Estimation of Dynamic Error Parameters in a Measurement Chain Based on the Spectrum of Input Quantities
Abstract
Featured Application
Abstract
1. Introduction
2. Dynamic Error Model
3. Dynamic Error Parameter Estimation
4. Simulation Verification of the Method
4.1. The Case of Spectrum Leakage
4.2. The Case of Random Error Signals
4.3. Case of the Error Model Parameter Inaccuracy
4.4. Comprehensive Verification of the Effectiveness of the Method
5. Measurement Verification of the Effectiveness of the Proposed Method
- —resultant random error signal with constant power spectral density, zero expected value, normally distributed realization values, and variance of 0.13 ,
- —resultant dynamic error signal, whose variance values for subsequent harmonics is estimated using the proposed method.
5.1. The Case of a Monoharmonic Signal
5.2. The Case of a Polyharmonic Signal
5.3. Analysis of the Obtained Measurement Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A/A | Analog-to-analog |
A/D | Analog-to-digital converter |
DC | Direct current |
D/D | Digital-to-digital |
DFT | Discrete Fourier transform |
DWT | Discrete wavelet transform |
S/H | Sample-and-hold |
References
- Saleh, R.; Wilton, S.; Mirabbasi, S.; Hu, A.; Greenstreet, M.; Lemieux, G.; Pande, P.P.; Grecu, C.; Ivanov, A. System-on-chip. Proc. IEEE 2006, 94, 1050–1069. [Google Scholar] [CrossRef]
- Reay, D.S. Digital Signal Processing Using the ARM Cortex M4; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing, 3rd ed.; Pearson: London, UK, 2009. [Google Scholar]
- ARM Limited. CMSIS-DSP—Embedded Compute Library for Cortex-M and Cortex-A. 2024. Available online: https://arm-software.github.io/CMSIS-DSP (accessed on 20 June 2025).
- Mallat, S. A Wavelet Tour of Signal Processing, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Addison, P.S. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Akujuobi, C.M. Wavelets and Wavelet Transform Systems and Their Applications; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Alegria, F. Using digital methods in active power measurement. Acta IMEKO 2023, 12, 1–8. [Google Scholar] [CrossRef]
- Pandey, S. Analog Multiplier Based Single Phase Power Measurement. J. Electr. Electron. Syst. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, Z.; Huang, G.; Wang, F.; Wang, P.; Liang, J. Power Grid Faults Diagnosis Based on Improved Synchrosqueezing Wavelet Transform and ConvNeXt-v2 Network. Electronics 2025, 14, 388. [Google Scholar] [CrossRef]
- Altaie, A.S.; Abderrahim, M.; Alkhazraji, A.A. Transmission Line Fault Classification Based on the Combination of Scaled Wavelet Scalograms and CNNs Using a One-Side Sensor for Data Collection. Sensors 2024, 24, 2124. [Google Scholar] [CrossRef]
- Agarwal, S.; Sharma, S.; Rahman, M.H.; Vranckx, S.; Maiheu, B.; Blyth, L.; Janssen, S.; Gargava, P.; Shukla, V.K.; Batra, S.; et al. Air quality forecasting using artificial neural networks with real time dynamic error correction in highly polluted regions. Sci. Total Environ. 2020, 735, 139454. [Google Scholar] [CrossRef]
- Volosnikov, A.S. Measurement System Based on Nonrecursive Filters with the Optimal Correction of the Dynamic Measurement Error. Meas. Tech. 2023, 65, 720–728. [Google Scholar] [CrossRef]
- Jakubiec, J.; Roj, J. Error Analysis of Analytical and Neural Real-Time Reconstruction of Analog Signals; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2024. [Google Scholar] [CrossRef]
- Roj, J. Estimation of the artificial neural network uncertainty used for measurand reconstruction in a sampling transducer. IET Sci. Meas. Technol. 2014, 8, 23–29. [Google Scholar] [CrossRef]
- Kampik, M.; Roj, J.; Dróżdż, L. Error Model of a Measurement Chain Containing the Discrete Wavelet Transform Algorithm. Appl. Sci. 2024, 14, 3461. [Google Scholar] [CrossRef]
- Joint Committee for Guides in Metrology. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; JCGM: Sèvres, France, 2008; Available online: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf (accessed on 20 June 2025).
