Postural Variability in Sitting: Comparing Comfortable, Habitual, and Correct Strategies Across Chairs
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sitting Environments
2.3. Global Body-Joint Angle Measurements
- Head inclination (HI): the angle between the vertical line and the line connecting the tragus and shoulder markers.
- Trunk angle (TA): the angle formed by the intersection of the line connecting the shoulder and hip markers with the line connecting the hip and knee markers.
- Knee angle (KA): the angle formed by the intersection of the line connecting the hip and knee markers with the line connecting the knee and ankle markers.
2.4. Measurement Procedures
- Comfortable sitting strategy: In this test, we would like to capture your most comfortable sitting posture. Please adjust the seat and your body until you feel maximally relaxed, with minimal stress on any part of your body. Once you feel that the posture is most comfortable, please say ‘YES’.
- Habitual sitting strategy: In this test, we aim to record your habitual sitting posture. Adjust the seat and your body until you feel you’ve adopted your most natural and familiar sitting position. When this posture feels like your usual way of sitting, please say ‘YES’.
- Correct sitting strategy: In this test, we aim to capture what you perceive to be the correct sitting posture. Adjust the seat and your body to what you believe is the most appropriate and supportive posture, minimizing any bodily resistance or discomfort. Once you believe the posture is correct, please say ‘YES’.
2.5. Statistical Analysis
3. Results
3.1. Three-Way ANOVA for Joint Angle Means
3.1.1. Head Inclination
3.1.2. Trunk Angle
3.1.3. Knee Angle
3.2. Three-Way ANOVA for Joint Angle Ranges
3.3. Postural Variability Across All Test Combinations
4. Discussion
4.1. Postural Variability and Sitting Strategy
4.2. Gender Differences in Trunk Angle and Variability
4.3. Chair Type and Postural Outcomes
4.4. Magnitude and Meaning of Postural Variability
4.5. Ergonomic and Clinical Implications
4.6. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Underwood, D.; Sims, R. Do office workers adjust their chairs? End-user knowledge, use and barriers to chair adjustment. Appl. Ergon. 2019, 77, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Waongenngarm, P.; van der Beek, A.J.; Akkarakittichoke, N.; Janwantanakul, P. Perceived musculoskeletal discomfort and its association with postural shifts during 4-h prolonged sitting in office workers. Appl. Ergon. 2020, 89, 103225. [Google Scholar] [CrossRef] [PubMed]
- Channak, S.; Klinsophon, T.; Janwantanakul, P. The effects of chair intervention on low back pain, discomfort, and trunk muscle activation in office workers: A systematic review. Int. J. Occup. Safe. Ergon. 2021, 28, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Kim, H.J.; Jeong, H.; Kim, H.; Chang, B.S.; Lee, C.K.; Yeom, J.S. Longer sitting time and low physical activity are closely associated with chronic low back pain in population over 50 years of age: A cross-sectional study using the sixth Korea National Health and Nutrition Examination Survey. Spine J. 2018, 18, 2051–2058. [Google Scholar] [CrossRef]
