Research on Leaf Area Density Detection in Orchard Canopy Using LiDAR Technology
Abstract
1. Introduction
2. Materials and Methods
2.1. Canopy Leaf Area Density Detection System
2.2. Leaf Area Density Detection Algorithm Based on Leaf Fitting
2.3. Orthogonal Regression Experiment Design
2.4. Laboratory-Simulated Canopy
2.5. Test Verification
3. Results
3.1. Mathematical Model Analysis
3.2. Experiment Verification Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, L.; Liu, J.; Ge, J. Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries. Agric. Water Manag. 2021, 243, 106417. [Google Scholar] [CrossRef]
- Yang, Y.; Tao, Y.; Dou, H.; Xu, J.; Yang, Y.; Bu, Y.; Shan, Z.; Zhou, R. Progress in Research on Ecological Toxicity of Combined Pollution of Pesticide and Heavy Metals. Chin. J. Pestic. Sci. 2021, 23, 10–21. [Google Scholar]
- Guo, Z.; Wu, X.; Jayan, H.; Yin, L.; Xue, S.; El-Seedi, H.R.; Zou, X. Recent developments and applications of surface enhanced Raman scattering spectroscopy in safety detection of fruits and vegetables. Food Chem. 2024, 434, 137469. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.C.; Li, W.; Men, X.H.; Gao, B.J.; Xu, Y.F.; Wei, X.H. Vegetation Detection Based on Spectral Information and Development of a Low-cost Vegetation Sensor for Selective Spraying. Pest Manag. Sci. 2022, 78, 2467–2476. [Google Scholar] [CrossRef]
- Ji, X.; Wang, A.; Wei, X. Precision Control of Spraying Quantity Based on Linear Active Disturbance Rejection Control Method. Agriculture 2021, 11, 761. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Chen, B.T.; Lyu, H.T.; Kang, F.; Jiang, S.J. Research Progress of Orchard Plant Protection Mechanization Technology and Equipment in China. Trans. Chin. Soc. Agric. Eng. 2020, 36, 110–124. [Google Scholar]
- Zhou, Q.; Xue, X.; Chen, C.; Cai, C.; Jiao, Y. Canopy deposition characteristics of different orchard pesticide dose models. Int. J. Agric. Biol. Eng. 2023, 16, 1–6. [Google Scholar] [CrossRef]
- Liu, J.; Abbas, I.; Noor, R.S. Development of Deep Learning-Based Variable Rate Agrochemical Spraying System for Targeted Weeds Control in Strawberry Crop. Agronomy 2021, 11, 1480. [Google Scholar] [CrossRef]
- Zhang, C.F.; Zhai, C.Y.; Zhang, M.; Zhang, C.; Zou, W.; Zhao, C. Staggered-Phase Spray Control: A Method for Eliminating the Inhomogeneity of Deposition in Low-Frequency Pulse-Width Modulation (PWM) Variable Spray. Agriculture 2024, 14, 465. [Google Scholar] [CrossRef]
- Nan, Y.L.; Zhang, H.C.; Zheng, J.Q.; Bian, L.M.; Li, Y.X.; Yang, Y.; Zhang, M.; Ge, Y.F. Estimating Leaf Area Density of Osmanthus Trees Using Ultrasonic Sensing. Biosyst. Eng. 2019, 186, 60–70. [Google Scholar] [CrossRef]
