu, B.; Zhang, J.; Yi, X.; Wu, B.; Huang, S.W.; Qiu, K.; et al. Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb. Opt. Lett. 2018, 43, 2406–2409. [Google Scholar] [CrossRef]
- Guan, X.; Shi, W.; Rusch, L.A. Ultra-Dense Wavelength-Division Multiplexing With Microring Modulator. J. Light. Technol. 2021, 39, 4300–4306. [Google Scholar] [CrossRef]
- Slook, M.; Bag, S.K.; Katzman, M.; Munk, D.; Kaganovskii, Y.; Rosenbluh, M.; Inbar, N.; Shafir, I.; Dokhanian, L.; Priel, M.; et al. 16-channel O-band silicon-photonic wavelength division multiplexer with a 1 nm channel spacing. Opt. Continuum. 2022, 1, 2135–2145. [Google Scholar] [CrossRef]
- Seiler, P.M.; Georgieva, G.; Winzer, G.; Peczek, A.; Voigt, K.; Lischke, S.; Fatemi, A.; Zimmermann, L. Toward coherent O-band data center interconnects. Front. Optoelectron. 2021, 14, 414–425. [Google Scholar] [CrossRef]
- Blaicher, M.; Billah, M.R.; Kemal, J.; Hoose, T.; Marin-Palomo, P.; Hofmann, A.; Kutuvantavida, Y.; Kieninger, C.; Dietrich, P.I.; Lauermann, M.; et al. Hybrid multi-chip assembly of optical communication engines by in situ 3D nano-lithography. Light Sci. Appl. 2020, 9, 71. [Google Scholar] [CrossRef]
- Wang, J.; Sciarrino, F.; Laing, A.; Thompson, M.G. Integrated photonic quantum technologies. Nat. Photonics 2020, 14, 273–284. [Google Scholar] [CrossRef]
- Sibson, P.; Kennard, J.E.; Peters, N.A.; Miki, S.; Yamashita, T.; Fujiwara, M.; Sasaki, M.; Terai, H.; Tanner, M.G.; Natarajan, C.M.; et al. Chip-based quantum key distribution. Nat. Commun. 2017, 8, 13984. [Google Scholar] [CrossRef]
- PsiQuantum. Building the World’s First Useful Quantum Computers. 2025. Available online: https://www.psiquantum.com/ (accessed on 16 April 2025).
- Zwerver, A.M.J.; Krähenmann, T.; Amitonov, S.V.; Boter, J.M.; Droulers, G.; Lodari, M.; Samkharadze, N.; Zheng, G.; Scappucci, G.; Veldhorst, M.; et al. Qubits made by advanced semiconductor manufacturing. Nat. Electron. 2022, 5, 184–190. [Google Scholar] [CrossRef]
- Agrell, E.; Karlsson, M.; Poletti, F.; Namiki, S.; Chen, X.; Rusch, L.A.; Puttnam, B.; Bayvel, P.; Schmalen, L.; Tao, Z. Roadmap on optical communications. J. Opt. 2024, 26, 093001. [Google Scholar] [CrossRef]
- Nokia. Nokia Showcases Latest Optical Innovations to Network the Cloud for the AI Era at OFC50. 2025. Available online: https://www.nokia.com/about-us/news/releases/2025/03/25/nokia-to-showcase-latest-optical-innovations-to-network-the-cloud-for-the-ai-era-at-ofc50/ (accessed on 16 April 2025).
- Nokia. Nokia Selected by CoreWeave to Provide Networking Backbone for Hyperscale AI Cloud. 2024. Available online: https://www.nokia.com/about-us/news/releases/2024/09/16/nokia-selected-by-coreweave-to-provide-networking-backbone-behind-hyperscale-ai-cloud/ (accessed on 16 April 2025).