- Kampik, M.; Roj, J.; Dróżdż, L. Estimation of the resultant expanded uncertainty of the output quantities of the measurement chain using the discrete wavelet transform algorithm. Appl. Sci. 2024, 14, 3691. [Google Scholar] [CrossRef]
- Jakubiec, J.; Konopka, K. The error based model of a single measurement result in uncertainty calculation of the mean value of series. Probl. Prog. Metrol. 2015, 20, 75–78. [Google Scholar]
- Jakubiec, J. Reducing interval arithmetic in dynamic error evaluation. In Proceedings of the 5th International Workshop on ADC Modelling and Testing, XVI IMEKO World Congress, Wien, Austria, 26–28 September 2000; pp. 100–105. [Google Scholar]
- Ruhm, K.H. Deterministic, Nondeterministic Signals; Institute for Dynamic Systems and Control: Zurich, Switzerland, 2008. [Google Scholar]
- Shi, S.; Yang, L.; Lin, J.; Long, C.; Deng, R.; Zhang, Z.; Zhu, J. Dynamic Measurement Error Modeling and Analysis in a Photoelectric Scanning Measurement Network. Appl. Sci. 2019, 9, 62. [Google Scholar] [CrossRef]
- Dróżdż, L.; Roj, J. Origin and properties of own error signals of the discrete wavelet transform algorithms. Int. J. Electron. Telecommun. 2024, 70, 643–648. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Willsky, A.S.; Nawab, S.H. Signals & Systems, 2nd ed.; Pearson: London, UK, 2013. [Google Scholar]
- Proakis, J.G.; Manolakis, D.G. Digital Signal Processing: Principles, Algorithms and Applications, 5th ed.; Pearson: London, UK, 2021. [Google Scholar]
- Horalek, V. Analysis of basic probability distributions, their properties and use in determining type B evaluation of measurement uncertainties. Measurement 2013, 46, 16–23. [Google Scholar] [CrossRef]
- Kampik, M.; Roj, J.; Dróżdż, L. A Method for Estimating the Resultant Expanded Uncertainty Value Based on Interval Arithmetic. Appl. Sci. 2024, 14, 7334. [Google Scholar] [CrossRef]
- Koliander, G.; El-Laham, Y.; Djurić, P.M.; Hlawatsch, F. Fusion of probability density functions. Proc. IEEE 2022, 110, 404–453. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Jiang, C.; Huang, Z.L. A new uncertainty propagation method considering multimodal probability density functions. Struct. Multidiscip. Optim. 2019, 60, 1983–1999. [Google Scholar] [CrossRef]
- Dieck, R.H. Measurement Uncertainty: Methods and Applications; ISA: Dubai, United Arab Emirates, 2017. [Google Scholar]
- Yang, L.; Guo, Y. Combining pre-and post-model information in the uncertainty quantification of non-deterministic models using an extended Bayesian melding approach. Inf. Sci. 2019, 502, 146–163. [Google Scholar] [CrossRef]
- Urbanski, M.K.; Wąsowski, J. Fuzzy approach to the theory of measurement inexactness. Measurement 2003, 34, 67–74. [Google Scholar] [CrossRef]
- Joint Committee for Guides in Metrology. Evaluation of Measurement Data—Propagation of Distributions Using a Monte Carlo Method; JCGM: Sèvres, France, 2008; Available online: https://www.bipm.org/documents/20126/2071204/JCGM_101_2008_E.pdf (accessed on 20 June 2025).
- Dróżdż, L. Reductive Interval Arithmetic Method Application Example on GitHub, 2024. Available online: https://github.com/Kuszki/Octave-Uncertainty-RIA-Example (accessed on 20 June 2025).
- STMicroelectronics. Application note AN1636; STMicroelectronics: Geneva, Switzerland, 2003. [Google Scholar]
- Baker, B.C. Optimize Your SAR ADC Design; Texas Instruments Inc.: Dallas, TX, USA, 2019. [Google Scholar]
- Arpaia, P.; Baccigalupi, C.; Martino, M. Metrological characterization of high-performance delta-sigma ADCs. In Proceedings of the 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 14–17 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Hajek, K.; Kohl, Z. Multiple Aliasing of Windowed Real-Valued Signal as a Cause of Accuracy Limitation of DFT Methods. IEEE Access 2025, 13, 6515–6526. [Google Scholar] [CrossRef]
- Qian, W.; Xiao, Y.; Yong, R. Spectrum leakage suppression for multi-frequency signal based on DFT. In Proceedings of the 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Yangzhou, China, 20–23 October 2017; pp. 394–399. [Google Scholar] [CrossRef]
- Vimala, C.; Priya, P.A. Noise reduction based on Double Density Discrete Wavelet Transform. In Proceedings of the 2014 International Conference on Smart Structures and Systems (ICSSS), Chennai, India, 9 October 2014; pp. 15–18. [Google Scholar] [CrossRef]
- Halidou, A.; Mohamadou, Y.; Ari, A.A.A.; Zacko, E.J.G. Review of wavelet denoising algorithms. Multimed. Tools Appl. 2023, 82, 41539–41569. [Google Scholar] [CrossRef]
- Prabhu, K.M.M. Window Functions and Their Applications in Signal Processing; Taylor & Francis: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]
- Janssen, H. Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence. Reliab. Eng. Syst. Saf. 2013, 109, 123–132. [Google Scholar] [CrossRef]
- Grimmett, G.; Stirzaker, D. Probability and Random Processes, 4th ed.; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Kuo, H.H. White Noise Distribution Theory; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Eaton, J.W. GNU Octave Official Website. 2024. Available online: https://octave.org/ (accessed on 20 June 2025).
