Real-Time Model Predictive Control for Two-Level Voltage Source Inverters with Optimized Switching Frequency
Abstract
1. Introduction
2. Model of the Voltage Source Inverter
3. Real-Time Implementation of FCS-MPC Techniques
3.1. FCS-MPC: Variable-Switching-Frequency Operation
- 1.
- Obtain measurements of the values for time instant k of the current in the filter () and the voltage in the capacitor ().
- 2.
- Make predictions for the value of the output voltage and current in the filter for time instant considering the voltage that the converter applies in the current period.
- 3.
- Make predictions of the voltage () for time instant for all possible combinations that the converter can generate, using the values calculated at the previous point.
- 4.
- Select the state vector that minimizes the cost function (g).
- 5.
- Apply the states found from the minimization of the cost function.
- 6.
- Wait for the start of the next sampling time and repeat.
3.2. FCS-MPC: Variable Switching Frequency Operation with Switching Frequency Minimization
3.3. Implementation of the Real-Time Study
4. Results and Discussion
4.1. FCS-MPC: Variable-Switching-Frequency Operation
4.1.1. Real-Time Results with Step Change in the Amplitude of the Capacitor Voltage Reference
4.1.2. Real-Time Results with Step Change in the Frequency of the Capacitor Voltage Reference
4.1.3. THD for Capacitor Voltage with Different Sampling Frequencies
4.2. FCS-MPC: Variable-Switching-Frequency Operation with Switching-Frequency Minimization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2L-VSI | Two-level voltage source inverter |
3L-NPC | Three-level neutral-point clamped inverter |
4L-NNPC | Four-level nested neutral-point clamped inverter |
AC | Alternating current |
ACME | Active common-mode elimination |
CB-PWM | Carrier-based pulse-width modulation |
CCS-MPC | Continuous-control-set model predictive control |
CMV | Common-mode voltage |
EMI | Electromagnetic interference |
FCS-MPC | Finite-control-set model predictive control |
FPGA | Field-programmable gate array |
HIL | Hardware in the loop |
I/O | Input–output |
kHz | Kilohertz |
LC | Inductor–capacitor |
LCL | Inductor–capacitor–inductor |
LC-MPC | Low-complexity model predictive control |
MPC | Model predictive control |
MPDCC | Model predictive direct current control |
MPVC | Model predictive voltage control |
NPC | Neutral point clamped |
MRFCS-MPC | Multirate finite-control-set model predictive control |
MR-MPC | Multirate model predictive control |
MIMO | Multi-input, multi-output |
OST-M2PC | Optimal switching time-modulated model predictive control |
PCA | Period control approach |
PCC | Point of common coupling |
PWM | Pulse-width modulation |
QP | Quadratic program |
RL | Resistor–inductor |
RTS | Real-time simulator |
SVM | Space vector modulation |
THD | Total harmonic distortion |
VF-CSS MPC | Variable-frequency critical soft-switching model predictive control |
VSCS | Variable-switching constant-sampling frequency |
VSI | Voltage source inverter |
Appendix A
Sampling Rate [kHz] | Linear Load, Step | Linear Load, Step | Non-linear Load, Step | Non-linear Load, Step |
---|---|---|---|---|
10 | 24.73% | 24.45% | 11.37% | 20.81% |
11.5 | 17.71% | 14.89% | 23.28% | 12.80% |
20 | 2.69% | 2.57% | 1.13% | 1.04% |
40 | 0.43% | 0.06% | 0.35% | 0.43% |
