Treatment Methods for Antibiotic Mycelial Residues: A Review
Abstract
1. Introduction
2. Common Properties of AMR
3. Treatment Methods for AMR
- Physical methods focus primarily on modifying the inherent properties of AMR to improve solid–liquid separation efficiency and enhance its compatibility with subsequent processing stages, thereby facilitating more advanced treatment.
- Biochemical methods leverage microbial activity to achieve organic matter stabilization through mineralization, concurrently generating valuable products, such as humic acids or methane.
- Thermochemical methods employ high-temperature conditions to drive the cleavage of chemical bonds and the reorganization of molecular structures. This approach simultaneously achieves thorough contaminant destruction and the targeted conversion of the material into energy carriers, like syngas or bio-oil.
3.1. Physical Methods
3.1.1. Landfill
3.1.2. Microwave Treatment
3.1.3. Ionizing Radiation
3.2. Biochemical Methods
3.2.1. Aerobic Composting
3.2.2. Anaerobic Digestion
3.2.3. Biodegradation
3.3. Thermochemical Methods
3.3.1. Incineration
3.3.2. Pyrolysis Gasification
3.3.3. Hydrothermal Technology
3.4. Multi-Technology Coupling
3.4.1. Incineration Coupled with Advanced Dehydration Technologies
3.4.2. Physicochemical Technologies for Enhanced AD
- Disrupting AMR cell wall/membrane structures to release endogenous organics;
- Catalyzing hydrolysis of macromolecular organics to improve substrate bioaccessibility;
- Degrading residual antibiotics via alkali-catalyzed reactions to alleviate metabolic inhibition;
- Inducing DNA hydrolysis to reduce ARGs abundance.
3.4.3. Other Coupling Techniques
4. Discussion
- Economic constraints. As AMR is classified as hazardous waste, its treatment—whether through physical, biochemical, or thermochemical methods—involves multiple complex stages, each requiring substantial resource inputs and technical specifications;
- The diverse sources and compositional complexity of AMR necessitate customized treatment schemes for different feedstocks, further complicating cost control. Second, limitations of existing technologies. While numerous AMR treatment methods have been explored and proposed in prior studies, these approaches exhibit significant drawbacks. For instance, landfill and incineration require costly dewatering pretreatment. Aerobic composting and AD eliminate the need for dewatering but demand stringent reaction conditions and pose environmental risks. Ionizing radiation, pyrolysis/gasification, and HT entail high capital and operational costs, limiting their large-scale adoption. These shortcomings render existing technologies inadequate to meet stringent environmental standards, efficient resource utilization demands, and escalating public health safety requirements;
- The absence of standardized regulations. The lack of unified and authoritative guidelines—including pollutant emission standards, safety assessment protocols, and environmental technology specifications—leaves pharmaceutical enterprises without clear frameworks for designing economically viable and environmentally compliant AMR treatment processes. This regulatory gap hinders the advancement of AMR treatment practices. The Waste Framework Directive issued by the European Union provides detailed provisions governing the definition, classification, collection, transportation, treatment, and disposal of hazardous waste but lacks specific disposal requirements for AMR [145]. Furthermore, the inherently ambiguous definitions and discretionary features within European directives risk generating contradictory rulings by the European Court of Justice. This legal ambiguity, coupled with the decentralized transposition of amended directive obligations into national legislation, may result in divergent interpretations and regulatory frameworks across Member States during implementation [146].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | Antibiotic Mycelial Residue |
ARB | Antibiotic-Resistant Bacteria |
ARGs | Antibiotic Resistance Genes |
VS | Volatile Solids |
COD | Chemical Oxygen Demand |
BSFL | Black Soldier Fly Larvae |
SCOD | Soluble Chemical Oxygen Demand |
nZVI | Nano Zero-Valent Iron |
VFAs | Volatile Fatty Acids |
HT | Hydrothermal Treatment |
AD | Anaerobic Digestion |
References
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S. Microbial degradation of sulfamethoxazole in the environment. Appl. Microbiol. Biotechnol. 2018, 102, 3573–3582. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Liu, H.; Li, J.; Yan, B.; Dong, L. Treatment of antibiotic mycelial fermentation residue: The critical review. Environ. Chem. 2021, 40, 459–473. [Google Scholar]
- Hong, C.; Wang, Z.; Xing, Y.; Li, Y.; Yang, Q.; Jia, M.; Feng, L. Investigation of free radicals and carbon structures in chars generated from pyrolysis of antibiotic fermentation residue. RSC Adv. 2016, 6, 111226–111232. [Google Scholar] [CrossRef]
- Li, C.; Zhang, G.; Zhang, Z.; Ma, D.; Wang, L.; Xu, G. Hydrothermal pretreatment for biogas production from anaerobic digestion of antibiotic mycelial residue. Chem. Eng. J. 2015, 279, 530–537. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J.; Shen, Y. Antibiotic fermentation residue for biohydrogen production using different pretreated cultures: Performance evaluation and microbial community analysis. Bioresour. Technol. 2019, 292, 122012. [Google Scholar] [CrossRef]
