A Coupled Coordination and Network-Based Framework for Optimizing Green Stormwater Infrastructure Deployment: A Case Study in the Guangdong–Hong Kong–Macao Greater Bay Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sourcing and Processing
2.2. Simulation of Supply and Demand Coupling
2.3. Proximity Matrix and Network Clustering
3. Results
3.1. Supply and Demand Levels of GSI
3.2. Coupling and Coordination of GSI Systems
3.3. High-Demand Proximity Network Matrix
4. Discussion
4.1. Factors Affecting the Imbalance of Coupling and Coordination
4.1.1. Not Coupled and Not Coordinated
4.1.2. Coupled but Not Coordinated
4.1.3. Not Coupled but Coordinated
4.1.4. Coupled and Coordinated
4.2. Clustering Analysis for Identifying GSI Demand Areas in the GBA
4.3. Limitation and Future Research Perspectives
5. Conclusions
- Novel Framework Design
- Identification of Spatial Imbalances
- Typological Classification of Districts
- Demand-Driven Clustering
- Reference Mapping for Planning Guidance
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AHP | Analytic Hierarchy Process |
CD | Coupling Degree |
CCD | Coupled Coordination Degree |
CR | Consistency Ratio |
EW | Entropy Weighting |
GBA | Greater Bay Area |
GSI | Green Stormwater Infrastructure |
LID | Low-Impact Development |
RCA | Revealed Comparative Advantage |
References
- Jiang, R.; Lu, H.; Yang, K.; Chen, D.; Zhou, J.; Yamazaki, D.; Pan, M.; Li, W.; Xu, N.; Yang, Y.; et al. Substantial increase in future fluvial flood risk projected in China’s major urban agglomerations. Commun. Earth Environ. 2023, 4, 389. [Google Scholar] [CrossRef]
- Wang, M.; Fu, X.; Zhang, D.; Chen, F.; Liu, M.; Zhou, S.; Su, J.; Tan, S.K. Assessing urban flooding risk in response to climate change and urbanization based on shared socio-economic pathways. Sci. Total Environ. 2023, 880, 163470. [Google Scholar] [CrossRef] [PubMed]
- Heidari, B.; Prideaux, V.; Jack, K.; Jaber, F.H. A planning framework to mitigate localized urban stormwater inlet flooding using distributed Green Stormwater Infrastructure at an urban scale: Case study of Dallas, Texas. J. Hydrol. 2023, 621, 129538. [Google Scholar] [CrossRef]
- Li, J.; Burian, S.J. Evaluating real-time control of stormwater drainage network and green stormwater infrastructure for enhancing flooding resilience under future rainfall projections. Resour. Conserv. Recycl. 2023, 198, 107123. [Google Scholar] [CrossRef]
- Nakamura, S.; Abanokova, K.; Dang, H.-A.H.; Takamatsu, S.; Pei, C.; Prospere, D. Is Climate Change Slowing the Urban Escalator Out of Poverty? Evidence from Chile, Colombia, and Indonesia. Int. J. Environ. Res. Public Health 2023, 20, 4865. [Google Scholar] [CrossRef]
- Dietz, M.E. Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions. Water Air Soil. Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Griffiths, J.; Chan, F.K.S.; Shao, M.; Zhu, F.; Higgitt, D.L. Interpretation and application of Sponge City guidelines in China. Philos. Trans. A Math. Phys. Eng. Sci. 2020, 378, 20190222. [Google Scholar] [CrossRef]
- Wang, M.; Chen, F.; Zhang, D.; Rao, Q.; Li, J.; Tan, S.K. Supply–Demand Evaluation of Green Stormwater Infrastructure (GSI) Based on the Model of Coupling Coordination. Int. J. Environ. Res. Public Health 2022, 19, 4742. [Google Scholar] [CrossRef]
- Bjørn, M.C.; Howe, A.G. Multifunctional bioretention basins as urban stepping stone habitats for wildflowers and pollinators. Urban For. Urban Green. 2023, 90, 128133. [Google Scholar] [CrossRef]