- O’Sullivan, P.B.; Mitchell, T.; Bulich, P.; Waller, R.; Holte, J. The relationship between posture and back muscle endurance in industrial workers with flexion-related low back pain. Man. Ther. 2006, 11, 264–271. [Google Scholar] [CrossRef]
- Meng, Y.; Xue, Y.; Yang, S.; Wu, F.; Dong, Y. The associations between sedentary behavior and neck pain: A systematic review and meta-analysis. BMC Public Health 2025, 25, 453. [Google Scholar] [CrossRef]
- Lin, J.H.; Kaufman, B.; Lin, R.T.; Bao, S. Sedentary behavior and musculoskeletal symptoms among work from home employees. Int. J. Ind. Ergon. 2024, 104, 103653. [Google Scholar] [CrossRef]
- Gilman, S.L. Stand Up Straight!: A History of Posture; Reaktion Books Ltd.: London, UK, 2018. [Google Scholar]
- O’Sullivan, K.; O’Keeffe, M.; O’Sullivan, L.; O’Sullivan, P.; Dankaerts, W. Perceptions of sitting posture among members of the community, both with and without non-specific chronic low back pain. Man. Ther. 2013, 18, 551–556. [Google Scholar] [CrossRef]
- Dolan, P.; Adams, M.A.; Hutton, W.C. Commonly adopted postures and their effect on the lumbar spine. Spine 1988, 13, 197–201. [Google Scholar] [CrossRef]
- Korakakis, V.; O’Sullivan, K.; Whiteley, R.; O’Sullivan, P.B.; Korakaki, A.; Kotsifaki, A.; Tsaklis, P.V.; Tsiokanos, A.; Giakas, G. Notions of “optimal” posture are loaded with meaning. Perceptions of sitting posture among asymptomatic members of the community. Musculoskel. Sci. Pract. 2021, 51, 102310. [Google Scholar] [CrossRef]
- Mabb, S.; Bettany-Saltikov, J.; Hodgson, D. Habitual, perceived ideal and neutral sitting postures within an asymptomatic young adult population: Muscle activity and sagittal spinal curvature. Scoliosis 2013, 8, O37. [Google Scholar] [CrossRef]
- Barczyk-Pawelec, K.; Sipko, T. Active self-correction of spinal posture in pain-free women in response to the command “straighten your back”. Women Health 2017, 57, 1098–1114. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, K.; O’Sullivan, P.; O’Sullivan, L.; Dankaerts, W. What do physiotherapists consider to be the best sitting spinal posture? Man. Ther. 2012, 17, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Korakakis, V.; O’Sullivan, K.; O’Sullivan, P.B.; Evagelinou, V.; Sotiralis, Y.; Sideris, A.; Sakellariou, K.; Karanasios, S.; Giakas, G. Physiotherapist perceptions of optimal sitting and standing posture. Muscoskel. Sci. Pract. 2019, 39, 24–31. [Google Scholar] [CrossRef]
- Laird, R.A.; Gilbert, J.; Kent, P.; Keating, J.L. Comparing lumbo-pelvic kinematics in people with and without back pain: A systematic review and meta-analysis. BMC Muscoskel. Disord. 2014, 15, 229. [Google Scholar] [CrossRef]
- Slater, D.; Korakakis, V.; O’Sullivan, P.; Nolan, D.; O’Sullivan, K. “Sit up straight”: Time to Re-evaluate. J. Orthop. Sports Phys. Ther. 2019, 49, 562–564. [Google Scholar] [CrossRef]
- Nadeem, M.; Elbasi, E.; Zreikat, A.I.; Sharsheer, M. Sitting posture recognition systems: Comprehensive literature review and analysis. Appl. Sci. 2024, 14, 8557. [Google Scholar] [CrossRef]