- Oshio, H.; Asawa, T.; Hoyano, A.; Miyasaka, S. Estimation of the Leaf Area Density Distribution of Individual Trees Using High-resolution and Multi-return Airborne LiDAR Data. Remote Sens. Environ. 2015, 166, 116–125. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Gu, R. Research Status and Prospects on Plant Canopy Structure Measurement Using Visual Sensors Based on Three-Dimensional Reconstruction. Agriculture 2020, 10, 462. [Google Scholar] [CrossRef]
- Palleja, T.; Landers, A.J. Real time canopy density estimation using ultrasonic envelope signals in the orchard and vineyard. Comput. Electron. Agric. 2015, 115, 108–117. [Google Scholar] [CrossRef]
- Zhou, H.T.; Jia, W.D.; Li, Y.; Ou, M.X. Method for Estimating Canopy Thickness Using Ultrasonic Sensor Technology. Agriculture 2021, 11, 1011. [Google Scholar] [CrossRef]
- Ou, M.; Hu, T.; Hu, M.; Yang, S.; Jia, W.; Wang, M.; Jiang, L.; Wang, X.; Dong, X. Experiment of Canopy Leaf Area Density Estimation Method Based on Ultrasonic Echo Signal. Agriculture 2022, 12, 1569. [Google Scholar] [CrossRef]
- Qiao, B.Y.; He, X.K.; Wang, Z.C.; Han, L.; Liu, W.H.; Dong, X.; Liang, W.P. Development of Variable-rate Spraying System for High Clearance Wide Boom Sprayer Based on Li DAR Scanning. Trans. Chin. Soc. Agric. Eng. 2020, 36, 89–95. [Google Scholar]
- Gené-Mola, J.; Gregorio, E.; Guevara, J.; Auat, F.; Sanz-Cortiella, R.; Escolà, A.; Llorens, J.; Morros, J.R.; Ruiz-Hidalgo, J.; Vilaplana, V.; et al. Fruit Detection in an Apple Orchard Using a Mobile Terrestrial Laser Scanner. Biosyst. Eng. 2019, 187, 171–184. [Google Scholar] [CrossRef]
- Cheraïet, A.; Naud, O.; Carra, M.; Codis, S.; Lebeau, F.; Taylor, J. An Algorithm to Automate the Filtering and Classifying of 2D LiDAR Data for Site-specific Estimations of Canopy Height and Width in Vineyards. Biosyst. Eng. 2020, 200, 450–465. [Google Scholar] [CrossRef]
- Zeng, L.; Feng, J.; He, L. Semantic Segmentation of Sparse 3D Point Cloud Based on Geometrical Features for Trellis-structured Apple Orchard. Biosyst. Eng. 2020, 196, 46–55. [Google Scholar] [CrossRef]
- Lee, K.H.; Ehsani, R. A Laser Scanner Based Measurement System for Quantification of Citrus Tree Geometric Characteristics. Appl. Eng. Agric. 2009, 25, 777–788. [Google Scholar] [CrossRef]
- Zhang, M.N.; Lv, X.L.; Qiu, W.; Lei, X.H.; Yang, Q.S.; Zhang, D.X. Calculation Method of Leaf Area Density Based on Three-dimensional Laser Point Cloud. Trans. Chin. Soc. Agric. Mach. 2017, 48, 172–178. [Google Scholar]
- Qiujie, L.; Yuxi, X. Total Leaf Area Estimation Based on the Total Grid Area Measured Using Mobile Laser Scanning. Comput. Electron. Agric. 2023, 204, 107503. [Google Scholar]
- Xue, X.Y.; Yang, Z.Y.; Liang, X.Q.; Luo, Q.; Lyu, S.L.; Li, Z. Application and Experiments of the Atomization Mesh Used on the Plant Protection Spraying in Orchard. Trans. Chin. Soc. Agric. Eng. 2022, 38, 1–10. [Google Scholar]
- Cai, J.C.; Wang, X.; Song, J.; Wang, S.L.; Yang, S.; Zhao, C.J. Development of Real-time Laser-scanning System to Detect Tree Canopy Characteristics for Variable-rate Pesticide Application. Int. J. Agric. Biol. Eng. 2017, 10, 155–163. [Google Scholar]