- Meng, J.; Miscuglio, M.; George, J.K.; Babakhani, A.; Sorger, V.J. Electronic bottleneck suppression in next-generation networks with integrated photonic digital-to-analog converters. Adv. Photonics Res. 2020, 2, 46–54. [Google Scholar] [CrossRef]
- Bogaerts, W.; Rahim, A. Programmable Photonics: An Opportunity for an Accessible Large-Volume PIC Ecosystem. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–17. [Google Scholar] [CrossRef]
- Lim, C.; Nirmalathas, A. Radio-Over-Fiber Technology: Present and Future. J. Light. Technol. 2021, 39, 881–888. [Google Scholar] [CrossRef]
- Pérez-López, D.; López, A.; DasMahapatra, P.; Capmany, J. Multipurpose self-configuration of programmable photonic circuits. Nat. Commun. 2020, 11, 6359. [Google Scholar] [CrossRef]
- Schmidtke, K. Facebook Sets Challenge for Future Photonic Chips. Available online: https://physicsworld.com/a/facebook-sets-challenge-for-future-photonic-chips/ (accessed on 5 May 2025).
- Brito, J.; Moreno, J.; Contreras, L. Energy-Aware Edge Infrastructure Traffic Management Using Programmable Data Planes in 5G and Beyond. Sensors 2025, 25, 2375. [Google Scholar] [CrossRef]
- Huang, C.; Sorger, V.J.; Miscuglio, M.; Al-Qadasi, M.; Mukherjee, A.; Lampe, L.; Nichols, M.; Tait, A.N.; de Lima, T.F.; Marquez, B.A.; et al. Prospects and applications of photonic neural networks. Adv. Phys. X 2022, 7, 1–63. [Google Scholar] [CrossRef]
- Rahim, A.; Goyvaerts, J.; Szelag, B.; Fedeli, J.-M.; Absil, P.; Aalto, T.; Harjanne, M.; Littlejohns, C.G.; Reed, G.T.; Winzer, G.; et al. Open-access silicon photonics platforms in Europe. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 1–18. [Google Scholar] [CrossRef]
- STMicroelectronics. STMicroelectronics to Launch Data Centre Photonics Chip Developed with Amazon. 2025. Available online: https://www.reuters.com/technology/artificial-intelligence/stmicroelectronics-launch-data-centre-photonics-chip-developed-with-amazon-2025-02-20/ (accessed on 16 April 2025).
- Zhang, W.; Jianping, Y. Silicon-Based Integrated Microwave Photonics. IEEE J. Quantum Electron. 2016, 52, 1–12. [Google Scholar] [CrossRef]
- Ayar Labs. Ayar Labs Demonstrates Industry’s First 4-Tbps Optical Solution for Chip-to-Chip Connectivity. 2023. Available online: https://ayarlabs.com/resources/ayar-labs-demonstrates-industrys-first-4-tbps-optical-solution-for-chip-to-chip-connectivity/ (accessed on 16 April 2025).
- Lightmatter. Photonic AI Acceleration: A New Kind of Computer. 2022. Available online: https://lightmatter.co/blog/a-new-kind-of-computer/ (accessed on 20 June 2025).
- Fahrenkopf, N.M.; McDonough, C.; Leake, G.L.; Su, Z.; Timurdogan, E.; Coolbaugh, D.D. The AIM Photonics MPW: A Highly Accessible Cutting Edge Technology for Rapid Prototyping of Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1. [Google Scholar] [CrossRef]
- PhotonHub Europe. PhotonHub Europe: One-Stop-Shop Open Access to Photonics Innovation Support for a Digital Europe. Available online: https://www.photonhub.eu/ (accessed on 20 June 2025).
- DARPA. Lasers for Universal Microscale Optical Systems (LUMOS). 2023. Available online: https://www.darpa.mil/research/programs/lasers-for-universal-microscale-optical-systems (accessed on 20 June 2025).