- Adams, M.A.; Bogduk, N.; Burton, K.; Dolan, P. The Biomechanics of Back Pain, 3rd ed.; Elsevier Health Sciences: Edinburgh, UK, 2012. [Google Scholar]
- Davis, K.G.; Kotowski, S.E. Postural variability: An effective way to reduce musculoskeletal discomfort in office work. Hum. Factors 2014, 56, 1249–1261. [Google Scholar] [CrossRef]
- Dunk, N.M.; Callaghan, J.P. Gender-based differences in postural responses to seated exposures. Clin. Biomech. 2005, 20, 1101–1110. [Google Scholar] [CrossRef]
- Genaidy, A.M.; Karwowski, W. The effects of neutral posture on perceived joint discomfort ratings in sitting and standing postures. Ergonomics 1993, 36, 785–792. [Google Scholar] [CrossRef]
- Zhang, L.; Helander, M.G.; Drury, C.G. Identifying factors of comfort and discomfort in sitting. Human Factors 1996, 38, 377–389. [Google Scholar] [CrossRef]
- Kee, D.; Karwowski, W. The boundaries for joint angles of isocomfort for sitting and standing males based on perceived comfort of static joint postures. Ergonomics 2001, 44, 614–648. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.M.Y.; Wang, M.J.; Yeh, W.Y.; Shih, Y.C.; Lin, Y.C. Development of anthropometric work environment for Taiwanese workers. Int. J. Ind. Ergon. 1999, 23, 3–8. [Google Scholar] [CrossRef]
- Alaca, N.; Acar, A.Ö.; Öztürk, S. Low back pain and sitting time, posture and behavior in office workers: A scoping review. J. Back Musculoskelet. Rehabil. 2025, 10538127251320320. [Google Scholar] [CrossRef]
- Daruis, D.D.I.; Mansor, M.R.; Abdullah, A.H. Anthropometric data of Malaysian primary school children. Int. J. Ind. Ergon. 2011, 41, 28–35. [Google Scholar] [CrossRef]
- Depreli, Ö.; Topcu, Z.G.; Tomaç, H. Mismatch between fixed classroom furniture and anthropometric measurements among university students: Relationships to ergonomic risk. Work 2024, 79, 831–840. [Google Scholar] [CrossRef]
- Wilder, D.; Magnusson, M.L.; Fenwick, J.; Pope, M. The effect of posture and seat suspension design on discomfort and back muscle fatigue during simulated truck driving. Appl. Ergon. 1994, 25, 66–76. [Google Scholar] [CrossRef]
- De Looze, M.P.; Kuijt-Evers, L.F.M.; Van Dieën, J. Sitting comfort and discomfort and the relationships with objective measures. Ergonomics 2003, 46, 985–997. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, X.; Ma, Y. The Effect of swivel chairs on lumbar health in individuals with TFCLs sitting Habits: An analysis of lumbar disc Mechanical characteristics during Postural changes. J. Biomech. 2025, 178, 112435. [Google Scholar] [CrossRef]
- Hiemstra-van Mastrigt, S.; Groenesteijn, L.; Vink, P.; Kuijt-Evers, L.F. Predicting passenger seat comfort and discomfort on the basis of human, context and seat characteristics: A literature review. Ergonomics 2017, 60, 889–911. [Google Scholar] [CrossRef]
- Secretlab. The Science Behind A Good Ergonomic Chair. Available online: https://secretlab.co/pages/ergonomics (accessed on 2 May 2025).