- Huang, S.; Wu, S.; Wu, Y.; Yang, J.; Wei, X. Current research and prospect for thermochmical treatment of antibiotic mycelial residue. Acta Energiae Solaris Sin. 2023, 44, 440–448. [Google Scholar] [CrossRef]
- Aristilde, L.; Melis, A.; Sposito, G. Inhibition of Photosynthesis by a Fluoroquinolone Antibiotic. Environ. Sci. Technol. 2010, 44, 1444–1450. [Google Scholar] [CrossRef]
- Wang, H.; Che, B.; Duan, A.; Mao, J.; Dahlgren, R.A.; Zhang, M.; Zhang, H.; Zeng, A.; Wang, X. Toxicity Evaluation of β-diketone Antibiotics on the Development of Embryo-Larval Zebrafish (Danio rerio). Environ. Toxicol. 2014, 29, 1134–1146. [Google Scholar] [CrossRef]
- Berendsen, B.; Pikkemaat, M.; Romkens, P.; Wegh, R.; van Sisseren, M.; Stolker, L.; Nielen, M. Occurrence of Chloramphenicol in Crops Through Natural Production by Bacteria in Soil. J. Agric. Food Chem. 2013, 61, 4004–4010. [Google Scholar] [CrossRef]
- Yao, P.; Wu, H.; You, A.; Yu, G. Insight into sulfapyridine degradation mechanism and antibacterial activity change using enhanced hydrolysis. Environ. Prog. Sustain. Energy 2024, 43, e14376. [Google Scholar] [CrossRef]
- Kasumba, J.; Appala, K.; Agga, G.E.; Loughrin, J.H.; Conte, E.D. Anaerobic digestion of livestock and poultry manures spiked with tetracycline antibiotics. J. Environ. Sci. Health Part B-Pestic. Food Contam. Agric. Wastes 2020, 55, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Ben, Y.; Fu, C.; Hu, M.; Liu, L.; Wong, M.H.; Zheng, C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res. 2019, 169, 483–493. [Google Scholar] [CrossRef]
- Soler, N.; Forterre, P. Vesiduction: The fourth way of HGT. Environ. Microbiol. 2020, 22, 2457–2460. [Google Scholar] [CrossRef] [PubMed]
- Aminov, R.I.; Mackie, R.I. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol. Lett. 2007, 271, 147–161. [Google Scholar] [CrossRef]
- Watkinson, A.J.; Micalizzi, G.B.; Graham, G.M.; Bates, J.B.; Costanzo, S.D. Antibiotic-resistant Escherichia coli in wastewaters, surface waters, and oysters from an urban riverine system. Appl. Environ. Microbiol. 2007, 73, 5667–5670. [Google Scholar] [CrossRef]
- Caplin, J.L.; Hanlon, G.W.; Taylor, H.D. Presence of vancomycin and ampicillin-resistant Enterococcus faecium of epidemic clonal complex-17 in wastewaters from the south coast of England. Environ. Microbiol. 2008, 10, 885–892. [Google Scholar] [CrossRef]
- Kristiansson, E.; Fick, J.; Janzon, A.; Grabic, R.; Rutgersson, C.; Weijdegard, B.; Soderstrom, H.; Larsson, D.G.J. Pyrosequencing of Antibiotic-Contaminated River Sediments Reveals High Levels of Resistance and Gene Transfer Elements. PLoS ONE 2011, 6, e17038. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Z.; Dong, B. Occurrence, fate, and ecological risk of antibiotics in wastewater treatment plants in China: A review. J. Hazard. Mater. 2024, 469, 133925. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Shen, Y. Enhanced performance of anaerobic digestion of cephalosporin C fermentation residues by gamma irradiation-induced pretreatment. J. Hazard. Mater. 2020, 384, 121335. [Google Scholar] [CrossRef]
- Wu, J.; Han, Z.; Ma, X.; Su, M.; Hamidian, A.H.; Zhang, Y.; Yang, M. A Database on Antibiotics and Antibiotic Resistance in Wastewater and Solid Waste from Pharmaceutical Industry Based on a Systematic Review. China CDC Wkly. 2025, 7, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Sha, G.; Wu, Z.; Chen, T.; Zhang, G.; Shen, J.; Zhao, X.; Wang, L. Mechanisms for more efficient antibiotics and antibiotic resistance genes removal during industrialized treatment of over 200 tons of tylosin and spectinomycin mycelial dregs by integrated meta-omics. Bioresour. Technol. 2024, 401, 130715. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ren, P.; Liu, H.; Dai, X. Investigating antibiotics, antibiotic resistance genes in soil, groundwater and vegetables in relation to agricultural field—Applicated with lincomycin mycelial residues compost. Sci. Total Environ. 2021, 777, 146066. [Google Scholar] [CrossRef] [PubMed]
- Hui, X.; Fang, W.; Wang, G.; Liu, H.; Dai, X. Waste recycling of antibiotic mycelial residue: The feasible harmless treatment and source control of antibiotic resistance. J. Clean. Prod. 2023, 401, 136786. [Google Scholar] [CrossRef]
- Chen, W.; Geng, Y.; Hong, J.; Kua, H.W.; Xu, C.; Yu, N. Life cycle assessment of antibiotic mycelial residues management in China. Renew. Sustain. Energy Rev. 2017, 79, 830–838. [Google Scholar] [CrossRef]
- Song, S.; Jiang, M.; Yao, J.; Liu, H.; Dai, X. Anaerobic digestion of spectinomycin mycelial residues pretreated by thermal hydrolysis: Removal of spectinomycin and enhancement of biogas production. Environ. Sci. Pollut. Res. 2020, 27, 39297–39307. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, S.; Wang, L.; Liu, Y.; Qian, F.; Yao, W.; Zhang, S.; Chen, J. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology. Environ. Pollut. 2016, 211, 20–27. [Google Scholar] [CrossRef]
- Cai, C.; Gong, P.; Wang, Y.; Wang, M.; Zhang, B.; Wang, B.; Liu, H. Investigating the environmental risks from the use of spray-dried cephalosporin mycelial dreg (CMD) as a soil amendment. J. Hazard. Mater. 2018, 359, 300–306. [Google Scholar] [CrossRef]