- Adhikari, B.; Perlman, R.; Rigden, A.; Walter, M.T.; Clark, S.; McPhillips, L. Field assessment of metal and base cation accumulation in green stormwater infrastructure soils. Sci. Total Environ. 2023, 875, 162500. [Google Scholar] [CrossRef]
- Solins, J.P.; Phillips de Lucas, A.K.; Brissette, L.E.G.; Morgan Grove, J.; Pickett, S.T.A.; Cadenasso, M.L. Regulatory requirements and voluntary interventions create contrasting distributions of green stormwater infrastructure in Baltimore, Maryland. Landsc. Urban Plan. 2023, 229, 104607. [Google Scholar] [CrossRef]
- Herreros-Cantis, P.; McPhearson, T. Mapping supply of and demand for ecosystem services to assess environmental justice in New York City. Ecol. Appl. 2021, 31, e02390. [Google Scholar] [CrossRef] [PubMed]
- Kuller, M.; Bach, P.M.; Ramirez-Lovering, D.; Deletic, A. What drives the location choice for water sensitive infrastructure in Melbourne, Australia? Landsc. Urban Plan. 2018, 175, 92–101. [Google Scholar] [CrossRef]
- Ambrogi Ferreira do Lago, C.; Abtin, S.H.; Mário, M.E.; Hofheinz Giacomoni, M. Simulation and optimization framework for evaluating the robustness of low-impact development placement solutions under climate change in a small urban catchment. Hydrol. Sci. J. 2023, 68, 2057–2074. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef]
- Prettyman, K.; Babbar-Sebens, M.; Parrish, C.; Babbar-Sebens, J. A feasibility study of uninhabited aircraft systems for rapid and cost-effective plant stress monitoring at green stormwater infrastructure facilities. J. Hydroinform. 2020, 23, 417–437. [Google Scholar] [CrossRef]
- Sun, X.; Liu, H.; Liao, C.; Nong, H.; Yang, P. Understanding recreational ecosystem service supply-demand mismatch and social groups’ preferences: Implications for urban–rural planning. Landsc. Urban Plan. 2024, 241, 104903. [Google Scholar] [CrossRef]
- Kong, Q.; Kong, H.; Miao, S.; Zhang, Q.; Shi, J. Spatial Coupling Coordination Evaluation between Population Growth, Land Use and Housing Supply of Urban Agglomeration in China. Land 2022, 11, 1396. [Google Scholar] [CrossRef]
- Pan, Z.; Gao, G.; Fu, B.; Liu, S.; Wang, J.; He, J.; Liu, D. Exploring the historical and future spatial interaction relationship between urbanization and ecosystem services in the Yangtze River Basin, China. J. Clean. Prod. 2023, 428, 139401. [Google Scholar] [CrossRef]
- Wang, M.; Fu, X.; Zhang, D.; Lou, S.; Li, J.; Chen, F.; Li, S.; Tan, S.K. Urban agglomeration waterlogging hazard exposure assessment based on an integrated Naive Bayes classifier and complex network analysis. Nat. Hazards 2023, 118, 2173–2197. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Zhang, H.; Dalla Fontana, G.; Tarolli, P. Identifying dominant factors of waterlogging events in metropolitan coastal cities: The case study of Guangzhou, China. J. Environ. Manag. 2020, 271, 110951. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.-X.; Sun, Y.-L. Financial Market Connectedness between the U.S. and China: A New Perspective Based on Non-linear Causality Networks. J. Int. Financ. Mark. Inst. Money 2023, 90, 101886. [Google Scholar] [CrossRef]
- Orta-Ortiz, M.S.; Geneletti, D. Prioritizing urban nature-based solutions to support scaling-out strategies: A case study in Las Palmas de Gran Canaria. Environ. Impact Assess. Rev. 2023, 102, 107158. [Google Scholar] [CrossRef]