60 | 0.14% | 0.20% | 0.30% | 0.39% |
80 | 0.08% | 0.14% | 0.28% | 0.37% |
100 | 0.14% | 0.10% | 0.25% | 0.30% |
120 | 0.06% | 0.04% | 0.22% | 0.29% |
150 | 0.09% | 0.10% | 0.17% | 0.25% |
200 | 0.09% | 0.04% | 0.20% | 0.26% |
References
- Ahmed, M.H.; Wang, M.; Hassan, M.A.S.; Ullah, I. Power Loss Model and Efficiency Analysis of Three-Phase Inverter Based on SiC MOSFETs for PV Applications. IEEE Access 2019, 7, 75768–75781. [Google Scholar] [CrossRef]
- Calligaro, S.; Pasut, F.; Petrella, R.; Pevere, A. Modulation techniques for three-phase three-level NPC inverters: A review and a novel solution for switching losses reduction and optimal neutral-point balancing in photovoltaic applications. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; pp. 2997–3004. [Google Scholar] [CrossRef]
- Zhang, Z.; Bazzi, A.M. Common-Mode Voltage Reduction in VSI-Fed Motor Drives With an Integrated Active Zero-State Switch. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 3371–3382. [Google Scholar] [CrossRef]
- Bai, H.; Wang, X.; Blaabjerg, F.; Loh, P.C. Harmonic Analysis and Mitigation of Low-Frequency Switching Voltage Source Inverter With Auxiliary VSI. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1355–1365. [Google Scholar] [CrossRef]
- Tareen, W.U.K.; Mekhielf, S. Three-Phase Transformerless Shunt Active Power Filter With Reduced Switch Count for Harmonic Compensation in Grid-Connected Applications. IEEE Trans. Power Electron. 2018, 33, 4868–4881. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Yang, Y.; Kim, K.A.; Rodriguez, J. Power Electronics Technology for Large-Scale Renewable Energy Generation. Proc. IEEE 2023, 111, 335–355. [Google Scholar] [CrossRef]
- Peng, F.Z.; Liu, C.C.; Li, Y.; Jain, A.K.; Vinnikov, D. Envisioning the Future Renewable and Resilient Energy Grids—A Power Grid Revolution Enabled by Renewables, Energy Storage, and Energy Electronics. IEEE J. Emerg. Sel. Top. Ind. Electron. 2023, 5, 8–26. [Google Scholar] [CrossRef]
- Bakini, H.; Mesbahi, N.; Kermadi, M.; Mekhilef, S.; Zahraoui, Y.; Mubin, M.; Seyedmahmoudian, M.; Stojcevski, A. An Improved Mutated Predictive Control for Two-Level Voltage Source Inverter With Reduced Switching Losses. IEEE Access 2024, 12, 25797–25808. [Google Scholar] [CrossRef]
- Rasoanarivo, I.; Tehrani, K.; Scalcon, F.P.; Nahid-Mobarakeh, B. A Dual Multilevel Adaptive Converter for Microgrid Applications. In Proceedings of the 48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 17–20 October 2022; Volume 2022. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, S.M.; Lee, K.B. Modified Phase-Shifted PWM Scheme for Reliability Improvement in Cascaded H-Bridge Multilevel Inverters. IEEE Access 2020, 8, 78130–78139. [Google Scholar] [CrossRef]
- Chamarthi, P.K.; Muduli, U.R.; Moursi, M.S.E.; Al-Durra, A.; Al-Sumaiti, A.S.; Hosani, K.A. Improved PWM Approach for Cascaded Five-Level NPC H-Bridge Configurations in Multilevel Inverter. IEEE Trans. Ind. Appl. 2024, 60, 7048–7060. [Google Scholar] [CrossRef]
- Wang, L.; He, J.; Han, T.; Zhao, T. Finite Control Set Model Predictive Control with Secondary Problem Formulation for Power Loss and Thermal Stress Reductions. IEEE Trans. Ind. Appl. 2020, 56, 4028–4039. [Google Scholar] [CrossRef]