- Dróżdż, L. Dynamic Error Parameters Estimation Example on GitHub, 2025. Available online: https://github.com/Kuszki/Octave-Uncertainty-DEPE-Example (accessed on 20 June 2025).
- Topór-Kaminski, T.; Jakubiec, J. Uncertainty modelling method of data series processing algorithms. In Proceedings of the IMEKO TC-4 Symposium on Development in Digital Measuring Instrumentation and 3rd Workshop on ADC Modelling and Testing, Naples, Italy, 17–18 September 1998; Volume 2, pp. 631–636. [Google Scholar]
- RIGOL Technologies Inc. User’s Guide DG1-070518. 2007. Available online: https://supportjp.rigol.com/Public/Uploads/uploadfile/files/20210729/DSB01100-1110.pdf (accessed on 20 June 2025).
- Agilent Technologies Inc. Agilent 3458A Multimeter. 2011. Available online: https://dfzk-www.oss-cn-beijing.aliyuncs.com/www-PRD/resources/files/Ag_3458A_UserGuide_en.pdf (accessed on 20 June 2025).
- Roj, J.; Dróżdż, L. Propagation of Random Errors by the Discrete Wavelet Transform Algorithm. Electronics 2021, 10, 764. [Google Scholar] [CrossRef]
- Dróżdż, L. STM32F411 Sampler Using FWT and DSP Package Project on GitHub. 2025. Available online: https://github.com/Kuszki/F411-FWT-Sampler (accessed on 20 June 2025).
- Montalivet, E. A C Implementation of the One Dimensional Discrete Wavelet Transform (DWT) Based on CMSIS Library. 2025. Available online: https://github.com/etiennedemontalivet/arm-dwt-c-library (accessed on 20 June 2025).
- Zygarlicki, J.; Zygarlicka, M.; Mroczka, J.; Latawiec, K.J. A reduced Prony’s method in power-quality analysis—Parameters selection. IEEE Trans. Power Deliv. 2010, 25, 979–986. [Google Scholar] [CrossRef]
0 | ||||||
Hamming | Bartlett | Blackman | Hamming | Bartlett | Blackman | |
0 | ||||||
(a) | (b) | (a) | (b) | (a) | (b) | |
∞ | ||||||
29 | ||||||
27 | ||||||
25 | ||||||
23 | ||||||
21 | ||||||
19 | ||||||
17 | ||||||
15 | ||||||
13 | ||||||
11 | ||||||
9 | ||||||
7 | ||||||
5 | ||||||
3 |
% | |||
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 | 107 | 107 | |
9 | 133 | 137 | |
10 | 158 | 172 | |
11 | 213 | 210 | −1.26 ± 0.05 |
12 | 262 | 253 | |
13 | 277 | 301 | |
14 | 338 | 353 | |
15 | 394 | 410 | |
16 | 502 | 474 | |
17 | 510 | 540 | |
18 | 565 | 614 | |
19 | 749 | 691 | |
20 | 670 | 776 | |
21 | 777 | 868 |
% | |||
1 | |||
2 | |||
3 | |||
4 | |||
5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampik, M.; Dróżdż, Ł.; Roj, J. Estimation of Dynamic Error Parameters in a Measurement Chain Based on the Spectrum of Input Quantities. Appl. Sci. 2025, 15, 7063. https://doi.org/10.3390/app15137063
Kampik M, Dróżdż Ł, Roj J. Estimation of Dynamic Error Parameters in a Measurement Chain Based on the Spectrum of Input Quantities. Applied Sciences. 2025; 15(13):7063. https://doi.org/10.3390/app15137063
Chicago/Turabian StyleKampik, Marian, Łukasz Dróżdż, and Jerzy Roj. 2025. "Estimation of Dynamic Error Parameters in a Measurement Chain Based on the Spectrum of Input Quantities" Applied Sciences 15, no. 13: 7063. https://doi.org/10.3390/app15137063
APA StyleKampik, M., Dróżdż, Ł., & Roj, J. (2025). Estimation of Dynamic Error Parameters in a Measurement Chain Based on the Spectrum of Input Quantities. Applied Sciences, 15(13), 7063. https://doi.org/10.3390/app15137063