- Zhao, J.; Ke, E.; Wang, B.; Zhao, Y. An optimization model for the impervious surface spatial layout considering differences in hydrological unit conditions for urban waterlogging prevention in urban renewal. Ecol. Indic. 2024, 158, 111546. [Google Scholar] [CrossRef]
- Fňukalová, E.; Zýka, V.; Romportl, D. The Network of Green Infrastructure Based on Ecosystem Services Supply in Central Europe. Land 2021, 10, 592. [Google Scholar] [CrossRef]
- Fang, X.; Li, J.; Ma, Q. Integrating green infrastructure, ecosystem services and nature-based solutions for urban sustainability: A comprehensive literature review. Sustain. Cities Soc. 2023, 98, 104843. [Google Scholar] [CrossRef]
- Suárez, M.; Rieiro-Díaz, A.M.; Alba, D.; Langemeyer, J.; Gómez-Baggethun, E.; Ametzaga-Arregi, I. Urban resilience through green infrastructure: A framework for policy analysis applied to Madrid, Spain. Landsc. Urban Plan. 2024, 241, 104923. [Google Scholar] [CrossRef]
- Bodus, B.; O’Malley, K.; Dieter, G.; Gunawardana, C.; McDonald, W. Review of emerging contaminants in green stormwater infrastructure: Antibiotic resistance genes, microplastics, tire wear particles, PFAS, and temperature. Sci. Total Environ. 2024, 906, 167195. [Google Scholar] [CrossRef]
- Wang, M.; Yuan, H.; Zhang, D.; Qi, J.; Rao, Q.; Li, J.; Keat Tan, S. Supply-demand measurement and spatial allocation of Sponge facilities for Sponge city construction. Ecol. Indic. 2023, 148, 110141. [Google Scholar] [CrossRef]
- Xu, H.; Ma, C.; Lian, J.; Xu, K.; Chaima, E. Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. J. Hydrol. 2018, 563, 975–986. [Google Scholar] [CrossRef]
- Cabrera, J.; Lee, H.S. Flood risk assessment for Davao Oriental in the Philippines using geographic information system-based multi-criteria analysis and the maximum entropy model. J. Flood Risk Manag. 2020, 13, e12607. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Lu, J. Assessment of long and short-term flood risk using the multi-criteria analysis model with the AHP-Entropy method in Poyang Lake basin. Int. J. Disaster Risk Reduct. 2022, 75, 102968. [Google Scholar] [CrossRef]
- Sun, N.; Cailin, L.; Baoyun, G.; Xiaokai, S.; Yukai, Y.; Wang, Y. Urban flooding risk assessment based on FAHP–EWM combination weighting: A case study of Beijing. Geomat. Nat. Hazards Risk 2023, 14, 2240943. [Google Scholar] [CrossRef]
- Zeng, J.; Huang, G. Set pair analysis for karst waterlogging risk assessment based on AHP and entropy weight. Hydrol. Res. 2017, 49, 1143–1155. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Dong, Y.; An, Y.; Shi, F.; Dong, S.; Liu, G. Spatio-temporal evolution scenarios and the coupling analysis of ecosystem services with land use change in China. Sci. Total Environ. 2019, 681, 211–225. [Google Scholar] [CrossRef]
- Yan, S.; Chen, H.; Quan, Q.; Liu, J. Evolution and coupled matching of ecosystem service supply and demand at different spatial scales in the Shandong Peninsula urban agglomeration, China. Ecol. Indic. 2023, 155, 111052. [Google Scholar] [CrossRef]
- Bi, Y.; Zheng, L.; Wang, Y.; Li, J.; Yang, H.; Zhang, B. Coupling relationship between urbanization and water-related ecosystem services in China’s Yangtze River economic Belt and its socio-ecological driving forces: A county-level perspective. Ecol. Indic. 2023, 146, 109871. [Google Scholar] [CrossRef]
- Milic, N.; Popovic, B.; Mijalkovic, S.; Marinkovic, D. The Influence of Data Classification Methods on Predictive Accuracy of Kernel Density Estimation Hotspot Maps. Int. Arab J. Inf. Technol. 2019, 16, 1053–1062. [Google Scholar]