- Chen, Y.L.; Chan, Y.C.; Zhang, L.P. Postural variabilities associated with the most comfortable sitting postures: A preliminary study. Healthcare 2021, 9, 1685. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Gyi, D.E.; Porter, J.M. Interface pressure and the prediction of car seat discomfort. Appl. Ergon. 1999, 30, 99–107. [Google Scholar] [CrossRef]
- Chen, K.M.; Shen, S.T.; Prior, S.D. The provision of digital information in the seat comfort of the seat design. In International Conference on Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2011; pp. 325–329. [Google Scholar] [CrossRef]
- O’Keeffe, M.; Dankaerts, W.; O’Sullivan, P.; O’Sullivan, L.; O’Sullivan, K. Specific flexion-related low back pain and sitting: Comparison of seated discomfort on two different chairs. Ergonomics 2013, 56, 650–658. [Google Scholar] [CrossRef]
- Korakakis, V.; Sideris, V.; Giakas, G. Sitting bodily configuration: A study investigating the intra-tester reliability of positioning subjects into a predetermined sitting posture. Man. Ther. 2014, 19, 197–202. [Google Scholar] [CrossRef]
- Helander, M.G. Forget about ergonomics in chair design? Focus on aesthetics and comfort! Ergonomics 2003, 46, 1306–1319. [Google Scholar] [CrossRef]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [CrossRef]
- Lee, J.H.; Min, D.K.; Choe, H.S.; Lee, J.H.; Shin, S.H. The effects of upper and lower limb position on symmetry of vertical ground reaction force during sit-to-stand in chronic stroke subjects. J. Phys. Ther. Sci. 2018, 30, 242–247. [Google Scholar] [CrossRef]
- Levine, D.; Whittle, M.W. The effects of pelvic movement on lumbar lordosis in the standing position. J. Orthop. Sports Phys. Ther. 1996, 24, 130–135. [Google Scholar] [CrossRef]
- Potter, J.J.; Sauer, J.L.; Weisshaar, C.L.; Thelen, D.G.; Ploeg, H.L. Gender differences in bicycle saddle pressure distribution during seated cycling. Med. Sci. Sports Exerc. 2008, 40, 1126–1134. [Google Scholar] [CrossRef]
- Dunk, N.M.; Kedgley, A.E.; Jenkyn, T.R.; Callaghan, J.P. Evidence of a pelvis-driven flexion pattern: Are the joints of the lower lumbar spine fully flexed in seated postures? Clin. Biomech. 2009, 24, 164–168. [Google Scholar] [CrossRef]
- Anders, C.; Brose, G.; Hofmann, G.O.; Scholle, H.C. Gender specific activation patterns of trunk muscles during whole body tilt. Eur. J. Appl. Physiol. 2007, 101, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Gribble, P.A.; Robinson, R.H.; Hertel, J.; Denegar, C.R. The effects of gender and fatigue on dynamic postural control. J. Sport Rehabil. 2009, 18, 240–257. [Google Scholar] [CrossRef] [PubMed]
- Berkley, K.J. Sex differences in pain. Behav. Brain Sci. 1997, 20, 371–380. [Google Scholar] [CrossRef]
- Straits Research. Ergonomic Chair Market Size, Share & Growth Graph by 2033. Available online: https://straitsresearch.com/report/ergonomic-chair-market (accessed on 2 May 2025).
- Vasavada, A.N.; Li, S.; Delp, S.L. Three-dimensional isometric strength of neck muscles in humans. Spine 2001, 26, 1904–1909. [Google Scholar] [CrossRef] [PubMed]
- Szeto, G.P.; Straker, L.M.; O’Sullivan, P.B. A comparison of symptomatic and asymptomatic office workers performing monotonous keyboard work—2: Neck and shoulder kinematics. Man. Ther. 2005, 10, 281–291. [Google Scholar] [CrossRef]