- Ding, M.; Feng, Z.; Marpaung, D.; Zhang, X.; Komanec, M.; Suslov, D. Optical Fiber Delay Lines in Microwave Photonics. J. Light. Technol. 2021, 39, 2311–2318. [Google Scholar] [CrossRef]
- Marchetti, R.; Lacava, C.; Carroll, L.; Gradkowski, K.; Minzioni, P. Coupling Strategies for Silicon Photonics Integrated Chips. Photonics Res. 2019, 7, 201–239. [Google Scholar] [CrossRef]
- Michaels, A.; Yablonovitch, E. Inverse Design of Photonic Devices. Nat. Photonics 2020, 14, 439–450. [Google Scholar]
- Trappen, M.; Blaicher, M.; Dietrich, P.-I.; Dankwart, C.; Xu, Y.; Hoose, T.; Billah, M.R.; Abbasi, A.; Baets, R.G.; Troppenz, U.; et al. 3D-printed optical probes for wafer-level testing of photonic integrated circuits. Opt. Express 2020, 28, 37996–38007. [Google Scholar] [CrossRef]
- U.S. Congress. CHIPS and Science Act of 2022. Public Law No: 117-167. 2022. Available online: https://www.congress.gov/bill/117th-congress/house-bill/4346 (accessed on 21 June 2025).
- Lindenmann, N.; Balthasar, G.; Hillerkuss, D.; Schmogrow, R.; Jordan, M.; Leuthold, J.; Freude, W.; Koos, C. Photonic wire bonding: A novel concept for chip-scale interconnects. Opt. Express 2012, 20, 17667–17677. [Google Scholar] [CrossRef]
- MacLellan, B.; Roztocki, P.; Belleville, J.; Cortés, L.R.; Ruscitti, K.; Fischer, B.; Azaña, J.; Morandotti, R. Inverse Design of Photonic Systems. Laser Photonics Rev. 2024, 18, 1–9. [Google Scholar] [CrossRef]
- AlTaha, M.W.; Jayatilleka, H.; Lu, Z.; Chung, J.F.; Celo, D.; Goodwill, D.; Bernier, E.; Mirabbasi, S.; Chrostowski, L.; Shekhar, S. Monitoring and automatic tuning and stabilization of a 2 × 2 MZI optical switch for large-scale WDM switch networks. Opt. Express 2019, 27, 24747–24764. [Google Scholar] [CrossRef]
- Van Campenhout, J. How Silicon Photonics Technology Can Address the Networking Bandwidth Demand in Cloud Datacenters. IMEC. 2023. Available online: https://www.imec-int.com/en/articles/how-silicon-photonics-technology-can-address-networking-bandwidth-demand-cloud-datacenter (accessed on 19 June 2025).
- Raja, A.S.; Lange, S.; Karpov, M.; Pakazad, K.E.K.; Celo, D.; Pfeiffer, M.H.; Kippenberg, T.J. Ultrafast optical circuit switching for data centers using integrated soliton microcombs. Nat. Commun. 2021, 12, 5866. [Google Scholar] [CrossRef]
- Ripla, A. Photonic Data Centers: Transforming Data Centers with Light-Based Technology. LinkedIn 2024. Available online: https://www.linkedin.com/pulse/photonic-data-centers-transforming-light-based-andre-ripla-pgcert-krnke (accessed on 20 June 2025).
- ISE Magazine. How Fiber Optic Technology Meets the Needs of Data Center Interconnect. 2023. Available online: https://www.isemag.com/fttx-optical-networks/article/55235360/how-fiber-optic-technology-meets-the-needs-of-data-center-interconnect (accessed on 20 June 2025).
- Feldmann, J.; Youngblood, N.; Karpov, M.; Gehring, H.; Li, X.; Stappers, M.; Le Gallo, M.; Fu, X.; Lukashchuk, A.; Raja, A.S.; et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 2021, 589, 52–58. [Google Scholar] [CrossRef]
- Slussarenko, S.; Pryde, G.J. Photonic quantum information processing: A concise review. Appl. Phys. Rev. 2019, 6, 041303. [Google Scholar] [CrossRef]
- Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photonics 2017, 2, 030901. [Google Scholar] [CrossRef]
- Fu, T.; Zhang, J.; Sun, R.; Huang, Y.; Xu, W.; Yang, S.; Zhu, Z.; Chen, H. Optical neural networks: Progress and challenges. Light Sci. Appl. 2024, 13, 263. [Google Scholar] [CrossRef] [PubMed]
- NTT Corporation. NTT Innovative Devices to Develop Photonic-Electronic Convergence Hardware. 2024. Available online: https://www.rd.ntt/e/research/JN202105_13599.html (accessed on 20 June 2025).