- Cheng, M.; Cai, Z.J.; Wang, N.; Yuan, H.B. System Design for Peanut Canopy Height Information Acquisition Based on LiDAR. Trans. Chin. Soc. Agric. Eng. 2019, 35, 180–187. [Google Scholar]
- Mahmud, M.S.; Zahid, A.; He, L.; Choi, D.; Krawczyk, G.; Zhu, H.P.; Heinemann, P. Development of a LiDAR-guided section-based tree canopy density measurement system for precision spray applications. Comput. Electron. Agric. 2021, 182, 106053. [Google Scholar] [CrossRef]
- Mahmud, M.S.; He, L.; Heinemann, P.; Choi, D.; Zhu, H. Unmanned aerial vehicle based tree canopy characteristics measurement for precision spray applications. Smart Agric. Technol. 2023, 4, 100153. [Google Scholar] [CrossRef]
- Pu, Y.H.; Xu, D.D.; Wang, H.B.; Li, X.; Xu, X. A New Strategy for Individual Tree Detection and Segmentation from Leaf-on and Leaf-off UAV-LiDAR Point Clouds Based on Automatic Detection of Seed Points. Remote Sens. 2023, 15, 1619. [Google Scholar] [CrossRef]
- Luo, S.Z.; Liu, W.W.; Ren, Q.; Wei, H.Q.; Wang, C.; Xi, X.H.; Nie, S.; Li, D.; Ma, D.; Zhou, G.Q. Leaf area index estimation in maize and soybean using UAV LiDAR data. Precis. Agric. 2024, 25, 1915–1932. [Google Scholar] [CrossRef]
- Jejcic, V.; Godesa, T.; Hocevar, M.; Sirok, B.; Malnersic, A.; Stancar, A.; Lesnik, M.; Stajnko, D. Design and testing of an ultrasound system for targeted spraying in orchards. Stroj. Vestn. J. Mech. Eng. 2011, 57, 587–598. [Google Scholar] [CrossRef]
Encodings | Considerations | ||
---|---|---|---|
Canopy Thickness (m) | Detection Distance (m) | Leaf Area Density | |
−r | 0.20 | 1.00 | 2.00 |
−1 | 0.33 | 1.13 | 2.52 |
0 | 0.70 | 1.50 | 4.00 |
1 | 1.07 | 1.87 | 5.48 |
r | 1.20 | 2.00 | 6.00 |
Experiment Number | Factor 1 | Factor 2 | Factor 3 | Canopy Thickness (m) | Detection Distance (m) | Leaf Area Density |
---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 0.58 | 1.63 | 4.52 |
2 | 1 | 1 | −1 | 0.58 | 1.63 | 3.48 |
3 | 1 | −1 | 1 | 0.58 | 1.37 | 4.52 |
4 | 1 | −1 | −1 | 0.58 | 1.37 | 3.48 |
5 | −1 | 1 | 1 | 0.42 | 1.63 | 4.52 |
6 | −1 | 1 | −1 | 0.42 | 1.63 | 3.48 |
7 | −1 | −1 | 1 | 0.42 | 1.37 | 4.52 |
8 | −1 | −1 | −1 | 0.42 | 1.37 | 3.48 |
9 | r | 0 | 0 | 0.80 | 1.50 | 4.00 |
10 | −r | 0 | 0 | 0.20 | 1.50 | 4.00 |
11 | 0 | r | 0 | 0.50 | 2.00 | 4.00 |
12 | 0 | −r | 0 | 0.50 | 1.00 | 4.00 |
13 | 0 | 0 | r | 0.50 | 1.50 | 6.00 |
14 | 0 | 0 | −r | 0.50 | 1.50 | 2.00 |
15 | 0 | 0 | 0 | 0.50 | 1.50 | 4.00 |
16 | 0 | 0 | 0 | 0.50 | 1.50 | 4.00 |
17 | 0 | 0 | 0 | 0.50 | 1.50 | 4.00 |
Experiment Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.70 | 0.80 | 0.90 | 1.00 |
Detection distance (m) | 1.20 | 1.40 | 1.60 | 1.80 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
3.60 | 3.60 | 3.60 | 3.60 | 3.60 | 2.40 | 3.80 | 4.50 | 5.20 | 3.60 | 3.60 | 3.60 | 3.60 |