- Vargas, R.; Ammann, U.; Rodríguez, J. Predictive approach to increase efficiency and reduce switching losses on matrix converters. IEEE Trans. Power Electron. 2009, 24, 894–902. [Google Scholar] [CrossRef]
- Long, B.; Shen, D.; Cao, T.; Rodriguez, J.; Garcia, C.; Guerrero, J.M.; Chong, K.T. Power Losses Reduction of T-Type Grid-Connected Converters Based on Tolerant Sequential Model Predictive Control. IEEE Trans. Power Electron. 2022, 37, 9089–9103. [Google Scholar] [CrossRef]
- Tran, M.T.; Tran, D.D.; Deepak, K.; Martin, G.E.; Bay, O.; Baghdadi, M.E.; Hegazy, O. A High Performance GaN Power Module with Parallel Packaging for High Current and Low Voltage Traction Inverter Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2025, 13, 1188–1209. [Google Scholar] [CrossRef]
- Kougioulis, I.; Zanchetta, P.; Wheeler, P.; Ahmed, M.R. On Optimized Modulation Strategies for Electric Vehicle Integrated On-board Chargers. IEEE Trans. Ind. Appl. 2025, 61, 714–725. [Google Scholar] [CrossRef]
- Ramirez, R.O.; Baier, C.R.; Villarroel, F.; Espinoza, J.R.; Pou, J.; Rodriguez, J. A Hybrid FCS-MPC with Low and Fixed Switching Frequency without Steady-State Error Applied to a Grid-Connected CHB Inverter. IEEE Access 2020, 8, 223637–223651. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, H.; Li, C.; Lang, X.; Yeoh, S.S.; Yang, T.; Rivera, M.; Bozhko, S.; Wheeler, P. A Low-Complexity Optimal Switching Time-Modulated Model-Predictive Control for PMSM with Three-Level NPC Converter. IEEE Trans. Transp. Electrif. 2020, 6, 1188–1198. [Google Scholar] [CrossRef]
- Panten, N.; Hoffmann, N.; Fuchs, F.W. Finite Control Set Model Predictive Current Control for Grid-Connected Voltage-Source Converters with LCL Filters: A Study Based on Different State Feedbacks. IEEE Trans. Power Electron. 2016, 31, 5189–5200. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, T.; He, J. Investigation of Variable Switching Frequency in Finite Control Set Model Predictive Control on Grid-Connected Inverters. IEEE Open J. Ind. Appl. 2021, 2, 178–193. [Google Scholar] [CrossRef]
- Korada, D.M.R.; Mishra, M.K. Fixed Switching Frequency Model Predictive Current Control for Grid-Connected Inverter With Improved Dynamic and Steady State Performance. IEEE Access 2023, 11, 104094–104105. [Google Scholar] [CrossRef]
- Karamanakos, P.; Nahalparvari, M.; Geyer, T. Fixed Switching Frequency Direct Model Predictive Control With Continuous and Discontinuous Modulation for Grid-Tied Converters With LCL Filters. IEEE Trans. Control. Syst. Technol. 2020, 29, 1503–1518. [Google Scholar] [CrossRef]
- Yang, X.; Fang, Y.; Fu, Y.; Mi, Y.; Li, H.; Wang, Y. Low-Complexity Model Predictive Control of AC/DC Converter with Constant Switching Frequency. IEEE Access 2020, 8, 137975–137985. [Google Scholar] [CrossRef]
- Xu, S.; Sun, Z.; Yao, C.; Zhang, H.; Hua, W.; Ma, G. Model Predictive Control With Constant Switching Frequency for Three-Level T-Type Inverter-Fed PMSM Drives. IEEE Trans. Ind. Electron. 2022, 69, 8839–8850. [Google Scholar] [CrossRef]
- Xue, C.; Ding, L.; Tian, H.; Li, Y. Multirate Finite-Control-Set Model Predictive Control for High Switching Frequency Power Converters. IEEE Trans. Ind. Electron. 2022, 69, 3382–3392. [Google Scholar] [CrossRef]
- Xue, C.; Ding, L.; Quan, Z.; Li, Y. Multirate Modeling and Predictive Control for WBG-Device-Based High-Switching-Frequency Power Converters. IEEE Trans. Ind. Electron. 2024, 71, 93–103. [Google Scholar] [CrossRef]