- Xin, R.; Skov-Petersen, H.; Zeng, J.; Zhou, J.; Li, K.; Hu, J.; Liu, X.; Kong, J.; Wang, Q. Identifying key areas of imbalanced supply and demand of ecosystem services at the urban agglomeration scale: A case study of the Fujian Delta in China. Sci. Total Environ. 2021, 791, 148173. [Google Scholar] [CrossRef]
- Zhao, L.-T.; Li, F.-R.; Wang, D.-S. How to achieve the common developments of green finance and clean energy in China? Evidence from coupling coordination evaluation. Ecol. Indic. 2023, 155, 111011. [Google Scholar] [CrossRef]
- Boschma, R.; Minondo, A.; Navarro, M. The Emergence of New Industries at the Regional Level in Spain: A Proximity Approach Based on Product Relatedness. Econ. Geogr. 2013, 89, 29–51. [Google Scholar] [CrossRef]
- Klinger, B.; Barabasi, A.-L.; Hausmann, R. The Product Space Conditions the Development of Nations. Science 2007, 317, 482–487. [Google Scholar] [CrossRef]
- Wang, C.; Hou, Y.; Zhang, J.; Chen, W. Assessing the groundwater loss risk in Beijing based on ecosystem service supply and demand and the influencing factors. Sci. Total Environ. 2023, 872, 162255. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, S.; Hric, D. Community detection in networks: A user guide. Phys. Rep. 2016, 659, 1–44. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Longobardi, A. Adapting drainage networks to the urban development: An assessment of different integrated approach alternatives for a sustainable flood risk mitigation in Northern Italy. Sustain. Cities Soc. 2023, 98, 104856. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.; Feng, Q.; Yu, T.; Engel, B.A. Analyzing the impacts of topographic factors and land cover characteristics on waterlogging events in urban functional zones. Sci. Total Environ. 2023, 904, 166669. [Google Scholar] [CrossRef]
- Lee, T.-C.; Wong, W.-K.; Tam, K.-H. Urban-focused weather and climate services in Hong Kong. Geosci. Lett. 2018, 5, 18. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, T.; Wang, T.; Zhao, Y. Spatial-temporal evolution of influencing mechanism of urban flooding in the Guangdong Hong Kong Macao greater bay area, China. Front. Earth Sci. 2023, 10, 1113997. [Google Scholar] [CrossRef]
- Pallathadka, A.; Sauer, J.; Chang, H.; Grimm, N.B. Urban flood risk and green infrastructure: Who is exposed to risk and who benefits from investment? A case study of three U.S. Cities. Landsc. Urban Plan. 2022, 223, 104417. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, Z.; Zhang, D.; Zhang, Y.; Liu, M.; Rao, Q.; Li, J.; Keat Tan, S. Optimization of integrating life cycle cost and systematic resilience for grey-green stormwater infrastructure. Sustain. Cities Soc. 2023, 90, 104379. [Google Scholar] [CrossRef]
- Chang, H.-S.; Lin, Z.-H.; Hsu, Y.-Y. Planning for green infrastructure and mapping synergies and trade-offs: A case study in the Yanshuei River Basin, Taiwan. Urban For. Urban Green. 2021, 65, 127325. [Google Scholar] [CrossRef]
- Wessels, N.; Sitas, N.; O’Farrell, P.; Esler, K. Inclusion of ecosystem services in the management of municipal natural open space systems. People Nat. 2023, 6, 301–320. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, J.; Xu, Y.-H.; Hu, W.; Cao, Y. Analysis of the relationship between supply–demand matching of selected ecosystem services and urban spatial governance: A case study of Suzhou, China. Environ. Sci. Pollut. Res. 2023, 30, 79789–79806. [Google Scholar] [CrossRef]
