Fuzzy MCDM Methodology for Analysis of Fibre Laser Cutting Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Research
2.2. Fuzzy MCDM Methodology
- Fuzzy Technique for the Order Preference by Similarity to Ideal Solution (TOPSIS-F), as an extension of the regular TOPSIS method proposed by Wang et al. [37].
- Fuzzy Weighted Aggregated Sum Product ASsessment (WASPAS-F) method proposed by Turskis et al. [38].
- Fuzzy Additive Ratio ASsessment (ARAS-F) method conceptualized and proposed by Turskis and Zavadskas [39].
3. Results and Discussion
3.1. Ranking of Alternatives and Analysis of Results
3.2. Comparison of Ranking Lists Obtained by Different Fuzzy MCDM Methods
3.3. Sensitivity Analysis of Ranking Lists
3.4. Modelling of the Aggregate Fuzzy Decision-Making Rule
3.5. Practicality and Feasibility of the Approach
- Merging qualitative (linguistic) and quantitative data from multiple decision makers (engineers and operators), i.e., cross-functional teams, with the possibility of handling imprecise judgments and decision makers’ opinions (e.g., “moderate dross”, or “acceptable kerf geometry”), as well as data variability and uncertainty (due to the actual cutting process or measurement system).
- Existence of multiple conflicting processing and cut quality characteristics that characterize the laser cutting technology (e.g., cutting costs, kerf width, kerf taper, productivity, dross existence, surface roughness, etc.), the absence of a single optimal cutting condition and the necessity to determine the ‘as good as possible’ trade-off solution(s) for a given case study (sheet thickness and material type, required cut specifications, type of laser cutting method, etc.).
- Screening the key input parameters that are of the greatest importance among numerous input parameters to adequately consider their adjustments and guide further experimental hyper-space exploration in order to achieve more favourable cutting results.
4. Conclusions
- Laser cutting conditions in which a small cutting speed is used, or a combination of high cutting speed and low focus position, are less preferable with respect to meeting the considered criteria and associated significance levels.
- Generally consistent rankings of alternatives were obtained by the applied fuzzy MCDM methods, with highly positive associations.
- The conducted analysis, with respect to sensitivity of final ranks to the criteria weights changes, showed a high level of stability of individual solutions, even in cases of significant changes in the weighting coefficients.
- The development and statistical analysis of the mathematical model for the approximation of the fuzzy MCDM decision-making rule revealed statistically significant linear and quadratic effects of the cutting speed.
- The possibility to determine the resulting utility through the contour diagram for arbitrarily chosen input values is very important, considering that drastically different laser cutting conditions may achieve the same result. Moreover, through optimization, one can reveal the most preferable input parameter value combination.
- Unlike classical multi-objective optimization, based on the use of multiple models for each response, the applied approach lacks prediction of individual response values for a given combination of input parameter values, which makes it not very convenient for the selection of a particular solution in the presence of specific requirements and constraints.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AHP | Analytic Hierarchy Process |
ARAS | Additive Ratio ASsessment |
ARAS-F | Fuzzy Additive Ratio ASsessment |
CMM | Coordinate Measuring Machine |
DMP | Decision-Making Problem |
HAZ | Heat Affected Zone |
MCDM | Multi-Criteria Decision-Making |
TOPSIS | Technique for the Order Preference by Similarity to Ideal Solution |
TOPSIS-F | Fuzzy Technique for the Order Preference by Similarity to Ideal Solution |