- Karamanakos, P.; Liegmann, E.; Geyer, T.; Kennel, R. Model Predictive Control of Power Electronic Systems: Methods, Results, and Challenges. IEEE Open J. Ind. Appl. 2020, 1, 95–114. [Google Scholar] [CrossRef]
- Bordons, C.; Montero, C. Basic Principles of MPC for Power Converters: Bridging the Gap between Theory and Practice. IEEE Ind. Electron. Mag. 2015, 9, 31–43. [Google Scholar] [CrossRef]
- Young, H.A.; Perez, M.A.; Rodriguez, J. Analysis of Finite-Control-Set Model Predictive Current Control With Model Parameter Mismatch in a Three-Phase Inverter. IEEE Trans. Ind. Electron. 2016, 63, 3100–3107. [Google Scholar] [CrossRef]
- Youness, H.; Ahmed, G.; Mohamed, T.; Benachir, E.H. Model Predictive Control for Enhanced Inverter Management in Electric Vehicle Charging. In Proceedings of the 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology, IRASET 2024, Fez, Morocco, 16–17 May 2024. [Google Scholar] [CrossRef]
- Poonahela, I.; Bayhan, S.; Abu-Rub, H.; Begovic, M.M.; Shadmand, M.B. An Effective Finite Control Set-Model Predictive Control Method for Grid Integrated Solar PV. IEEE Access 2021, 9, 144481–144492. [Google Scholar] [CrossRef]
- Kusuma, E.; Eswar, K.M.R.; Kumar, T.V. An Effective Predictive Torque Control Scheme for PMSM Drive without Involvement of Weighting Factors. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 2685–2697. [Google Scholar] [CrossRef]
- Mirzaeva, G.; Mo, Y. Model Predictive Control for Industrial Drive Applications. IEEE Trans. Ind. Appl. 2023, 59, 7897–7907. [Google Scholar] [CrossRef]
- Dragičević, T.; Novak, M. Weighting Factor Design in Model Predictive Control of Power Electronic Converters: An Artificial Neural Network Approach. IEEE Trans. Ind. Electron. 2019, 66, 8870–8880. [Google Scholar] [CrossRef]
- Vargas, R.; Ammann, U.; Rodriguez, J.; Pontt, J. Reduction of switching losses and increase in efficiency of power converters using predictive control. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 1062–1068. [Google Scholar] [CrossRef]
- Yang, Q.; Karamanakos, P.; Tian, W.; Gao, X.; Li, X.; Geyer, T.; Kennel, R. Computationally Efficient Fixed Switching Frequency Direct Model Predictive Control. IEEE Trans. Power Electron. 2022, 37, 2761–2777. [Google Scholar] [CrossRef]
- Yang, Q.; Karamanakos, P.; Liegmann, E.; Tian, W.; Geyer, T.; Kennel, R.; Heldwein, M.L. A Fixed Switching Frequency Direct Model Predictive Control for Neutral-Point-Clamped Three-Level Inverters with Induction Machines. IEEE Trans. Power Electron. 2023, 38, 13703–13716. [Google Scholar] [CrossRef]
- Alawieh, H.; Tehrani, K.A.; Azzouz, Y.; Dakyo, B. A New Active Common-Mode Voltage Elimination Method For Three-Level Neutral-Point Clamped Inverters. In Proceedings of the IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October–1 November 2014. [Google Scholar] [CrossRef]
- Tomlinson, M.; Mouton, H.D.T.; Kennel, R.; Stolze, P. A Fixed Switching Frequency Scheme for Finite-Control-Set Model Predictive Control-Concept and Algorithm. IEEE Trans. Ind. Electron. 2016, 63, 7662–7670. [Google Scholar] [CrossRef]
- Vazquez, S.; Aguilera, R.P.; Acuna, P.; Pou, J.; Leon, J.I.; Franquelo, L.G.; Agelidis, V.G. Model Predictive Control for Single-Phase NPC Converters Based on Optimal Switching Sequences. IEEE Trans. Ind. Electron. 2016, 63, 7533–7541. [Google Scholar] [CrossRef]