Number | Canopy Thickness Z1 (m) | Target Distance Z2 (m) | Leaf Area Density | Leaf Blade |
---|---|---|---|---|
1 | 1.07 | 1.87 | 5.48 | 4.18 |
2 | 1.07 | 1.87 | 2.52 | 1.97 |
3 | 1.07 | 1.13 | 5.48 | 4.02 |
4 | 1.07 | 1.13 | 2.52 | 2.43 |
5 | 0.33 | 1.87 | 5.48 | 2.38 |
6 | 0.33 | 1.87 | 2.52 | 1.35 |
7 | 0.33 | 1.13 | 5.48 | 2.09 |
8 | 0.33 | 1.13 | 2.52 | 1.45 |
9 | 1.20 | 1.50 | 4.00 | 3.27 |
10 | 0.20 | 1.50 | 4.00 | 1.76 |
11 | 0.70 | 2.00 | 4.00 | 2.14 |
12 | 1.00 | 2.02 | ||
13 | 0.70 | 1.50 | 6.00 | 3.91 |
14 | 0.70 | 1.50 | 2.00 | 1.16 |
15 | 0.70 | 1.50 | 4.00 | 2.61 |
16 | 0.70 | 1.50 | 4.00 | 2.63 |
17 | 0.70 | 1.50 | 4.00 | 2.69 |
Source | Degrees of Freedom | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
regression (statistics) | 9 | 12.9283 | 1.43648 | 23.08 | 0.000 |
1 | 0.5671 | 0.56711 | 9.11 | 0.019 | |
1 | 0.2782 | 0.27816 | 4.47 | 0.072 | |
1 | 0.1821 | 0.18207 | 2.93 | 0.131 | |
1 | 0.0078 | 0.00781 | 0.13 | 0.734 | |
1 | 0.0002 | 0.00020 | 0.00 | 0.957 | |
1 | 0.0319 | 0.03190 | 0.51 | 0.497 | |
1 | 0.0136 | 0.01362 | 0.22 | 0.654 | |
1 | 0.0300 | 0.03001 | 0.48 | 0.510 | |
1 | 0.1275 | 0.12751 | 2.05 | 0.195 | |
inaccuracies | 7 | 0.4357 | 0.06225 | ||
incoherent | 5 | 0.4323 | 0.08645 | 49.88 | 0.020 |
pure error | 2 | 0.0035 | 0.00173 | ||
add up the total | 16 | 13.3640 |
Experiment Number | Canopy Thickness (m) | Detection Distance (m) | Leaf Area Density | Relative Error (%) | |
---|---|---|---|---|---|
1 | 0.60 | 1.20 | 3.6 | 3.8054 | 5.71 |
2 | 0.60 | 1.40 | 3.6 | 3.7418 | 3.94 |
3 | 0.60 | 1.60 | 3.6 | 3.8977 | 8.27 |
4 | 0.60 | 1.80 | 3.6 | 4.0566 | 12.68 |
5 | 0.60 | 1.50 | 3.6 | 3.9804 | 10.57 |
6 | 0.60 | 1.50 | 2.4 | 2.0932 | −12.78 |
7 | 0.60 | 1.50 | 3.8 | 3.3833 | −10.97 |
8 | 0.60 | 1.50 | 4.5 | 3.7815 | −15.97 |
9 | 0.60 | 1.50 | 5.2 | 4.9319 | −5.16 |
10 | 0.70 | 1.50 | 3.6 | 3.9704 | 10.29 |
11 | 0.80 | 1.50 | 3.6 | 2.9010 | −19.42 |
12 | 0.90 | 1.50 | 3.6 | 2.9621 | −17.72 |
13 | 1.00 | 1.50 | 3.6 | 2.9833 | −17.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, M.; Zhang, Y.; Yu, Z.; Zhang, J.; Jia, W.; Dong, X. Research on Leaf Area Density Detection in Orchard Canopy Using LiDAR Technology. Appl. Sci. 2025, 15, 7411. https://doi.org/10.3390/app15137411
Ou M, Zhang Y, Yu Z, Zhang J, Jia W, Dong X. Research on Leaf Area Density Detection in Orchard Canopy Using LiDAR Technology. Applied Sciences. 2025; 15(13):7411. https://doi.org/10.3390/app15137411
Chicago/Turabian StyleOu, Mingxiong, Yong Zhang, Zhiyong Yu, Jiayao Zhang, Weidong Jia, and Xiang Dong. 2025. "Research on Leaf Area Density Detection in Orchard Canopy Using LiDAR Technology" Applied Sciences 15, no. 13: 7411. https://doi.org/10.3390/app15137411
APA StyleOu, M., Zhang, Y., Yu, Z., Zhang, J., Jia, W., & Dong, X. (2025). Research on Leaf Area Density Detection in Orchard Canopy Using LiDAR Technology. Applied Sciences, 15(13), 7411. https://doi.org/10.3390/app15137411