WASPAS | Weighted Aggregated Sum Product ASsessment |
WASPAS-F | Fuzzy Weighted Aggregated Sum Product ASsessment |
References
- Zhang, Y.; Wang, C.; Xu, W.; Zhang, X.; Ren, K.; Wang, S.; Hua, Q. Laser Cutting of Titanium Alloy Plates: A Review of Processing, Microstructure, and Mechanical Properties. Metals 2024, 14, 1152. [Google Scholar] [CrossRef]
- Madić, M.; Jovanović, D.; Janković, P. Fiber Laser Cutting Technology: Pilot Case Study in Mild Steel Cutting. Spectr. Mech. Eng. Oper. Res. 2024, 1, 1–9. [Google Scholar] [CrossRef]
- Bohdal, Ł.; Schmidtke, D. Effect of fiber and CO2 lasers parameters on the cut surface quality of RVS 1.4301 stainless steel. J. Mech. Eng. Sci. 2022, 16, 8862–8872. [Google Scholar] [CrossRef]
- Riveiro, A.; Quintero, F.; Lusquiños, F.; Comesaña, R.; Pou, J. Study of melt flow dynamics and influence on quality for CO2 laser fusion cutting. J. Phys. D Appl. Phys. 2011, 44, 135501. [Google Scholar] [CrossRef]
- Madić, M.; Girdu, C.C.; Marinković, D.; Janković, P.; Trifunović, M. Analysis of Kerf Width and its Variation in CO2 Laser Cutting of Straight and Curved Cut Profiles. Teh. Vjesn. Tech. Gaz. 2024, 31, 1884–1891. [Google Scholar] [CrossRef]
- Tercan, H.; Al Khawli, T.; Eppelt, U.; Büscher, C.; Meisen, T.; Jeschke, S. Use of Classification Techniques to Design Laser Cutting Processes. Procedia CIRP 2016, 52, 292–297. [Google Scholar] [CrossRef]
- Alsaadawy, M.; Dewidar, M.; Said, A.; Maher, I.; Shehabeldeen, T.A. A comprehensive review of studying the influence of laser cutting parameters on surface and kerf quality of metals. Int. J. Adv. Manuf. Technol. 2024, 130, 1039–1074. [Google Scholar] [CrossRef]
- Madić, M.; Antucheviciene, J.; Radovanović, M.; Petković, D. Determination of laser cutting process conditions using the preference selection index method. Opt. Laser Technol. 2017, 89, 214–220. [Google Scholar] [CrossRef]
- Nas, E.; Uzuner, S. Optimization of laser cutting parameters for improved surface quality in AISI 304 stainless steel. Gazi J. Eng. Sci. 2023, 9, 654–662. [Google Scholar] [CrossRef]
- Turkkan, Y.A.; Aslan, M.; Tarkan, A.; Aslan, Ö.; Yuce, C.; Yavuz, N. Multi-Objective Optimization of Fiber Laser Cutting of Stainless-Steel Plates Using Taguchi-Based Grey Relational Analysis. Metals 2023, 13, 132. [Google Scholar] [CrossRef]
- Prabhahar, M.; Praveen Athitya, M.; Thiru Chitrambalam, M.; Prabhu, L.; Prakash, S. Experimental investigation of MS material in laser cutting machine using Taguchi method. In Proceedings of the International Conference on Physics and Energy 2021, Kancheepuram, Tamilnadu, India, 21 April 2021. [Google Scholar] [CrossRef]
- Tamilarasan, A.; Renugambal, A.; Rajamani, D.; Shaik, M. Experiment-based process modelling and analysis in Nd:YAG laser cutting of Hastelloy C-276: RSM-CCD technique. OPSEARCH 2024, 62, 661–681. [Google Scholar] [CrossRef]
- Hasan, H.K. Analysis of the effecting parameters on laser cutting process by using response surface methodology (RSM) method. J. Achiev. Mater. Manuf. Eng. 2022, 110, 59–66. [Google Scholar] [CrossRef]
- Younis, M. Surface roughness study of laser cut surface. J. Egypt. Soc. Tribol. 2022, 19, 63–71. [Google Scholar] [CrossRef]
- Genna, S.; Menna, E.; Rubino, G.; Tagliaferri, V. Experimental Investigation of Industrial Laser Cutting: The Effect of the Material Selection and the Process Parameters on the Kerf Quality. Appl. Sci. 2020, 10, 4956. [Google Scholar] [CrossRef]
- Ürgün, S.; Yiğit, H.; Fidan, S.; Sınmazçelik, T. Optimization of Laser Cutting Parameters for PMMA Using Metaheuristic Algorithms. Arab. J. Sci. Eng. 2024, 49, 12333–12355. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Fountas, N.A.; Ninikas, K.; Vaxevanidis, N.M. Kerf Geometry and Surface Roughness Optimization in CO2 Laser Processing of FFF Plates Utilizing Neural Networks and Genetic Algorithms Approaches. J. Manuf. Mater. Process. 2023, 7, 77. [Google Scholar] [CrossRef]