- Monfared, K.K.; Iman-Eini, H.; Neyshabouri, Y.; Liserre, M. Model Predictive Control With Reduced Common-Mode Voltage Based on Optimal Switching Sequences for Nested Neutral Point Clamped Inverter. IEEE Trans. Ind. Electron. 2024, 71, 27–38. [Google Scholar] [CrossRef]
- Zheng, C.; Dragicevic, T.; Zhang, Z.; Rodriguez, J.; Blaabjerg, F. Model Predictive Control of LC-Filtered Voltage Source Inverters with Optimal Switching Sequence. IEEE Trans. Power Electron. 2021, 36, 3422–3436. [Google Scholar] [CrossRef]
- Aguirre, M.; Kouro, S.; Rojas, C.A.; Rodriguez, J.; Leon, J.I. Switching Frequency Regulation for FCS-MPC Based on a Period Control Approach. IEEE Trans. Ind. Electron. 2018, 65, 5764–5773. [Google Scholar] [CrossRef]
- Aguirre, M.; Vazquez, S.; Alcaide, A.M.; Portillo, R.; Kouro, S.; Leon, J.I.; Franquelo, L. Period Control Approach Finite Control Set Model Predictive Control Switching Phase Control for Interleaved DC/DC Converters. IEEE Trans. Ind. Electron. 2024, 71, 8304–8312. [Google Scholar] [CrossRef]
- Zhou, L.; Jahnes, M.; Preindl, M. Modular Model Predictive Control of a 15-kW, Kilo-to-Mega-Hertz Variable-Frequency Critical-Soft-Switching Nonisolated Grid-Tied Inverter with High Efficiency. IEEE Trans. Power Electron. 2022, 37, 12591–12605. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; Xu, C.; Fan, S. Multimode Model Predictive Control for PMSM Drive System. IEEE Trans. Transp. Electrif. 2023, 9, 667–677. [Google Scholar] [CrossRef]
- Rivera, M.; Rojas, D.; Wheeler, P. The Selection of Cost Functions in Model Predictive Control Applications. In Proceedings of the 2021 21st International Symposium on Power Electronics (Ee), Novi Sad, Serbia, 27–30 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Rodriguez, J.; Garcia, C.; Mora, A.; Flores-Bahamonde, F.; Acuna, P.; Novak, M.; Zhang, Y.; Tarisciotti, L.; Davari, S.A.; Zhang, Z.; et al. Latest Advances of Model Predictive Control in Electrical Drives - Part I: Basic Concepts and Advanced Strategies. IEEE Trans. Power Electron. 2022, 37, 3927–3942. [Google Scholar] [CrossRef]
- Lin, C.H.; Farooqui, S.A.; Liu, H.D.; Huang, J.J.; Fahad, M. Finite Control Set Model Predictive Control (FCS-MPC) for Enhancing the Performance of a Single-Phase Inverter in a Renewable Energy System (RES). Mathematics 2023, 11, 4553. [Google Scholar] [CrossRef]
- Garcia, C.; Mora, A.; Norambuena, M.; Rodriguez, J.; Aly, M.; Carnielutti, F.; Pereda, J.; Acuna, P.; Aguilera, R.; Tarisciotti, L. Model Predictive Control in Multilevel Inverters Part I: Basic Strategy and Performance Improvement. IEEE Open J. Ind. Appl. 2024, 5, 428–441. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, S.; Feng, L.; Li, Z.; Feng, J. An Optimized Model Predictive Control Method for Hybrid ANPC with Fixed Switching Frequency. IEEE J. Emerg. Sel. Top. Power Electron. 2025, 13, 2246–2257. [Google Scholar] [CrossRef]
- Preindl, M.; Schaltz, E.; Thøgersen, P. Switching frequency reduction using model predictive direct current control for high-power voltage source inverters. IEEE Trans. Ind. Electron. 2011, 58, 2826–2835. [Google Scholar] [CrossRef]