- Hong, C.; Wang, Z.; Si, Y.; Li, Z.; Xing, Y.; Hu, J.; Li, Y. Preparation of bio-oils by hydrothermal liquefaction (HTL) of penicillin fermentation residue (PR): Optimization of conditions and mechanistic studies. Sci. Total Environ. 2021, 761, 143216. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Z.; Wen, Q.; Ma, J.; He, Z. Assessment of maturity during co-composting of penicillin mycelial dreg via fluorescence excitation-emission matrix spectra: Characteristics of chemical and fluorescent parameters of water-extractable organic matter. Chemosphere 2016, 155, 358–366. [Google Scholar] [CrossRef]
- Wei, X.; Huang, S.; Wu, Y.; Wu, S. Effects of demineralization and devolatilization on fast pyrolysis behaviors and product characteristics of penicillin mycelial residues. J. Hazard. Mater. 2022, 430, 128359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, Z.; Wen, Q.; Zheng, J. Assessing the stability in composting of penicillin mycelial dreg via parallel factor (PARAFAC) analysis of fluorescence excitation–emission matrix (EEM). Chem. Eng. J. 2016, 299, 167–176. [Google Scholar] [CrossRef]
- Cai, C.; Liu, H. Application of microwave-pretreated cephalosporin mycelial dreg (CMD) as soil amendment: Temporal changes in chemical and fluorescent parameters of soil organic matter. Sci. Total Environ. 2018, 621, 417–424. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, G.; Zhao, P.; Areeprasert, C.; Shen, Y.; Yoshikawa, K.; Xu, G. Hydrothermal treatment of antibiotic mycelial dreg: More understanding from fuel characteristics. Chem. Eng. J. 2015, 273, 147–155. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J. Enhanced antibiotic degradation and hydrogen production of deacetoxycephalosporin C fermentation residue by gamma radiation coupled with nano zero-valent iron. J. Hazard. Mater. 2022, 424, 127439. [Google Scholar] [CrossRef]
- Chu, L.; Wang, J.; Chen, C.; Shen, Y.; He, S.; Wojnárovits, L.; Takács, E.; Zhang, Y. Abatement of antibiotics and antimicrobial resistance genes from cephalosporin fermentation residues by ionizing radiation: From lab-scale study to full-scale application. J. Clean. Prod. 2021, 325, 129334. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, D.; Peng, C.; Liu, X.; Xu, G. Process characteristics of hydrothermal treatment of antibiotic residue for solid biofuel. Chem. Eng. J. 2014, 252, 230–238. [Google Scholar] [CrossRef]
- Cai, C.; Hua, Y.; Li, H.; Li, L.; Dai, L.; Liu, H.; Dai, X. Hydrothermal treatment of erythromycin fermentation residue: Harmless performance and bioresource properties. Resour. Conserv. Recycl. 2020, 161, 104952. [Google Scholar] [CrossRef]
- Guo, C.; Zhou, C.; Liu, X.; Liu, Q. Dehydration kinetics of antibiotic fermentation residues by dehydration agents at room temperature. Environ. Prog. Sustain. Energy 2021, 40, e13596. [Google Scholar] [CrossRef]
- Luan, X.; Han, Z.; Shen, Y.; Yang, M.; Zhang, Y. Assessing the effect of treated erythromycin fermentation residue on antibiotic resistome in soybean planting soil: In situ field study. Sci. Total Environ. 2021, 779, 146329. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, T.; He, S.; Wang, J. Volatile fatty acids recovery and antibiotic degradation from erythromycin fermentation residues by combined thermal pretreatment and anaerobic fermentation: Insights into microbial communities and metabolic pathways. Bioresour. Technol. 2023, 387, 129691. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, H.; Dai, X.; Cai, C.; Wang, J.; Wang, M.; Shen, Y.; Wang, P. Impact of application of heat-activated persulfate oxidation treated erythromycin fermentation residue as a soil amendment: Soil chemical properties and antibiotic resistance. Sci. Total Environ. 2020, 736, 139668. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Liu, H.; Wang, J.; Gong, P.; Cai, C.; Dai, X.; Wang, P. Pretreatment of spiramycin fermentation residue by thermally activated peroxydisulfate for improving biodegradability: Insights into matrix disintegration and antibiotics degradation. Chem. Eng. J. 2022, 427, 130973. [Google Scholar] [CrossRef]
- Wang, G.; Shu, Q.; Sun, J.; Liu, Y.; Yang, X.; Lin, H.; Ding, J.; Zhang, Y.; Lan, L.; Sun, H. Characteristics of acidic hydrothermal treatment for disintegration of spiramycin fermentation residue and degradation of residual antibiotics. Bioresour. Technol. 2024, 409, 131234. [Google Scholar] [CrossRef]
- Sha, G.; Bi, W.; Zhang, L.; Chen, T.; Li, X.; Chen, G.; Wang, L. Dynamics and removal mechanisms of antibiotic and antibiotic resistance genes during the fermentation process of spectinomycin mycelial dregs: An integrated meta-omics study. J. Hazard. Mater. 2022, 421, 126822. [Google Scholar] [CrossRef]
- Yang, M.; Ma, X.; Xie, D.; Wu, C.; Wang, Q.; Gao, M.; Xu, M.; Liu, S. A study towards minimising tylosin concentration and antibiotic resistance genes in tylosin fermentation dreg fertilizer. J. Environ. Chem. Eng. 2020, 8, 104372. [Google Scholar] [CrossRef]
- Deng, S.; Li, P.; Wu, Y.; Tang, H.; Cheng, S.; Thunders, M.; Qiu, J.; Li, Y. Eco-risk management of tylosin fermentation residues using vermicomposting. J. Environ. Manag. 2022, 303, 114126. [Google Scholar] [CrossRef]
- Jiang, M.; Song, S.; Liu, H.; Wang, P.; Dai, X. Effect of gentamicin mycelial residues disintegration by microwave-alkaline pretreatment on methane production and gentamicin degradation during anaerobic digestion. Chem. Eng. J. 2021, 414, 128790. [Google Scholar] [CrossRef]
