A PINN-Based Nonlinear PMSM Electromagnetic Model Using Differential Inductance Theory
Abstract
1. Introduction
- Magnetic saturation effects in the core magnetic circuit are neglected.
- The magnetic potential in the air-gap field and the back-EMF generated by permanent magnets contain no harmonics.
- The rotor has no damper windings, and permanent magnets exhibit no damping effects.
- Hysteresis and eddy current losses in the motor, as well as magnetic circuit nonlinearity, are not considered.
2. The Nonlinear PMSM Electromagnetic Model Based on Differential Inductance
2.1. PMSM Equations in the ABC Frame
2.2. PMSM Equations in the dq0 Frame
2.3. PMSM Angular Frequency Domain Analysis
3. Nonlinear Electromagnetic Modeling of PMSM
3.1. The Global Linearization Model (GLM)
3.2. The Optimal Linear Approximation Model (OLAM)
3.3. The PINN Surrogate Model Based on Physical Priors of PMSM
- Constraint 1: has zero curl:
- Constraint 2: and initial conditions are zero:
4. Examples of PINN Surrogate Modeling
4.1. FEA Parameter Extraction
4.2. PINN Training
4.3. Analysis of PINN Modeling Results
4.4. PMSM Torque Calculation Based on PINN Modeling
4.4.1. Torque Calculation Under SE Conditions
4.4.2. Torque Calculation Under USE Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loganayaki, A.; Kumar, R.B. Permanent Magnet Synchronous Motor for Electric Vehicle Applications. In Proceedings of the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; pp. 1064–1069. [Google Scholar] [CrossRef]
- Li, Y.; Gao, X.; Qin, Y.; Du, J.; Guo, D.; Feng, X.; Lu, L.; Han, X.; Ouyang, M. Drive Circuitry of an Electric Vehicle Enabling Rapid Heating of the Battery Pack at Low Temperatures. iScience 2021, 24, 101921. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Han, J.; Zhang, H.; Lu, F.; Liu, K.; Zhang, X. Modeling and Control of an Integrated Self-Heater for Automotive Batteries Based on Traction Motor Drive Reconfiguration. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 384–395. [Google Scholar] [CrossRef]
- Welchko, B.A.; Jahns, T.M.; Hiti, S. IPM Synchronous Machine Drive Response to a Single-Phase Open Circuit Fault. IEEE Trans. Power Electron. 2002, 17, 764–771. [Google Scholar] [CrossRef]
- Zhong, Z.; Jiang, S.; Zhou, Y.; Zheng, S. Magnetic Co-energy Based Modelling of PMSM for HEV/EV Application. Prog. Electromagn. Res. M 2016, 50, 11–22. [Google Scholar] [CrossRef]
- Feng, G.; Lai, C.; Kar, N.C. A Novel Current Injection-Based Online Parameter Estimation Method for PMSMs Considering Magnetic Saturation. IEEE Trans. Magn. 2016, 52, 8100404. [Google Scholar] [CrossRef]
- Liang, W.; Fei, W.; Luk, P.C.K. An Improved Sideband Current Harmonic Model of Interior PMSM Drive by Considering Magnetic Saturation and Cross-Coupling Effects. IEEE Trans. Ind. Electron. 2016, 63, 4097–4104. [Google Scholar] [CrossRef]
- Dietz, A.; Caruso, M.; Di Tommaso, A.O.; Miceli, R.; Nevoloso, C. Enhanced Mathematical Modelling of Interior Permanent Magnet Synchronous Machine Considering Saturation, Cross-Coupling and Spatial Harmonics Effects. In Proceedings of the 2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 10–12 September 2020; pp. 1–9. [Google Scholar]
- Li, H.; Zhang, J.; Luo, Y.; Wang, H.; Cui, X.; Dou, X. Finite Element Analysis of PMSM Steady State Parameters Considering Cross-Saturation Effect. Proc. CSEE 2012, 32, 104–110. [Google Scholar]
- Richter, J. Modellbildung, Parameteridentifikation und Regelung hoch Ausgenutzter Synchronmaschinen; Karlsruher Institut für Technologie (KIT): Karlsruhe, Germany, 2016. [Google Scholar]
- Meyer, M. Wirkungsgradoptimierte Regelung hoch Ausgenutzter Permanentmagnet-Synchronmaschinen im Antriebsstrang von Automobilen; Universität Stuttgart: Stuttgart, Germany, 2010. [Google Scholar]
- Shah, S.H.; Wang, Y.-C.; Shi, D.; Shen, J.-X. Investigation of Torque and Reduction of Torque Ripples through Assisted-Poles in Low-Speed, High-Torque Density Spoke-Type PMSMs. Machines 2024, 12, 327. [Google Scholar] [CrossRef]
- Weidenholzer, G.; Silber, S.; Jungmayr, G.; Bramerdorfer, G.; Grabner, H.; Amrhein, W. A Flux-Based PMSM Motor Model Using RBF Interpolation for Time-Stepping Simulations. In Proceedings of the 2013 International Electric Machines & Drives Conference, Chicago, IL, USA, 12–15 May 2013; pp. 1418–1423. [Google Scholar]
- Rahman, K.M.; Hiti, S. Identification of Machine Parameters of a Synchronous Motor. IEEE Trans. Ind. Appl. 2005, 41, 557–565. [Google Scholar] [CrossRef]
- Nakao, N.; Akatsu, K. Suppressing Pulsating Torques: Torque Ripple Control for Synchronous Motors. IEEE Ind. Appl. Mag. 2014, 20, 33–44. [Google Scholar] [CrossRef]