- Lyu, Y.; Wu, C. Managing the supply-demand mismatches and potential flows of ecosystem services from the perspective of regional integration: A case study of Hangzhou, China. Sci. Total Environ. 2023, 902, 165918. [Google Scholar] [CrossRef] [PubMed]
- He, B.-J. Cause-related injustice, process-related injustice, effect-related injustice and regional heat action planning priorities: An empirical study in Yangtze River Delta and Chengdu-Chongqing urban agglomerations. Landsc. Urban Plan. 2023, 237, 104800. [Google Scholar] [CrossRef]
- Jeon, Y.; Jung, S. Spatial Equity of Urban Park Distribution: Examining the Floating Population within Urban Park Catchment Areas in the Context of the 15-Minute City. Land 2024, 13, 24. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Yuan, H.; Zhou, S.; Wang, Y.; Adnan Ikram, R.M.; Li, J. An XGBoost-SHAP approach to quantifying morphological impact on urban flooding susceptibility. Ecol. Indic. 2023, 156, 111137. [Google Scholar] [CrossRef]
- Hughes, E.A.; Ellis, S.; Smith, J.R. Connecting groups and behaviours: A network analysis of identity-infused behaviours. Br. J. Soc. Psychol. 2024, 63, 205–233. [Google Scholar] [CrossRef]
- Gao, T.; Liu, J.; Pan, R.; Wang, H. Citation counts prediction of statistical publications based on multi-layer academic networks via neural network model. Expert Syst. Appl. 2024, 238, 121634. [Google Scholar] [CrossRef]
- Vieira, T.A.; Trapp, F.B.; Souza, C.F.M.; Faccini, L.S.; Jardim, L.B.; Schwartz, I.V.D.; Riegel, M.; Vargas, C.R.; Burin, M.G.; Leistner-Segal, S.; et al. Information and Diagnosis Networks—Tools to improve diagnosis and treatment for patients with rare genetic diseases. Genet. Mol. Biol. 2019, 42, 155–164. [Google Scholar] [CrossRef]
- Zhong, P.; Liu, Y.; Zheng, H.; Zhao, J. Detection of Urban Flood Inundation from Traffic Images Using Deep Learning Methods. Water Resour. Manag. 2024, 38, 287–301. [Google Scholar] [CrossRef]
- Sadeghi, K.M.; Kharaghani, S.; Tam, W.; Gaerlan, N.; Loáiciga, H. Green Stormwater Infrastructure (GSI) for Stormwater Management in the City of Los Angeles: Avalon Green Alleys Network. Environ. Process. 2019, 6, 265–281. [Google Scholar] [CrossRef]
- Luo, Z.; Tian, J.; Zeng, J.; Pilla, F. Assessing the spatial pattern of supply-demand mismatches in ecosystem flood regulation service: A case study in Xiamen. Appl. Geogr. 2023, 160, 103113. [Google Scholar] [CrossRef]
Indicator | Data Format | Spatial Resolution | Data Source | Description/Unit |
---|---|---|---|---|
Parks | Shapefile (point) | District-level | OpenStreetMap (www.openhistoricalmap.org, accessed on 16 May 2024) | Number of green park points per km2 (proxy for pervious area) |
Impervious Surface Ratio | Raster | 30 m | [21] | % of impermeable surface per district (%) |
Vegetation Cover Rate | TIF | 30 m | Landsat 8 Operational Land Imager | % vegetation coverage per district (%) |
Road Networks | Shapefile (polygon) | District-level | OpenStreetMap (www.openhistoricalmap.org, accessed on 18 June 2024) | Road length density (km/km2) |
Waterway Networks | Shapefile (polygon) | District-level | Guangdong Planning and Natural Resources Bureau, China (https://nr.gd.gov.cn/, accessed on 26 June 2024) | Waterway length density (km/km2) |
Indicator | Data Format | Spatial Resolution | Spatial Relation to Real Space | Data Source |