- Straker, L.; Mekhora, K. An evaluation of visual display unit placement by electromyography, posture, discomfort and preference. Int. J. Ind. Ergon. 2000, 26, 389–398. [Google Scholar] [CrossRef]
- Niggli, L.A.; Eichelberger, P.; Bangerter, C.; Baur, H.; Schmid, S. Between-session reliability of skin marker-derived spinal kinematics during functional activities. Gait Posture 2021, 85, 280–284. [Google Scholar] [CrossRef]
- Wilken, J.M.; Rodriguez, K.M.; Brawner, M.; Darter, B.J. Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults. Gait Posture 2012, 35, 301–307. [Google Scholar] [CrossRef]
- Søndergaard, K.H.; Olesen, C.G.; Søndergaard, E.K.; De Zee, M.; Madeleine, P. The variability and complexity of sitting postural control are associated with discomfort. J. Biomech. 2010, 43, 1997–2001. [Google Scholar] [CrossRef]
- O’Sullivan, P.; Caneiro, J.P.; O’Keeffe, M.; O’Sullivan, K. Unraveling the complexity of low back pain. J. Orthop. Sports Phys. Ther. 2016, 46, 932–937. [Google Scholar] [CrossRef] [PubMed]
- Roggio, F.; Petrigna, L.; Filetti, V.; Vitale, E.; Rapisarda, V.; Musumeci, G. Infrared thermography for the evaluation of adolescent and juvenile idiopathic scoliosis: A systematic review. J. Therm. Biol. 2023, 113, 103524. [Google Scholar] [CrossRef] [PubMed]
- Roggio, F.; Petrigna, L.; Trovato, B.; Zanghì, M.; Sortino, M.; Vitale, E.; Rapisarda, L.; Testa, G.; Pavone, V.; Pavone, P.; et al. Thermography and rasterstereography as a combined infrared method to assess the posture of healthy individuals. Sci. Rep. 2023, 13, 4263. [Google Scholar] [CrossRef] [PubMed]
- Senjaya, W.F.; Yahya, B.N.; Lee, S.L. Sensor-based motion tracking system evaluation for RULA in assembly task. Sensors 2022, 22, 8898. [Google Scholar] [CrossRef]
Variables | Joint Angles | df | SS | MS | F | p-Value | Power |
---|---|---|---|---|---|---|---|
Strategy (S) | Head inclination | 2 | 251 | 126 | 1.40 | 0.250 | 0.298 |
Trunk angle | 2 | 1649 | 824 | 11.15 | <0.001 | 0.992 | |
Knee angle | 2 | 1421 | 711 | 7.08 | <0.01 | 0.928 | |
Chair type (C) | Head inclination | 2 | 6931 | 3466 | 38.44 | <0.001 | 1.000 |
Trunk angle | 2 | 24,482 | 12,241 | 165.63 | <0.001 | 1.000 | |
Knee angle | 2 | 135 | 67 | 0.67 | 0.512 | 0.162 | |
Gender (G) | Head inclination | 1 | 21 | 21 | 0.23 | 0.631 | 0.077 |
Trunk angle | 1 | 1857 | 1857 | 25.12 | <0.001 | 0.999 | |
Knee angle | 1 | 1863 | 1863 | 18.54 | <0.001 | 0.990 | |
S×C | Head inclination | 4 | 135 | 34 | 0.38 | 0.826 | 0.136 |
Trunk angle | 4 | 2278 | 569 | 7.71 | <0.001 | 0.997 | |
Knee angle | 4 | 148 | 37 | 0.37 | 0.831 | 0.134 | |
S×G | Head inclination | 2 | 20 | 10 | 0.11 | 0.893 | 0.067 |
Trunk angle | 2 | 38 | 19 | 0.26 | 0.771 | 0.091 | |
Knee angle | 2 | 8 | 4 | 0.04 | 0.963 | 0.056 | |
C×G | Head inclination | 2 | 141 | 71 | 0.78 | 0.459 | 0.183 |
Trunk angle | 2 | 748 | 374 | 5.06 | <0.01 | 0.816 | |
Knee angle | 2 | 379 | 189 | 1.89 | 0.154 | 0.390 | |
S×C×G | Head inclination | 4 | 88 | 22 | 0.24 | 0.914 | 0.103 |
Trunk angle | 4 | 73 | 18 | 0.25 | 0.912 | 0.103 | |
Knee angle | 4 | 279 | 70 | 0.70 | 0.596 | 0.224 |