- Yan, B.; Chen, X.; Wang, Z.; Li, J.; Li, T.; Mu, L.; Chen, G. Anaerobic co-digestion of antibiotic fermentation residues and corn stalks for biogas production and elimination of antibiotic resistance genes. Fuel 2025, 387, 134442. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhang, Z.; Turap, Y.; Wang, Y.; Wang, I.; Wang, Z.; Wang, W. Combined hydrothermal treatment, pyrolysis, and anaerobic digestion for removal of antibiotic resistance genes and energy recovery from antibiotic fermentation residues. Bioresour. Technol. 2021, 337, 125413. [Google Scholar] [CrossRef]
- Zhou, J.; Ping, R.; Wu, H.; Liu, H.; Wang, X.; Ren, A.; Tian, S.; Ma, Y. Recycling of neomycin fermentation residue using SEA-CBS technology: Growth performance and antibiotic resistance genes. Sci. Total Environ. 2022, 807, 150860. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hou, J.; Wang, D.; Ma, J.; Sun, W.; Li, M.; Sun, Z.; Liu, Y.; Liu, G.; Yan, Q.; et al. Highly efficient and secure recycling of neomycin fermentation residue by optimum temperature: Nutrients release, neomycin degradation and safety evaluation. Chem. Eng. J. 2024, 496, 153986. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Wang, M.; Dai, X.; Yao, J. Characteristics of hydrothermal treatment for the disintegration of oxytetracycline fermentation residue and inactivation of residual antibiotics. Chem. Eng. J. 2020, 402, 126011. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Xin, Y.; Wang, G.; Dai, X.; Yao, J. Composting of oxytetracycline fermentation residue in combination with hydrothermal pretreatment for reducing antibiotic resistance genes enrichment. Bioresour. Technol. 2020, 318, 124271. [Google Scholar] [CrossRef]
- Awad, M.; Tian, Z.; Zhang, Y.; Yang, M.; Yin, W.; Dong, L. Hydrothermal pretreatment of oxytetracycline fermentation residue: Removal of oxytetracycline and increasing the potential for anaerobic digestion. Environ. Eng. Res. 2021, 26, 200258. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Wang, G.; Yao, J.; Dai, X. Enhanced depletion of antibiotics and accelerated estabilization of dissolved organic matter by hydrothermal pretreatment during composting of oxytetracycline fermentation residue. Bioresour. Technol. 2021, 339, 125618. [Google Scholar] [CrossRef]
- Shen, Y.; Chu, L.; Zhuan, R.; Xiang, X.; Sun, H.; Wang, J. Degradation of antibiotics and antibiotic resistance genes in fermentation residues by ionizing radiation: A new insight into a sustainable management of antibiotic fermentative residuals. J. Environ. Manag. 2019, 232, 171–178. [Google Scholar] [CrossRef]
- Luo, X.; Yang, Q.; Lin, Y.; Tang, Z.; Tomberlin, J.K.; Liu, W.; Huang, Y. Black soldier fly larvae effectively degrade lincomycin from pharmaceutical industry wastes. J. Environ. Manag. 2022, 307, 114539. [Google Scholar] [CrossRef]
- Wang, M.; Liu, H.; Cheng, X.; Zhang, B.; Cai, C.; Wang, J. Hydrothermal treatment of lincomycin mycelial residues: Antibiotic resistance genes reduction and heavy metals immobilization. Bioresour. Technol. 2019, 271, 143–149. [Google Scholar] [CrossRef]
- Wang, M.; Cai, C.; Zhang, B.; Liu, H. Characterization and mechanism analysis of lincomycin biodegradation with Clostridium sp. strain LCM-B isolated from lincomycin mycelial residue (LMR). Chemosphere 2018, 193, 611–617. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Zhu, X.; Zhou, S.; Zhang, X.; Li, J.; Yan, B.; Chen, G. Comparative analysis of microwave wet torrefaction and anaerobic digestion for energy recovery from antibiotic mycelial residue. Fuel 2024, 357, 129776. [Google Scholar] [CrossRef]
- Selvam, A.; Zhao, Z.; Wong, J.W.C. Composting of swine manure spiked with sulfadiazine, chlortetracycline and ciprofloxacin. Bioresour. Technol. 2012, 126, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Mao, H.; Zhu, L.; Xia, X.; Zhou, R.; Han, L.; Ma, N.; Yin, D. Methane production potential and kinetic characteristics of the anaerobic digestion of erythromycin residues. Trans. Chin. Soc. Agric. Eng. 2024, 40, 199–208. [Google Scholar] [CrossRef]
- Wang, P.; Liu, H.; Fu, H.; Cheng, X.; Wang, B.; Cheng, Q.; Zhang, J.; Zou, P. Characterization and mechanism analysis of penicillin G biodegradation with Klebsiella pneumoniae Z1 isolated from waste penicillin bacterial residue. J. Ind. Eng. Chem. 2015, 27, 50–58. [Google Scholar] [CrossRef]
- Hong, C.; Yang, Q.; Wang, Z.; Xing, Y.; Shen, Q.; Li, Y.; Jia, M.; Feng, L. Co-combustion characteristics and kinetic analysis of antibiotic bacterial residue and coal. CIESC J. 2017, 68, 360. [Google Scholar]
- Zhuang, X.; Zhan, H.; Song, Y.; Huang, Y.; Yin, X.; Wu, C. Reutilization potential of antibiotic wastes via hydrothermal liquefaction (HTL): Bio-oil and aqueous phase characteristics. J. Energy Inst. 2019, 92, 1537–1547. [Google Scholar] [CrossRef]
- Borges, F.C.; Du, Z.; Xie, Q.; Trierweiler, J.O.; Cheng, Y.; Wan, Y.; Liu, Y.; Zhu, R.; Lin, X.; Chen, P.; et al. Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresour. Technol. 2014, 156, 267–274. [Google Scholar] [CrossRef]
- Cai, C.; Liu, H.; Wang, M. Characterization of antibiotic mycelial residue (AMR) dewatering performance with microwave treatment. Chemosphere 2017, 174, 20–27. [Google Scholar] [CrossRef]
- Jones, D.A.; Lelyveld, T.P.; Mavrofidis, S.D.; Kingman, S.W.; Miles, N.J. Microwave heating applications in environmental engineering—A review. Resour. Conserv. Recycl. 2002, 34, 75–90. [Google Scholar] [CrossRef]