---|---|---|---|---|
Science and Education Institutions | Shapefile (Point) | District-level | Count of institutions per km2 (spatial join to district polygons) | Gaode Map (https://lbs.amap.com/, accessed on 6 July 2024) |
Traffic Facilities | Shapefile (Point) | District-level | Count of transport nodes per km2 (e.g., bus/train stations) | Gaode Map (https://lbs.amap.com/, accessed on 6 July 2024) |
Medical Institutions | Shapefile (Point) | District-level | Count per km2 (including hospitals, clinics) | Gaode Map (https://lbs.amap.com/, accessed on 6 July 2024) |
Population Density (Less than High School) | Excel | District-level | Residents with less than high school education per km2 (census-mapped) | National Bureau of Statistics of China (www.stats.gov.cn, accessed on 28 July 2024) |
Population Density (Under 14 Years) | Excel | District-level | Children under 14 per km2 (census-mapped) | National Bureau of Statistics of China (www.stats.gov.cn, accessed on 28 July 2024) |
Population Density (Over 60 Years) | Excel | District-level | Elderly over 60 per km2 (census-mapped) | National Bureau of Statistics of China (www.stats.gov.cn, accessed on 28 July 2024) |
Population Density (Female) | Excel | District-level | Female population per km2 (census-mapped) | National Bureau of Statistics of China (www.stats.gov.cn, accessed on 28 July 2024) |
Historical Buildings | Shapefile (Point) | District-level | Count per km2 (mapped via spatial join) | Guangdong Provincial Department of Housing and Urban-Rural Development (http://zfcxjst.gd.gov.cn, accessed on 30 July 2024) |
Cultural Relics Protection Units | Shapefile (Point) | District-level | Count per km2 (mapped via spatial join) | Guangdong Provincial Department of Housing and Urban-Rural Development (http://zfcxjst.gd.gov.cn, accessed on 30 July 2024) |
Gross Domestic Product | Raster | 1000 m | Average GDP per km2 extracted by zonal statistics to district polygons | Global GDP Gridded Dataset [22] |
Urban Waterlogging Rate | Shapefile (Point) | District-level | Count of flood risk points per km2 (event-mapped spatial points) | [8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Chen, Y.; Ikram, R.M.A.; Xu, H.; Tan, S.K.; Wang, M. A Coupled Coordination and Network-Based Framework for Optimizing Green Stormwater Infrastructure Deployment: A Case Study in the Guangdong–Hong Kong–Macao Greater Bay Area. Appl. Sci. 2025, 15, 7271. https://doi.org/10.3390/app15137271
Zhao J, Chen Y, Ikram RMA, Xu H, Tan SK, Wang M. A Coupled Coordination and Network-Based Framework for Optimizing Green Stormwater Infrastructure Deployment: A Case Study in the Guangdong–Hong Kong–Macao Greater Bay Area. Applied Sciences. 2025; 15(13):7271. https://doi.org/10.3390/app15137271
Chicago/Turabian StyleZhao, Jiayu, Yichun Chen, Rana Muhammad Adnan Ikram, Haoyu Xu, Soon Keat Tan, and Mo Wang. 2025. "A Coupled Coordination and Network-Based Framework for Optimizing Green Stormwater Infrastructure Deployment: A Case Study in the Guangdong–Hong Kong–Macao Greater Bay Area" Applied Sciences 15, no. 13: 7271. https://doi.org/10.3390/app15137271
APA StyleZhao, J., Chen, Y., Ikram, R. M. A., Xu, H., Tan, S. K., & Wang, M. (2025). A Coupled Coordination and Network-Based Framework for Optimizing Green Stormwater Infrastructure Deployment: A Case Study in the Guangdong–Hong Kong–Macao Greater Bay Area. Applied Sciences, 15(13), 7271. https://doi.org/10.3390/app15137271