Head Inclination (°) | Trunk Angle (°) | Knee Angle (°) | |
---|---|---|---|
Chair type | |||
Stool | 165.3 (9.1) A | 97.9 (9.6) A | 97.7 (12.6) A |
Computer chair | 158.2 (9.4) B | 108.2 (10.2) B | 95.9 (10.1) A |
Ergonomic chair | 153.0 (9.6) C | 121.2 (9.3) C | 96.7 (8.4) A |
Strategy | |||
Correct | 160.0 (9.5) A | 105.9 (8.5) A | 93.8 (7.3) A |
Habitual | 158.8 (11.4) A | 109.5 (14.9) AB | 97.1 (12.2) B |
Comfortable | 157.7 (10.8) A | 111.9 (15.7) B | 99.4 (10.7) B |
Variables | Joint Angles | df | SS | MS | F | p-Value | Power |
---|---|---|---|---|---|---|---|
Strategy (S) | Head inclination | 2 | 128 | 64 | 1.23 | 0.295 | 0.266 |
Trunk angle | 2 | 111 | 55 | 1.16 | 0.316 | 0.253 | |
Knee angle | 2 | 903 | 451 | 4.76 | <0.01 | 0.790 | |
Chair type (C) | Head inclination | 2 | 201 | 101 | 1.93 | 0.148 | 0.397 |
Trunk angle | 2 | 8 | 4 | 0.09 | 0.919 | 0.063 | |
Knee angle | 2 | 45 | 22 | 0.24 | 0.789 | 0.087 | |
Gender (G) | Head inclination | 1 | 329 | 329 | 6.30 | <0.05 | 0.705 |
Trunk angle | 1 | 372 | 372 | 7.77 | <0.01 | 0.793 | |
Knee angle | 1 | 139 | 139 | 1.46 | 0.227 | 0.226 | |
S×C | Head inclination | 4 | 241 | 60 | 1.15 | 0.333 | 0.360 |
Trunk angle | 4 | 152 | 38 | 0.79 | 0.530 | 0.253 | |
Knee angle | 4 | 166 | 42 | 0.44 | 0.781 | 0.152 | |
S×G | Head inclination | 2 | 90 | 45 | 0.86 | 0.425 | 0.197 |
Trunk angle | 2 | 102 | 51 | 1.06 | 0.347 | 0.235 | |
Knee angle | 2 | 99 | 49 | 0.52 | 0.595 | 0.135 | |
C×G | Head inclination | 2 | 34 | 17 | 0.32 | 0.724 | 0.101 |
Trunk angle | 2 | 13 | 6 | 0.14 | 0.874 | 0.071 | |
Knee angle | 2 | 188 | 94 | 0.99 | 0.373 | 0.222 | |
S×C×G | Head inclination | 4 | 244 | 61 | 1.17 | 0.326 | 0.364 |
Trunk angle | 4 | 113 | 28 | 0.59 | 0.669 | 0.195 | |
Knee angle | 4 | 110 | 27 | 0.29 | 0.885 | 0.114 |
Joint Angles | Males | Females | Differences | p-Value |
---|---|---|---|---|
Head inclination (°) | 11.4 (8.7) | 9.2 (5.5) | −2.2 | <0.05 |
Trunk angle (°) | 8.0 (9.1) | 5.7 (3.2) | −2.3 | <0.01 |
Knee angle (°) | 12.0 (11.2) | 10.6 (8.0) | −1.4 | 0.227 |
Joint Angles | Observed Mean Range (°) | MDC95 (°) | Ratio (Observed/MDC95) |
---|---|---|---|
Head inclination | 10.3 ± 7.3 | 2.5 | 4.1 |
Trunk angle | 6.9 ± 6.9 | 2.2 | 3.1 |
Knee angle | 11.3 ± 9.7 | 2.8 | 4.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-L.; Zhang, L.-P. Postural Variability in Sitting: Comparing Comfortable, Habitual, and Correct Strategies Across Chairs. Appl. Sci. 2025, 15, 7239. https://doi.org/10.3390/app15137239
Chen Y-L, Zhang L-P. Postural Variability in Sitting: Comparing Comfortable, Habitual, and Correct Strategies Across Chairs. Applied Sciences. 2025; 15(13):7239. https://doi.org/10.3390/app15137239
Chicago/Turabian StyleChen, Yi-Lang, and Li-Peng Zhang. 2025. "Postural Variability in Sitting: Comparing Comfortable, Habitual, and Correct Strategies Across Chairs" Applied Sciences 15, no. 13: 7239. https://doi.org/10.3390/app15137239
APA StyleChen, Y.-L., & Zhang, L.-P. (2025). Postural Variability in Sitting: Comparing Comfortable, Habitual, and Correct Strategies Across Chairs. Applied Sciences, 15(13), 7239. https://doi.org/10.3390/app15137239