- Wang, B.; Li, G.; Cai, C.; Zhang, J.; Liu, H. Assessing the safety of thermally processed penicillin mycelial dreg following the soil application: Organic matter’s maturation and antibiotic resistance genes. Sci. Total Environ. 2018, 636, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lian, J.Z.; Zhu, H.; Zhang, J.; Zhang, Y.; Xiang, X.; Huang, D.; Tjokro, K.; Barbarossa, V.; Cucurachi, S.; et al. Application of Life Cycle Assessment in the pharmaceutical industry: A critical review. J. Clean. Prod. 2024, 459, 142550. [Google Scholar] [CrossRef]
- Spinks, J.W.; Woods, R.J. An Introduction to Radiation Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1990. [Google Scholar]
- Wang, J.; Zhuan, R.; Chu, L. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview. Sci. Total Environ. 2019, 646, 1385–1397. [Google Scholar] [CrossRef] [PubMed]
- Sagi, G.; Kovacs, K.; Bersenyi, A.; Csay, T.; Takacs, E.; Wojnarovits, L. Enhancing the biological degradability of sulfamethoxazole by ionizing radiation treatment in aqueous solution. Radiat. Phys. Chem. 2016, 124, 179–183. [Google Scholar] [CrossRef]
- Yu, S.; Hu, J.; Wang, J. Gamma radiation-induced degradation of p-nitrophenol (PNP) in the presence of hydrogen peroxide (H2O2) in aqueous solution. J. Hazard. Mater. 2010, 177, 1061–1067. [Google Scholar] [CrossRef]
- Ardestani, S.B.; Akhavan, A.; Kazeminejad, H.; Ahmadi-Roshan, M.; Roozbahani, A. Ionizing radiation effect on the removing of antibiotic pollutants from pharmaceutical wastewater: Identification of radio-degradation products. J. Radioanal. Nucl. Chem. 2024, 333, 4523–4541. [Google Scholar] [CrossRef]
- Csay, T.; Racz, G.; Takacs, E.; Wojnarovits, L. Radiation induced degradation of pharmaceutical residues in water: Chloramphenicol. Radiat. Phys. Chem. 2012, 81, 1489–1494. [Google Scholar] [CrossRef]
- Reinholds, I.; Pugajeva, I.; Perkons, I.; Lundanes, E.; Rusko, J.; Kizane, G.; Nikolajeva, V.; Mutere, O.; Petrina, Z.; Baumane, L.; et al. Decomposition of multi-class pharmaceutical residues in wastewater by exposure to ionising radiation. Int. J. Environ. Sci. Technol. 2017, 14, 1969–1980. [Google Scholar] [CrossRef]
- Varjani, S.; Shah, A.V.; Vyas, S.; Srivastava, V.K. Processes and prospects on valorizing solid waste for the production of valuable products employing bio-routes: A systematic review. Chemosphere 2021, 282, 130954. [Google Scholar] [CrossRef]
- Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A. Bio-based fertilizers: A practical approach towards circular economy. Bioresour. Technol. 2020, 295, 122223. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, J.; Yu, C.; Dong, S.; Zhang, D.; Yu, R.; Wang, C.; Liu, Y. Evaluation of aerobic co-composting of penicillin fermentation fungi residue with pig manure on penicillin degradation, microbial population dynamics and composting maturity. Bioresour. Technol. 2015, 198, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, S.; Chen, Z.; Wen, Q.; Wang, Y. Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge. Bioresour. Technol. 2016, 204, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Qi, F.; Li, R.; Wang, H.; Sun, D. Health impact of odor from on-situ sewage sludge aerobic composting throughout different seasons and during anaerobic digestion with hydrolysis pretreatment. Chemosphere 2020, 249, 126077. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Samadder, S.R. Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy 2020, 197, 117253. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, S.; Li, B.; Feng, L.; Zhai, L.; Zhou, H.; Li, Y.; Pan, J. Anaerobic digestion of organic fraction of municipal solid waste using a novel two-stage solid-liquid system. J. Clean. Prod. 2022, 370, 133521. [Google Scholar] [CrossRef]
- Zhong, W.; Li, G.; Gao, Y.; Li, Z.; Geng, X.; Li, Y.; Yang, J.; Zhou, C. Enhanced biogas production from penicillin bacterial residue by thermal-alkaline pretreatment. Biotechnol. Biotechnol. Equip. 2015, 29, 522–529. [Google Scholar] [CrossRef]
- Braguglia, C.M.; Gallipoli, A.; Gianico, A.; Pagliaccia, P. Anaerobic bioconversion of food waste into energy: A critical review. Bioresour. Technol. 2018, 248, 37–56. [Google Scholar] [CrossRef]
- Sharma, I.; Rackemann, D.; Ramirez, J.; Cronin, D.J.; Moghaddam, L.; Beltramini, J.N.; Te’o, J.; Li, K.; Shi, C.; Doherty, W.O.S. Exploring the potential for biomethane production by the hybrid anaerobic digestion and hydrothermal gasification process: A review. J. Clean. Prod. 2022, 362, 132507. [Google Scholar] [CrossRef]
- Jung, H.; Kim, D.; Choi, H.; Lee, C. A review of technologies for in-situ sulfide control in anaerobic digestion. Renew. Sustain. Energy Rev. 2022, 157, 112068. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, Y.; Hui, F.; Niu, Q. Degradation of residual lincomycin in fermentation dregs by yeast strain S9 identified as Galactomyces geotrichum. Ann. Microbiol. 2015, 65, 1333–1340. [Google Scholar] [CrossRef]
- Liu, C.; Yao, H.; Wang, C. Black Soldier Fly Larvae Can Effectively Degrade Oxytetracycline Bacterial Residue by Means of the Gut Bacterial Community. Front. Microbiol. 2021, 12, 663972. [Google Scholar] [CrossRef]