- Sludds, A.; Hamerly, R.; Englund, D.; Zhong, Z.; Cochrane, J.; Bernstein, L.; Bunandar, D.; Ben Dixon, P.; Hamilton, S.A.; Streshinsky, M.; et al. Delocalized Photonic Deep Learning on the Internet’s Edge. Science 2022, 378, 270–276. [Google Scholar] [CrossRef]
- Qiu, F.; Spring, A.M.; Miura, H.; Maeda, D.; aki Ozawa, M.; Odoi, K.; Yokoyama, S. Athermal Hybrid Silicon/Polymer Ring Resonator Electro-optic Modulator. ACS Photonics 2016, 3, 780–783. [Google Scholar] [CrossRef]
- Wang, K.; Tang, Z.; Wu, Y.; Li, Y.; Wu, T.; Liu, D.; Zhang, S.; Zhang, M. Robust inverse design of digital photonic devices for photonic integrated circuits. Opt. Express 2025, 33, 141–155. [Google Scholar] [CrossRef]
Requirement | Fog Computing | Cloud Computing |
---|---|---|
Speed | Moderate to high, with a focus on real-time or near-real-time processing at the edge. | Very high, optimized for large-scale centralized processing and analytics. |
Energy-Efficiency | Critical due to power-constrained edge environments. | Higher energy tolerance due to centralized infrastructure and advanced cooling. |
Latency | Very low latency (within a few milliseconds) is required for real-time applications. | Higher latency is acceptable (10–100 ms) for non-time-sensitive workloads. |
Scalability | Distributed and modular; must scale across multiple geographic locations. | Centralized scalability via vertical (compute/storage) and horizontal (more nodes) expansion. |
Wireless Communication | Highly dependent, especially for mobile/IoT applications. | Less dependent; typically wired, high-speed links within data centers. |
Fiber Optic Communication | Used to connect Fog nodes to the Cloud or among themselves. | Fundamental for long-distance, high-capacity data center interconnects. |
Capacity | Moderate, supports localized data-processing and short-term storage. | Very high, designed for massive data aggregation, analytics, and long-term storage. |
Figure of Merit | RoF System | CS / ODN / BS Considerations | PIC Research Opportunities |
---|---|---|---|
Cost and Simplicity | Low-cost mm-wave generation and simplified architectures | Use of multiple light sources and integrated components | Explore cost-optimized integrated designs; PICs reduce footprint and simplify maintenance by combining functions on-chip. |
mm-wave Frequency and Bandwidth | Photonic-based mm-wave generation | Integrated CW lasers; cascading limitations | Develop broadband, compact sources; PICs support efficient mm-wave generation with reduced loss and improved integration. |
Spectral Purity and Frequency Accuracy | Low-phase-noise LO and frequency stabilization | Narrow linewidth lasers, interleaving techniques | Enhance spectral purity and tone correlation; PICs improve stability via laser and filter integration. |
Transmission Integrity | Robust modulation and coding | ODN nonlinearities and amplification effects | Optimize transmission quality under distortion; PICs support low-noise integration of key signal processing blocks. |
RF Output Power and Signal Strength | High-efficiency downlink delivery | Remote generation, mm-wave photodiodes | Improve output power and efficiency; PICs enable high-performance photodiode integration. |
Scalability | Tunable and flexible downlink techniques | Configurable RN and multi-wavelength sources | Design adaptable, scalable networks; PICs offer compact WDM and fast wavelength tuning. |
Power Consumption | Energy-efficient transmission schemes | Amplification and BS power optimization | Reduce system-level power use; PICs lower interconnect loss and support compact, low-power designs. |
Reliability and Availability | Self-healing and monitorable architectures | Minimize failure points; integrate restoration features | Design robust systems; PICs integrate monitoring and switching to improve fault tolerance. |
Figures of Merit (QoS) | End-to-end system performance control | Bandwidth and spectral integrity | Ensure consistent service quality; PICs allow fine control over optical signal paths and conditions. |
Application | PIC Sensor | PIC Research Opportunities |
---|---|---|