- Lee, G.-H.; Kim, S.-I.; Hong, J.-P.; Bahn, J.-H. Torque Ripple Reduction of Interior Permanent Magnet Synchronous Motor Using Harmonic Injected Current. IEEE Trans. Magn. 2008, 44, 1582–1585. [Google Scholar] [CrossRef]
- Rezaee-Alam, F. On-Load Cogging Torque Calculation in Surface-Mounted Permanent Magnet Motors Using Hybrid Analytical Model. IEEE Trans. Magn. 2024, 60, 8200110. [Google Scholar] [CrossRef]
- Wang, X.; Yi, P.; Zhou, Z.; Sun, Z.; Ruan, W. Improvements in the Permanent Magnet Synchronous Motor Torque Model Using Differential Inductance. IET Electr. Power Appl. 2020, 14, 109–118. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-Informed Machine Learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Hu, H.; Qi, L.; Chao, X. Physics-Informed Neural Networks (PINN) for Computational Solid Mechanics: Numerical Frameworks and Applications. Thin-Walled Struct. 2024, 205, 112495. [Google Scholar] [CrossRef]
- Li, X.; Deng, J.; Wu, J.; Zhang, S.; Li, W.; Wang, Y.-G. Physical Informed Neural Networks with Soft and Hard Boundary Constraints for Solving Advection-Diffusion Equations Using Fourier Expansions. Comput. Math. Appl. 2024, 159, 60–75. [Google Scholar] [CrossRef]
- Xia, C.; Du, B.; Huang, W.; Cui, S. Parameter Identification of Permanent Magnet Synchronous Motor Based on Physics-Informed Neural Network. In Proceedings of the 2024 5th International Conference on Power Engineering (ICPE), Shanghai, China, 13 December 2024; pp. 207–212. [Google Scholar]
- Zeng, Y.; Xiao, Z.; Liu, Q.; Liang, G.; Rodriguez, E.; Zou, G.; Zhang, X.; Pou, J. Physics-Informed Deep Transfer Reinforcement Learning Method for the Input-Series Output-Parallel Dual Active Bridge-Based Auxiliary Power Modules in Electrical Aircraft. IEEE Trans. Transp. Electrif. 2025, 11, 6629–6639. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific Machine Learning Through Physics–Informed Neural Networks: Where We Are and What’s Next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Liu, Y.; Li, Y.; Wang, P. Multi-Objective Control Harmonic Current Solution for Permanent Magnet Synchronous Motor. In Proceedings of the 2022 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Haining, China, 28 October 2022; pp. 1–6. [Google Scholar]
- Hendriks, J.; Jidling, C.; Wills, A.; Schön, T. Linearly Constrained Neural Networks. arXiv 2021, arXiv:2002.01600. [Google Scholar]
- Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Rev. 2021, 63, 208–228. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Rated Voltage (DC/V) | 96 | Stator Outer Diameter (mm) | 155 |
Rated Power (kW) | 12 | Stator Inner Diameter (mm) | 100 |
Peak Power (kW) | 30 | Number of Pole Pairs | 4 |
Peak Speed (rpm) | 9000 | Number of Slots | 48 |
Peak Torque (N·m) | 75 | Core Material | B35APV1900 |
Number of Skew Poles | 2 | Permanent Magnet Material | N42UH_0708 |
Hyperparameters | Value |
---|---|
Hidden layer size | 3 × 64 × 64 × 64 × 6 |
Learning rate | 0.0005 |
Activation function | Tanh |
Optimizer | Adams and L-BGFS |
Epoch | 4000 |
Conditions/Indicators | Harmonics | EDS | |||||
---|---|---|---|---|---|---|---|
0 | 6 | 12 | 18 | 24 | |||
450A/70° | FEA | 54.34 | 1.76 | 1.30 | 0.11 | 0.42 | |
GLM | 54.33 | 1.04 | 2.60 | 0.25 | 0.25 | 16.71 | |
OLAM | 54.27 | 1.77 | 1.28 | 0.09 | 0.46 | 2.97 | |
PINN | 54.32 | 1.80 | 1.29 | 0.08 | 0.42 | 1.12 | |
490A/62° | FEA | 76.74 | 2.09 | 1.73 | 0.10 | 0.36 | |
GLM | 75.06 | 1.32 | 1.04 | 0.26 | 0.37 | 26.84 | |
OLAM | 77.16 | 2.21 | 1.72 | 0.08 | 0.31 | 5.84 | |
PINN | 76.71 | 2.08 | 1.72 | 0.10 | 0.40 | 0.93 |
Harmonic Order | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 25 |
---|---|---|---|---|---|---|---|---|
Amplitude (A) | 1.30 | 0.40 | 1.37 | 2.24 | 0.19 | 0.06 | 0.15 | 0.17 |
Phase (rad) | 1.84 | 1.16 | 4.99 | 3.45 | 2.80 | 5.94 | 4.11 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, X. A PINN-Based Nonlinear PMSM Electromagnetic Model Using Differential Inductance Theory. Appl. Sci. 2025, 15, 7162. https://doi.org/10.3390/app15137162
Wang S, Wang X. A PINN-Based Nonlinear PMSM Electromagnetic Model Using Differential Inductance Theory. Applied Sciences. 2025; 15(13):7162. https://doi.org/10.3390/app15137162
Chicago/Turabian StyleWang, Songyi, and Xinjian Wang. 2025. "A PINN-Based Nonlinear PMSM Electromagnetic Model Using Differential Inductance Theory" Applied Sciences 15, no. 13: 7162. https://doi.org/10.3390/app15137162
APA StyleWang, S., & Wang, X. (2025). A PINN-Based Nonlinear PMSM Electromagnetic Model Using Differential Inductance Theory. Applied Sciences, 15(13), 7162. https://doi.org/10.3390/app15137162