- Villalón, A.; Muñoz, C.; Muñoz, J.; Rivera, M. A Detailed dSPACE-Based Implementation of Modulated Model Predictive Control for AC Microgrids. Sensors 2023, 23, 6288. [Google Scholar] [CrossRef]
- OPAL-RT. Power Electronics Control Testing in Real-Time; OPAL-RT: Montréal, QC, Canada, 2024. [Google Scholar]
- Liu, W.; Kim, J.M.; Wang, C.; Im, W.S.; Liu, L.; Xu, H. Power converters based advanced experimental platform for integrated study of power and controls. IEEE Trans. Ind. Inform. 2018, 14, 4940–4952. [Google Scholar] [CrossRef]
- Santander, V.P. Desarrollo de Técnicas de Control Predictivo de Voltaje en un Convertidor VSI de 2 Niveles. Ph.D. Thesis, Universidad de Talca, Talca, Chile, 2022; pp. 1–165. [Google Scholar]
- Mohamed, I.S.; Zaid, S.A.; Elsayed, H.M.; Abu-Elyazeed, M.F. Three-phase inverter with output LC filter using predictive control for UPS applications. In Proceedings of the 2013 International Conference on Control, Decision and Information Technologies (CoDIT), Hammamet, Tunisia, 6–8 May 2013; pp. 489–494. [Google Scholar] [CrossRef]
- Pirooz, A.; Noroozian, R. Predictive Voltage Control of Three-Phase Voltage Source Inverters to Supply Nonlinear and Unbalanced Loads. In Proceedings of the The 6th International Power Electronics Drive Systems and Technologies Conference (PEDSTC2015), Tehran, Iran, 3–4 February 2015; pp. 389–394. [Google Scholar] [CrossRef]
- IEEE Std 519-2022; IEEE Standard for Harmonic Control in Electric Power Systems. (Revision of IEEE Std 519-2014). IEEE: Piscataway, NJ, USA, 2022; pp. 1–31. [CrossRef]
- Bélanger, J.; Venne, P.; Paquin, J.N. The What, Where and Why of Real-Time Simulation. Planet Rt 2010, 1, 25–29. [Google Scholar]
Vector | ||||||
---|---|---|---|---|---|---|
0 | 0 | 0 | 1 | 1 | 1 | |
1 | 0 | 0 | 0 | 1 | 1 | |
1 | 1 | 0 | 0 | 0 | 1 | |
0 | 1 | 0 | 1 | 0 | 1 | |
0 | 1 | 1 | 1 | 0 | 0 | |
0 | 0 | 1 | 1 | 1 | 0 | |
1 | 0 | 1 | 0 | 1 | 0 | |
1 | 1 | 1 | 0 | 0 | 0 |
Parameter | Symbol | Value |
---|---|---|
DC voltage | 580 V | |
Filter inductance | 2.2 mH | |
Filter capacitance | 20 F | |
Resistance in linear load | 15 | |
Resistance in non-linear load | 10 | |
Capacitance in non-linear load | 10 F |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalón, A.; Burgos-Mellado, C.; Rivera, M.; Zuloaga, R.; Levis, H.; Wheeler, P.; García, L.Y. Real-Time Model Predictive Control for Two-Level Voltage Source Inverters with Optimized Switching Frequency. Appl. Sci. 2025, 15, 7365. https://doi.org/10.3390/app15137365
Villalón A, Burgos-Mellado C, Rivera M, Zuloaga R, Levis H, Wheeler P, García LY. Real-Time Model Predictive Control for Two-Level Voltage Source Inverters with Optimized Switching Frequency. Applied Sciences. 2025; 15(13):7365. https://doi.org/10.3390/app15137365
Chicago/Turabian StyleVillalón, Ariel, Claudio Burgos-Mellado, Marco Rivera, Rodrigo Zuloaga, Héctor Levis, Patrick Wheeler, and Leidy Y. García. 2025. "Real-Time Model Predictive Control for Two-Level Voltage Source Inverters with Optimized Switching Frequency" Applied Sciences 15, no. 13: 7365. https://doi.org/10.3390/app15137365
APA StyleVillalón, A., Burgos-Mellado, C., Rivera, M., Zuloaga, R., Levis, H., Wheeler, P., & García, L. Y. (2025). Real-Time Model Predictive Control for Two-Level Voltage Source Inverters with Optimized Switching Frequency. Applied Sciences, 15(13), 7365. https://doi.org/10.3390/app15137365