Smart Cities | PhotonFirst Integrated Sensors for strain and temperature monitoring [30] | PIC-based environmental pollution monitoring networks; real-time air quality and particulate matter detection; high-density PIC arrays for urban gas leak detection |
Integrated Ammonia Senso for environmental gas monitoring [31] | ||
Ultra-Sensitive Refractive Index Gas Sensor [29] | ||
Healthcare and Hospitals | SurfiX Diagnostics’ Photonic Biosensors for medical diagnostics [32] | PIC-based continuous blood monitoring; wearable diagnostics; on-chip hormone/glucose detection; multi-virus diagnostics in handhelds |
PHOSFOS—Flexible Photonic Skins for biomedical sensing [33] | ||
Optimization of Silicon Nitride Platform for virus detection [34,35] | ||
SiN digital Fourier transform spectrometer for a non-invasive glucose monitor [36] | ||
Smart Transportation | INPHOMIR Optical Gyroscope and Lidar Sensors [37] | PIC radar for autonomous vehicles; real-time traffic flow and vibration monitoring |
Low-power Electro-Optic Comb Spectrometer for acceleration sensing [38] | ||
Video Surveillance and Security | High-speed back-illuminated CMOS sensor for photon-counting X-ray imaging [39] | PIC-based hyperspectral cameras; integrated surveillance sensors across visible, IR, and X-ray; edge-AI optimized photonic security networks |
Visible-light silicon nitride-on-silicon waveguide photodetectors [23] | ||
Ge-on-Si CMOS NIR image sensor with microhole pixels [40] | ||
Smart Home, Building, and Industry | MantiSpectra’s Near-IR Sensor for material identification [41] | On-chip VOC detectors for indoor air quality; integrated fire and anomaly detection |
Amazec Photonics Fiber Temperature Sensor [42] | ||
Manufacturing | PhotonFirst Integrated Sensors for pressure and strain [30] | Real-time defect detection in production lines; integrated chemical sensors in smart materials |
PHOSFOS–Flexible Photonic Skins for structural monitoring [33] | ||
Logistics | Nanostructured PIC-based temperature indicator for cold-chain logistics tracking [43] | Photonic temperature and humidity sensing for cold-chain tracking; integrated PIC accelerometers for shock and vibration monitoring; gas/VOC leakage sensors in containers; multi-sensor PIC tags for smart logistics and supply chain transparency |
Tri-axial photonic accelerometer on silicon chip [44] | ||
Mid-IR silicon nitride Volatile Organic Compounds sensor [45] | ||
Energy | PhotonFirst Sensors for structural/thermal monitoring [30] | High-temperature PICs for oil/gas sensing; radiation-resistant sensors for nuclear facilities |
Amazec Photonics Fiber Temperature Sensor [42] |
Topic | State of the Art | PIC Research Opportunities |
---|---|---|
Integration of photonics components | Flip-chip bonding and monolithic integration techniques enable dense photonic–electronic modules for Fog/Cloud applications [49,53,54]. | Develop scalable co-packaging and bonding techniques for heterogeneous material integration. |
Electronic integration | TSVs, 3D stacking, and CMOS compatibility enable high-speed interfacing with low parasitics [49,53]. | Manufacturing of 1 nm transistors and moving into the 0.1 nm region. Optimize co-design strategies for reducing interface loss and enhancing signal integrity. |
Laser transmitter | MACOM’s L-PIC platform and Ranovus’ Odin integrate lasers on PICs for AI/data center use [62,64]. | Enhance monolithic laser integration for reliable, low-threshold, and tunable light sources. |
Semiconductor optical amplifiers | InP-based integration and hybrid platforms extend amplification capabilities [61]. | Improve hybrid integration methods to enable low-noise, high-gain on-chip amplification. |
High-Speed Optical Interconnects | Intel OCI, Cisco OSFP-XD, IBM CPO, NVIDIA Quantum-X800, and Marvell light engine demonstrate high-speed photonic links [3,55,56,57,60]. | Reduce energy consumption and latency while improving bandwidth density at rack and chip scales. |
Energy-Efficiency | Integrated architectures reduce parasitic loss and enable low energy per bit [46,51,52]. | Develop energy-aware PIC design tools and materials with lower thermal and electrical losses. |