- Nikitjuk, Y.; Prokhorenko, V.; Semchenko, A.; Kovalenko, D. Multi-Criteria Optimization of Quartz Glass Laser Cleaving Parameters via Neural Network Simulation and Genetic Algorithm. In Proceedings of the 2023 7th International Conference on Information, Control, and Communication Technologies (ICCT), Astrakhan, Russia, 2–6 October 2023. [Google Scholar] [CrossRef]
- Vagheesan, S.; Govindarajulu, J. Comparative Regression and Neural Network Modeling of Roughness and Kerf Width in CO2 Laser Cutting of Aluminium. Teh. Vjesn. Tech. Gaz. 2021, 28, 1437–1441. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Deng, W.; Showaib, E.A. Improving laser cutting quality of polymethylmethacrylate sheet: Experimental investigation and optimization. J. Mater. Res. Technol. 2020, 9, 1325–1339. [Google Scholar] [CrossRef]
- Blaga, F.S.; Cristea, A.; Nastor, G.; Pop, A.; Buidos, T.; Lucaciu, I. Fuzzy set decision-making system for determining the technological parameters of the laser cutting process. In Proceedings of the International Conference Annual Session of Scientific Papers—IMT Oradea 2022, Oradea, Romania, 7–8 July 2022. [Google Scholar] [CrossRef]
- Lukic, D.; Cep, R.; Milosevic, M.; Antic, A.; Zivkovic, A.; Todic, V.; Rodic, D. A Grey Fuzzy Approach to the Selection of Cutting Process from the Aspect of Technological Parameters. Appl. Sci. 2022, 12, 12589. [Google Scholar] [CrossRef]
- Parthiban, A.; Sathish, S.; Ravikumar, R.; Prakash, P. Experimental investigation and fuzzy logic modelling of CO2 laser cutting parameter for AA6061-T6 sheet. Int. J. Rapid Manuf. 2020, 9, 48–57. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Sharma, G. Experimental Investigation of Multiple Quality Characteristics of Laser Beam Machined Surface using Integrated Taguchi and Fuzzy Logic Method. J. Manuf. Sci. Prod. 2016, 16, 189–199. [Google Scholar] [CrossRef]
- Khalaf, T.; Thangaraj, M.; Moiduddin, K. Performance Evaluation and MOORA Based Optimization of Pulse Width Control on Leather Specimens in Diode Laser Beam Cutting Process. Processes 2023, 11, 2901. [Google Scholar] [CrossRef]
- Srinivasan, D.; Ramakrishnan, H.; Balasundaram, R.; Ravichandran, M. Optimization of laser cutting process parameters on Ss347 using GRA and TOPSIS. Surf. Rev. Lett. 2023, 30, 2350039. [Google Scholar] [CrossRef]
- Madić, M.; Petrović, G.; Petković, D.; Antucheviciene, J.; Marinković, D. Application of a Robust Decision-Making Rule for Comprehensive Assessment of Laser Cutting Conditions and Performance. Machines 2022, 10, 153. [Google Scholar] [CrossRef]
- Das, P.P.; Chakraborty, S. Application of Superiority and Inferiority Multi-criteria Ranking Method for Parametric Optimization of Laser Cutting Processes. Process Integr. Optim. Sustain. 2020, 4, 409–427. [Google Scholar] [CrossRef]
- Madić, M.; Petrović, G.; Petković, D.; Janković, P. Traditional and Integrated MCDM Approaches for Assessment and Ranking of Laser Cutting Conditions. Spectr. Mech. Eng. Oper. Res. 2024, 1, 250–257. [Google Scholar] [CrossRef]
- Basar, G.; Der, O. Multi-objective optimization of process parameters for laser cutting polyethylene using fuzzy AHP-based MCDM methods. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2025. [Google Scholar] [CrossRef]
- Sharma, A.; Yadava, V.; Rao, R. Optimization of kerf quality characteristics during Nd:YAG laser cutting of nickel based super alloy sheet for straight and curved cut profiles. Opt. Lasers Eng. 2010, 48, 915–925. [Google Scholar] [CrossRef]
- Girdu, C.C.; Mihail, L.A.; Dragoi, M.V. Estimation of laser cutting process efficiency. In Proceedings of the 9th International Scientific Conference—Research and Development of Mechanical Elements and Systems (IRMES 2019), Kragujevac, Serbia, 5–7 September 2019. [Google Scholar] [CrossRef]
- ISO 9013:2017; Thermal cutting—Classification of thermal cuts—Geometrical product specification and quality tolerances. International Organization for Standardization: Geneva, Switzerland, 2017.