- Gao, Q.; Deng, W.; Gao, Z.; Li, M.; Liu, W.; Wang, X.; Zhu, F. Effect of sulfonamide pollution on the growth of manure management candidate Hermetia illucens. PLoS ONE 2019, 14, e0216086. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Feng, Y.; Lv, G.; Du, Y.; Qin, D.; Li, X.; Chi, Y.; Yan, J.; Liu, X. Bioferment Residue: TG-FTIR Study and Cocombustion in a MSW Incineration Plant. Environ. Sci. Technol. 2012, 46, 13539–13544. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Zhang, G.; Areeprasert, C.; Li, C.; Shen, Y.; Yoshikawa, K.; Xu, G. Characterization of NO emission in combustion of hydrothermally treated antibiotic mycelial residue. Chem. Eng. J. 2016, 284, 708–715. [Google Scholar] [CrossRef]
- AlMokmesh, S.F.; AlKhulaifi, K.A.; AlMutairi, A.S.; Al-Ajmi, A.S. Incineration Innovation: A Path to Efficient and Sustainable Municipal Solid Waste Management in Kuwait. Processes 2024, 12, 1873. [Google Scholar] [CrossRef]
- Du, Y.; Jiang, X.; Ma, X.; Liu, X.; Lv, G.; Jin, Y.; Wang, F.; Chi, Y.; Yan, J. Evaluation of Cofiring Bioferment Residue with Coal at Different Proportions: Combustion Characteristics and Kinetics. Energy Fuels 2013, 27, 6295–6303. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, H.; Ge, Y.; Gao, S. Gaseous emission and ash characteristics from combustion of high ash content antibiotic mycelial residue in fluidized bed and the impact of additional water vapor. Fuel 2017, 202, 66–77. [Google Scholar] [CrossRef]
- Fahmy, T.Y.A.; Fahmy, Y.; Mobarak, F.; El-Sakhawy, M.; Abou-Zeid, R.E. Biomass pyrolysis: Past, present, and future. Environ. Dev. Sustain. 2020, 22, 17–32. [Google Scholar] [CrossRef]
- Roy, P.; Dias, G. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renew. Sustain. Energy Rev. 2017, 77, 59–69. [Google Scholar] [CrossRef]
- Azargohar, R.; Jacobson, K.L.; Powell, E.E.; Dalai, A.K. Evaluation of properties of fast pyrolysis products obtained, from Canadian waste biomass. J. Anal. Appl. Pyrolysis 2013, 104, 330–340. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Dalley, T.S.L.; Helleur, R.J. Preliminary laboratory production and characterization of biochars from lignocellulosic municipal waste. J. Anal. Appl. Pyrolysis 2013, 99, 71–78. [Google Scholar] [CrossRef]
- Demirbas, A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 2004, 72, 243–248. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.-K.; Yang, J.E.; Ok, Y.S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Shi, W.; Zhao, M.; Huang, Z.; Liu, X.; Ruan, W. Preparation of spiramycin fermentation residue derived biochar for effective adsorption of spiramycin from wastewater. Chemosphere 2022, 296, 133902. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.; Xu, G.; Li, G. Pyrolysis of penicillin fermentation residue and sludge to produce biochar: Antibiotic resistance genes destruction and biochar application in the adsorption of penicillin in water. J. Hazard. Mater. 2021, 413, 125385. [Google Scholar] [CrossRef]
- Chen, Y.; Du, L.; Li, S.; Song, W.; Jensen, P.A.; Lin, W. Pyrolysis of antibiotic mycelial dreg and characterization of obtained gas, liquid and biochar. J. Hazard. Mater. 2021, 402, 123826. [Google Scholar] [CrossRef]
- Li, Y.; Hong, C.; Li, Z.; Xing, Y.; Chang, X.; Zheng, Z.; Zhao, X. Study on the nitrogen migration mechanism during penicillin fermentation residue fast pyrolysis based on the substance transformation and canonical variational theory. Sci. Total Environ. 2020, 737, 139739. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.; Xu, G.; Li, G. Pyrolysis behaviors of antibiotic fermentation residue and wastewater sludge from penicillin production: Kinetics, gaseous products distribution, and nitrogen transformation. J. Anal. Appl. Pyrolysis 2021, 158, 105208. [Google Scholar] [CrossRef]
- Ning, Z.; Xu, B.; Zhong, W.; Liu, C.; Qin, X.; Feng, W.; Zhu, L. Preparation of phosphoric acid modified antibiotic mycelial residues biochar: Loading of nano zero-valent iron and promotion on biogas production. Bioresour. Technol. 2022, 348, 126801. [Google Scholar] [CrossRef]
- Du, Y.; Jiang, X.; Ma, X.; Liu, X.; Lv, G.; Jin, Y.; Wang, F.; Chi, Y.; Yan, J. Pyrolysis Product Evolution Characteristics of Bio-Ferment Residue Using Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy, and Mass Spectrometry. J. Appl. Spectrosc. 2015, 81, 1073–1077. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, C.; Xing, Y.; Li, Z.; Li, Y.; Yang, J.; Feng, L.; Hu, J.; Sun, H. Thermal characteristics and product formation mechanism during pyrolysis of penicillin fermentation residue. Bioresour. Technol. 2019, 277, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Biswal, B.K.; Zhang, J.; Balasubramanian, R. Hydrothermal Treatment of Biomass Feedstocks for Sustainable Production of Chemicals, Fuels, and Materials: Progress and Perspectives. Chem. Rev. 2023, 123, 7193–7294. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Olajire Oyedun, A.; Kumar, A. A review on the current status of various hydrothermal technologies on biomass feedstock. Renew. Sustain. Energy Rev. 2018, 81, 1742–1770. [Google Scholar] [CrossRef]
- Peterson, A.A.; Vogel, F.; Lachance, R.P.; Froeling, M.; Antal, M.J., Jr.; Tester, J.W. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci. 2008, 1, 32–65. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, H.; Chen, S.; Dichtl, N.; Dai, X.; Li, N. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge. Chem. Eng. J. 2015, 264, 174–180. [Google Scholar] [CrossRef]
- Yang, J.; He, Q.; Yang, L. A review on hydrothermal co-liquefaction of biomass. Appl. Energy 2019, 250, 926–945. [Google Scholar] [CrossRef]