Compactness and Scalability | PICs integrate optical functions in compact chips, reducing footprint and improving scalability [46,47,48]. | Advance high-density PIC layouts and integration methods for future ultra-compact modules. |
Optical Switching and Routing | All-optical switching and routing eliminate O/E conversion, reduce latency, and increase agility [66,67,68,71,72]. | Implement programmable optical networks with tunable components for dynamic traffic management. |
Wavelength Division Multiplexing | Integrated WDM multiplexers/demultiplexers support dense, efficient transmission [73,74]. | Increase WDM channel count and reduce crosstalk through improved filtering and thermal tuning. |
Coherent Optics | PICs support QAM, coherent detection, and UDWDM for long-range, high-capacity links [74,78,79,80,81]. | Advance DSP and integration of polarization and phase management for coherent systems. |
Quantum and Advanced Computing | PICs integrate quantum sources, modulators, and detectors for scalable quantum and neuromorphic computing [67,83,84,85,86]. | Co-design photonic platforms with quantum hardware for scalable Fog–Cloud quantum integration. |
Aspect | PIC Benefit | Ref. | PIC Research Opportunities |
---|---|---|---|
Speed | Ultra-fast data rates >800 Gbps per channel enable faster interconnects between compute elements in Cloud fabrics. | [3] | Next-gen optical I/O and photonic chiplets for AI and edge computing acceleration |
Energy Efficiency | Energy usage as low as <1 pJ/bit reduces cooling and operational costs in large-scale data centers. | [113] | Photonic–electronic co-design and ultra-low-power modulation for Fog devices |
Latency | Sub-nanosecond switching using integrated optics minimizes processing delay for real-time Fog applications. | [114] | Hybrid photonic systems for near-instantaneous edge decision-making |
Scalability | High bandwidth density >1 Tbps/mm using CMOS-compatible photonics supports chiplet-based architectures. | [113] | Co-packaged optics and modular PIC platforms for distributed Cloud–Fog scaling |
Capacity | WDM technologies achieve up to 15.3 bps/Hz spectral efficiency for multi-terabit transmission. | [115] | Dense integration of wavelength-selective components and photonic memory |
Flexibility | Reconfigurable optical paths and SDN compatibility allow for dynamic adaptation to workload changes. | [74] | Software-defined photonic routing and dynamic reconfiguration architectures |
Reach | Supports coherent transmission over distances up to 3000 km, suitable for Cloud interconnects. | [116] | Long-haul photonic integration, tunable lasers, and quantum-secured links |
Wireless Communication | PIC-enabled RF-photonic interfaces can support mmWave and 5G/6G edge connectivity. | [67] | Integrated RF-optical transceivers and photonic beamforming for wireless Fog networks |
Optical Fiber Communication | PICs enhance WDM and coherent optics, enabling multi-terabit, long-distance fiber transmission. | [116] | Advanced modulation schemes and programmable PICs for elastic optical networks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañón Ávila, G.A.; Cerroni, W.; Sarmiento-Moncada, A.M. Integrated Photonics for IoT, RoF, and Distributed Fog–Cloud Computing: A Comprehensive Review. Appl. Sci. 2025, 15, 7494. https://doi.org/10.3390/app15137494
Castañón Ávila GA, Cerroni W, Sarmiento-Moncada AM. Integrated Photonics for IoT, RoF, and Distributed Fog–Cloud Computing: A Comprehensive Review. Applied Sciences. 2025; 15(13):7494. https://doi.org/10.3390/app15137494
Chicago/Turabian StyleCastañón Ávila, Gerardo Antonio, Walter Cerroni, and Ana Maria Sarmiento-Moncada. 2025. "Integrated Photonics for IoT, RoF, and Distributed Fog–Cloud Computing: A Comprehensive Review" Applied Sciences 15, no. 13: 7494. https://doi.org/10.3390/app15137494
APA StyleCastañón Ávila, G. A., Cerroni, W., & Sarmiento-Moncada, A. M. (2025). Integrated Photonics for IoT, RoF, and Distributed Fog–Cloud Computing: A Comprehensive Review. Applied Sciences, 15(13), 7494. https://doi.org/10.3390/app15137494