- Ulutaş, A.; Popovic, G.; Stanujkic, D.; Karabasevic, D.; Zavadskas, E.K.; Turskis, Z. A New Hybrid MCDM Model for Personnel Selection Based on a Novel Grey PIPRECIA and Grey OCRA Methods. Mathematics 2020, 8, 1698. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980; pp. 49–71. [Google Scholar]
- Biswas, S.; Božanić, D.; Pamučar, D.; Marinković, D. A spherical fuzzy based decision making framework with Einstein aggregation for comparing preparedness of SMEs in Quality 4.0. Facta Univ. Ser. Mech. Eng. 2023, 21, 453–478. [Google Scholar] [CrossRef]
- Wang, Y.J.; Lee, H.S.; Lin, K. Fuzzy TOPSIS for multi-criteria decision-making. Int. Math. J. 2003, 3, 367–379. [Google Scholar]
- Turskis, Z.; Zavadskas, E.K.; Antucheviciene, J.; Kosareva, N. A Hybrid Model Based on Fuzzy AHP and Fuzzy WASPAS for Construction Site Selection. Int. J. Comput. Commun. Control 2015, 10, 873–888. [Google Scholar] [CrossRef]
- Turskis, Z.; Zavadskas, E.K. A new fuzzy additive ratio assessment method (ARAS-F). Case study: The analysis of fuzzy multiple criteria in order to select the logistic centers location. Transport 2010, 25, 423–432. [Google Scholar] [CrossRef]
- Chakraborty, S.; Saha, A.K. Selection of forklift unit for transport handling using integrated MCDM under neutrosophic environment. Facta Univ. Ser. Mech. Eng. 2024, 22, 235–256. [Google Scholar] [CrossRef]
- Ristić, B.; Bogdanović, V.; Stević, Ž.; Marinković, D.; Papić, Z.; Gojković, P. Evaluation of Pedestrian Crossings Based on the Concept of Pedestrian Behavior Regarding Start-Up Time: Integrated Fuzzy MCDM Model. Teh. Vjesn. Tech. Gaz. 2024, 31, 1206–1214. [Google Scholar] [CrossRef]
- Pramanik, S. SVPNN-ARAS strategy for MCGDM under single-valued pentapartitioned neutrosophic number environment. Serbian J. Manag. 2023, 18, 405–420. [Google Scholar] [CrossRef]
- Lopez, A.B.; Assunção, E.; Quintino, L.; Blackburn, J.; Khan, A. High-power fiber laser cutting parameter optimization for nuclear Decommissioning. Nucl. Eng. Technol. 2017, 49, 865–872. [Google Scholar] [CrossRef]
- Adelmann, B.; Hellmann, R. Fast Laser Cutting Optimization Algorithm. Phys. Procedia 2011, 12, 591–598. [Google Scholar] [CrossRef]
- Duspara, M.; Matysiak, W.; Vidaković, I.; Sedmak, S. Optimization of Nitrogen Use Efficiency in Cutting of Austenitic Stainless Steel by a Fiber Laser. FME Trans. 2022, 50, 745–751. [Google Scholar] [CrossRef]
- Ullah, S.; Li, X.; Guo, G.; Rodríguez, A.R.; Li, D.; Du, J.; Cui, L.; Wei, L. Energy efficiency and cut-quality improvement during fiber laser cutting of aluminum alloy in the different hardened conditions. Mater. Today Commun. 2022, 33, 104236. [Google Scholar] [CrossRef]
- Rao, S.; Sethi, A.; Das, A.K.; Mandal, N.; Kiran, P.; Ghosh, R.; Dixit, A.R.; Mandal, A. Fiber laser cutting of CFRP composites and process optimization through response surface methodology. Mater. Manuf. Process. 2017, 32, 1612–1621. [Google Scholar] [CrossRef]