- Meng, D.; Jiang, Z.; Kunio, Y.; Mu, H. The effect of operation parameters on the hydrothermal drying treatment. Renew. Energy 2012, 42, 90–94. [Google Scholar] [CrossRef]
- Avsar, Y.; Kurt, U. Thermotechnical comparison of conventional heating and microwave radiation method for dewatering of sewage sludge. Desalination Water Treat. 2017, 72, 274–280. [Google Scholar] [CrossRef]
- Kim, J.; Park, C.; Kim, T.-H.; Lee, M.; Kim, S.; Kim, S.-W.; Lee, J. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 2003, 95, 271–275. [Google Scholar] [CrossRef]
- Bougrier, C.; Delgenes, J.P.; Carrere, H. Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge. Biochem. Eng. J. 2007, 34, 20–27. [Google Scholar] [CrossRef]
- Zhang, G.; Li, C.; Ma, D.; Zhang, Z.; Xu, G. Anaerobic digestion of antibiotic residue in combination with hydrothermal pretreatment for biogas. Bioresour. Technol. 2015, 192, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, J. Application of radiation technology to sewage sludge processing: A review. J. Hazard. Mater. 2007, 143, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, J.; Roy, P.K.; Mazumdar, A. Qualitative and Quantitative Assessment of Sewage Sludge by Gamma Irradiation with Pasteurization as a Tool for Hygienization. J. Inst. Eng. (India) Ser. A 2014, 95, 49–54. [Google Scholar] [CrossRef]
- Park, W.; Hwang, M.-H.; Kim, T.-H.; Lee, M.-J.; Kim, I.S. Enhancement in characteristics of sewage sludge and anaerobic treatability by electron beam pre-treatment. Radiat. Phys. Chem. 2009, 78, 124–129. [Google Scholar] [CrossRef]
- Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P.N. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 2014, 123, 143–156. [Google Scholar] [CrossRef]
- López Torres, M.; Espinosa Lloréns, M.d.C. Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Manag. 2008, 28, 2229–2234. [Google Scholar] [CrossRef]
- Li, C.; Zhang, G.; Zhang, Z.; Ma, D.; Xu, G. Alkaline thermal pretreatment at mild temperatures for biogas production from anaerobic digestion of antibiotic mycelial residue. Bioresour. Technol. 2016, 208, 49–57. [Google Scholar] [CrossRef]
- Li, G.; Zhong, W.; Wang, R.; Chen, J.; Li, Z. Anaerobic digestion of thermal-alkaline–pretreated cephalosporin bacterial residues for methane production. J. Air Waste Manag. Assoc. 2017, 67, 933–937. [Google Scholar] [CrossRef]
- Song, S.; Jiang, M.; Yao, J.; Liu, H.; Dai, X.; Wang, G. Alkaline-thermal pretreatment of spectinomycin mycelial residues: Insights on anaerobic biodegradability and the fate of antibiotic resistance genes. Chemosphere 2020, 261, 127821. [Google Scholar] [CrossRef]
- Zhang, Q.; Gong, X.; Zhang, Y.; Wang, X.; Pan, X.; Zhou, Y.; Xu, X.; Zhang, Q.; Ji, X.-M.; Wang, W.; et al. Investigation into the treatment and resource recovery of rifamycin mycelial dreg with thermal alkaline pretreatment-anaerobic digestion. J. Clean. Prod. 2023, 427, 139169. [Google Scholar] [CrossRef]
- Lay, J.; Li, Y.; Noike, T.; Endo, J.; Ishimoto, S. Analysis of environmental factors affecting methane production from high-solids organic waste. Water Sci. Technol. 1997, 36, 493–500. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, W.; Yang, B.; Zhang, Y.; Sun, P.; Cai, Z.; Xiang, L.; Wang, D.; Zhang, W. Alkali-thermal humification treatment for simultaneous plant-growth-promoting compounds production and antibiotic removal from lincomycin fermentation residues. Chem. Eng. J. 2024, 485, 149449. [Google Scholar] [CrossRef]
- Wei, Y.; Meng, X.; Meng, W.; Leng, L.; Zeng, Z.; Wang, X.; Liu, S.; Zhan, H. Hydrothermal pretreatment for enhanced thermochemical or biochemical conversion of pharmaceutical biowastes into fuels, fertilizers, and carbon materials. Waste Manag. 2025, 193, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Posmanik, R.; Labatut, R.A.; Kim, A.H.; Usack, J.G.; Tester, J.W.; Angenent, L.T. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresour. Technol. 2017, 233, 134–143. [Google Scholar] [CrossRef]
- Chu, L.; Chen, D.; Wang, J.; Yang, Z.; Yang, Q.; Shen, Y. Degradation of antibiotics and inactivation of antibiotic resistance genes (ARGs) in Cephalosporin C fermentation residues using ionizing radiation, ozonation and thermal treatment. J. Hazard. Mater. 2020, 382, 121058. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, X.; Wang, Y.; Wang, I.; Turap, Y.; Wang, W. Hydrothermal treatment enhances the removal of antibiotic resistance genes, dewatering, and biogas production in antibiotic fermentation residues. J. Hazard. Mater. 2022, 435, 128901. [Google Scholar] [CrossRef]
- Yenigun, O.; Demirel, B. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 2013, 48, 901–911. [Google Scholar] [CrossRef]
- Hui, X.; Wang, Y.; Liu, H.; Dai, X. Effects of tea polyphenols pretreatment of kanamycin mycelial residue on subsequent aerobic composting: Improvements in antibiotic resistance control. Chem. Eng. J. 2024, 490, 151712. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Z.; Zhao, Y.; Xu, L.; Feng, S.; Wang, Z.; Zhang, L.; Shen, B. Effects of torrefaction pretreatment on fuel quality and combustion characteristics of biomass: A review. Fuel 2024, 358, 130314. [Google Scholar] [CrossRef]
- Wei, X.; Huang, S.; Wu, Y.; Wu, S.; Yang, J. A comprehensive study on torrefaction of penicillin mycelial residues: Analysis of product characteristics and conversion mechanisms of N. Fuel 2022, 330, 125703. [Google Scholar] [CrossRef]