- Powell, J.; Al-Mashikhi, S.O.; Kaplan, A.F.H.; Voisey, K.T. Fibre laser cutting of thin section mild steel: An explanation of the ‘striation free’ effect. Opt. Lasers Eng. 2011, 49, 1069–1075. [Google Scholar] [CrossRef]
- Al-Mashikhi, S.O.; Powell, J.; Kaplan, A.F.H.; Voisey, K.T. An explanation of ‘striation free’ cutting of mild steel by fibre laser. In Proceedings of the Fifth International WLT-Conference Lasers in Manufacturing, LIM 2009, Munich, Germany, 15–18 June 2009. [Google Scholar]
- Halm, U.; Nießen, M.; Schulz, W. Simulation of melt film dynamics in laser fusion cutting using a boundary layer approximation. Int. J. Heat Mass Transf. 2021, 168, 120837. [Google Scholar] [CrossRef]
C | Mn | P | S | N | Cu |
---|---|---|---|---|---|
0.17 | 1.40 | 0.035 | 0.035 | 0.012 | 0.55 |
Material | Minimum Yield Strength ReH [N/mm2] | Tensile Strength Rm [N/mm2] | Elongation at Fracture A5 [%] | Hardness HB |
---|---|---|---|---|
S235 | 235 | 360–510 | 26 | 120 |
tau-b | TOPSIS-F | WASPAS-F | ARAS-F |
---|---|---|---|
TOPSIS-F | 1 | 0.948718 | 0.897436 |
WASPAS-F | 0.948718 | 1 | 0.897436 |
ARAS-F | 0.897436 | 0.897436 | 1 |
rho | TOPSIS-F | WASPAS-F | ARAS-F |
TOPSIS-F | 1 | 0.989011 | 0.972527 |
WASPAS-F | 0.989011 | 1 | 0.972527 |
ARAS-F | 0.972527 | 0.972527 | 1 |
Term | Coefficient | SE of Coefficients | T | P | |
---|---|---|---|---|---|
Constant | 0.5213 | 0.0411 | 12.670 | 0.001 | |
f | 0.0158 | 0.0145 | 1.087 | 0.357 | |
v | 0.1067 | 0.0145 | 7.334 | 0.005 | |
p | −0.0223 | 0.0145 | −1.535 | 0.222 | |
f × v | 0.0468 | 0.0206 | 2.277 | 0.107 | |
f × p | −0.0104 | 0.0206 | −0.504 | 0.649 | |
v × p | −0.0102 | 0.0206 | −0.498 | 0.653 | |
f2 | −0.0108 | 0.0272 | −0.398 | 0.717 | |
v2 | -0.1024 | 0.0272 | −3.762 | 0.033 | |
p2 | 0.0301 | 0.0272 | 1.107 | 0.349 | |
Source of Variation | Sum of Squares | Degree of Freedom | Mean Square | F | P |
Second order model | 0.1464 | 9 | 0.0163 | 9.60 | 0.044 |
Linear | 0.0971 | 3 | 0.0324 | 19.11 | 0.019 |
Interaction | 0.0096 | 3 | 0.0032 | 1.90 | 0.306 |
Square | 0.0397 | 3 | 0.0132 | 7.81 | 0.063 |
Residual error | 0.0051 | 3 | 0.0017 | ||
Total | 0.1515 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trifunović, M.; Madić, M.; Petrović, G.; Marinković, D.; Janković, P. Fuzzy MCDM Methodology for Analysis of Fibre Laser Cutting Process. Appl. Sci. 2025, 15, 7364. https://doi.org/10.3390/app15137364
Trifunović M, Madić M, Petrović G, Marinković D, Janković P. Fuzzy MCDM Methodology for Analysis of Fibre Laser Cutting Process. Applied Sciences. 2025; 15(13):7364. https://doi.org/10.3390/app15137364
Chicago/Turabian StyleTrifunović, Milan, Miloš Madić, Goran Petrović, Dragan Marinković, and Predrag Janković. 2025. "Fuzzy MCDM Methodology for Analysis of Fibre Laser Cutting Process" Applied Sciences 15, no. 13: 7364. https://doi.org/10.3390/app15137364
APA StyleTrifunović, M., Madić, M., Petrović, G., Marinković, D., & Janković, P. (2025). Fuzzy MCDM Methodology for Analysis of Fibre Laser Cutting Process. Applied Sciences, 15(13), 7364. https://doi.org/10.3390/app15137364