- Lu, Q.; Dai, L.; Li, L.; Huang, H.; Zhu, W. Valorization of oxytetracycline fermentation residue through torrefaction into a versatile and recyclable adsorbent for water pollution control. J. Environ. Chem. Eng. 2021, 9, 105397. [Google Scholar] [CrossRef]
- Yang, S.; Liu, G.; Hou, J.; Chen, L.; Li, T.; Dong, Z.; Xie, X.; Sun, L.; Hua, D. Combining torrefaction pretreatment and activation for avermectin mycelial residues biochar upgradation and structural modification. Fuel 2025, 384, 133933. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, X.; Wang, J.; Jin, X.; Liu, Y.; Qian, F.; Zhang, S.; Chen, J. Combustion of hazardous biological waste derived from the fermentation of antibiotics using TG–FTIR and Py–GC/MS techniques. Bioresour. Technol. 2015, 193, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Backes, C. The waste framework directive and the circular economy. In Research Handbook on EU Environmental Law; Edward Elgar Publishing: Cheltenham, UK, 2020; pp. 328–343. [Google Scholar]
- Nash, H.A. The revised directive on waste: Resolving legislative tensions in waste management? J. Environ. Law 2009, 21, 139–149. [Google Scholar] [CrossRef]
- Slattery, S.S.; Wang, H.; Giguere, D.J.; Kocsis, C.; Urquhart, B.L.; Karas, B.J.; Edgell, D.R. Plasmid-based complementation of large deletions in Phaeodactylum tricornutum biosynthetic genes generated by Cas9 editing. Sci. Rep. 2020, 10, 13879. [Google Scholar] [CrossRef]
Type | Antibiotic Concentration (mg/kg) | Moisture Content (%) | C/N | References | |
---|---|---|---|---|---|
Beta-lactams | Penicillin | 1000~2000 | 75~82 | 4.5~7.6 | [29,30,31,32] |
Cephalosporin | 7860 | 83~89 | 5.6~5.9 | [33,34] | |
Cephalosporin C | 810~920 | 83~92 | 5.3~6.6 | [6,20,35,36,37] | |
Macrolides | Erythromycin | 185~2271 | 79~90 | 5.6 | [38,39,40,41,42] |
Spiramycin | 2110 | 65~90 | 4.9 | [43,44] | |
Avermectin | 1208~2653 | 68~87 | - | [26,45] | |
Tylosin | 15.3~8900 | 67~68 | 0.9~8.6 | [46,47] | |
Aminoglycosides | Gentamicin | 4500 | 97 | 8.48 | [48,49] |
Streptomycin | 5485 | 91 | - | [50] | |
Neomycin | 4005~7500 | 12~50 | 8.8~9 | [51,52] | |
Tetracyclines | Oxytetracycline | 1012~7084 | 72~86 | 5.3 | [53,54,55,56] |
Others | Sulfathiazole | 538 | 92 | 17.2 | [57] |
Lincomycin | 2157~14270 | 51~66 | 6.4 | [58,59,60] |
Technology | Condition | Antibiotic Removal Rate | ARGs Removal Rate | References |
---|---|---|---|---|
Microwave Treatment | 200 °C, 30 min | 95% | - | [62] |
Ionizing Radiation | 30~50 kGy of gamma rays | 56~99% | 90~95% | [35,57] |
Aerobic Composting | 12~42 d | >99% | increased abundance | [30,54] |
Anaerobic Digestion | 20~30 d | >80% | 58%ARGs | [49,64] |
Biodegradation | Bacteria, fungi, insects, 8~15 d | 37~85% | - | [58,60,91] |
Incineration | >800 °C | - | - | [144] |
Pyrolysis Gasification | 600 °C, 30 min | 100% | 100% | [106] |
Hydrothermal Treatment | 160~180 °C, 30 min | >99% | >99% | [37,59] |
Technology | Advantages | Disadvantages | |
---|---|---|---|
physical methods | Landfill | Simple operation; Mature technology | Residual antibiotics and ARGs risks; Low resource recovery rate; Secondary pollution risks; High land occupation |
Microwave Treatment | High efficiency; Significant effectiveness | Residue antibiotic risks; High capital and operational costs | |
Ionizing Radiation | High efficiency; Mild conditions; Strong adaptability; No secondary pollution | Immature technology; High capital and operational costs | |
biochemical methods | Aerobic Composting | Mature technology; Large-scale treatment capacity; Resource recovery potential | Residue ARG risks; Limited technical universality |
Anaerobic Digestion | Significant effectiveness; Resource recovery potential | Stringent technical requirements; High treatment cost; Secondary pollution risks | |
Biodegradation | Low treatment cost; Environmentally friendly; Supports resource recovery | Residue antibiotic risks; Limited biological adaptability | |
thermochemical methods | Incineration | Mature technology; Significant volume reduction and detoxification | High treatment cost; Low resource recovery rate |
Pyrolysis Gasification | Significant volume reduction and detoxification; Resource recovery potential; Strong adaptability; No secondary pollution | Technically complex; High capital and operational costs | |
Hydrothermal Treatment | Remarkably improved dewatering performance; Significant volume reduction and detoxification; Resource recovery potential | Harsh reaction conditions; High capital and operational costs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Y.; Fang, K.; Xue, Y.; Zhu, N.; Zhou, Y.; Zhao, J.; Yao, G.; Liu, D. Treatment Methods for Antibiotic Mycelial Residues: A Review. Appl. Sci. 2025, 15, 7170. https://doi.org/10.3390/app15137170
Tong Y, Fang K, Xue Y, Zhu N, Zhou Y, Zhao J, Yao G, Liu D. Treatment Methods for Antibiotic Mycelial Residues: A Review. Applied Sciences. 2025; 15(13):7170. https://doi.org/10.3390/app15137170
Chicago/Turabian StyleTong, Yang, Kaiyu Fang, Yecheng Xue, Ningzheng Zhu, Yangyuan Zhou, Jianfu Zhao, Guodong Yao, and Dongyan Liu. 2025. "Treatment Methods for Antibiotic Mycelial Residues: A Review" Applied Sciences 15, no. 13: 7170. https://doi.org/10.3390/app15137170
APA StyleTong, Y., Fang, K., Xue, Y., Zhu, N., Zhou, Y., Zhao, J., Yao, G., & Liu, D. (2025). Treatment Methods for Antibiotic Mycelial Residues: A Review. Applied Sciences, 15(13), 7170. https://doi.org/10.3390/app15137170