Vulnerability Assessment Framework for Physical Protection Systems Integrating Complex Networks and Fuzzy Petri Nets
Abstract
1. Introduction
- (1)
- A complex network-based PPS topology modeling method characterizing inter-component relationships;
- (2)
- A fuzzy Petri net-driven vulnerability propagation model to simulate cascading failure mechanisms and quantify systemic risks.
- (3)
- Demonstration of method validity through case studies illustrating vulnerability assessment reasoning and computation processes.
2. Literature Review
2.1. Component-Based PPS Assessment Methods
2.2. Intrusion Path-Based Analysis Methods
3. Theoretical Foundations
3.1. Complex Network Theory
- (1)
- Node set N represents physical or functional components.
- (2)
- Edge set E denotes inter-component relationships with weights quantifying interaction intensity or propagation likelihood.
- (1)
- Degree Centrality (K)The degree Ki of node i refers to the number of other nodes that are directly connected to it. It reflects the level of connectivity of the node within the network. A higher degree indicates that the node has more connections with other nodes, implying a greater involvement or centrality in the network structure.
- (2)
- Average Path Length (L)Average path length is defined as the mean value of the shortest paths between all node pairs in the network. In our study, the complex network contains designated source and target nodes. We specifically define this metric as the average length of the shortest directed paths from all source nodes to the target node.
- (3)
- Betweenness Centrality (B)Node betweenness represents the frequency with which a node appears in all shortest paths. For our framework, we calculate node betweenness as the proportion of source-to-target shortest paths that pass through a given node. Higher betweenness values indicate greater nodal influence within the network.
- (4)
- Node Importance (ND)Node importance measures the significance of nodes within the network. Following complex network theory, we integrate node degree (Ki) and betweenness centrality (Bi) to compute node importance [30], as shown in Equation (1):
- (5)
- Edge Importance (Sij)Edge importance quantifies the significance of edges within the network. The importance of an edge is determined by the importance of its connected nodes—edges linking more important nodes have higher importance. We calculate edge importance based on the importance scores of its terminal nodes, as shown in Equation (2):
3.2. FPN and FPR
- (1)
- P = {p1, p2, …, pn} is a finite nonempty set of places represented by circles;
- (2)
- T = {t1, t2, …, tn} is a finite nonempty set of transitions that are represented as rectangles;
- (3)
- D = {d1, d2, …, dn} is a finite nonempty set of propositions, where there is a one-to-one mapping between P and D;
- (4)
- β: P → D is an association function, a bijective mapping from places to propositions;
- (5)
- α: P → [0, 1] is a truth degree function that maps each place to a real value in [0, 1], i.e., α(pi) indicates the truth degree of proposition β(pi), where β(pi) ∈ D;
- (6)
- I: P × T → {0, 1} is an n × m input matrix, that is, iij records whether a directed arc exists from pi to tj (i = 1, 2, …, n; j = 1, 2, …, m), where
- (7)
- O: T × P → {0, 1} is an n × m output matrix, in which oij records whether a directed arc exists from tj to pi (i = 1, 2, …, n; j = 1, 2, …, m), where
- (8)
- W: P × T → [0, 1], is an n × m weight function, where wij is the weight of an arc from pi to tj;
- (9)
- µ: µ → (0, 1] is the threshold vector, µ=(µ1, µ2, …, µn), where µj is the threshold of tj;
- (10)
- CF: T × P → [0, 1] is a confidence function and expressed as a m × n matrix CF = [cfij]m×n. The element cfij ∈ [0, 1] is the certainty factor of the rule corresponding to tj, which indicates the confidence of β(pi) after the reasoning rule associated with tj is enabled;
- (11)
- M = (m1, m2, …, mn)T is a state vector, where mi = α(pi) ∈ [0, 1], with the initial state vector denoted as M0.
- AND rule: IF d1(α1, w11) AND d2(α2, w21) AND … AND dk(αk, wk1), then dg(αg, cfg1, µ1);
- OR rule: IF d1(α1) OR d2(α2) OR … OR dk (αk), then dg(αg, cfg1, cfg2 … cfgk, µ1, µ2 … µk).
- The fuzzy Petri net transformed from the “AND” rule is shown in Figure 2, where,
4. Assessment Framework Based on Complex Networks and Fuzzy Petri Nets
- (1)
- Topological ModelingConstructing a directed network representation of PPS using complex network theory (Section 4.1).
- (2)
- Rule-Based Vulnerability InferenceDefining vulnerability propagation logic through FPR (Section 4.2).
- (3)
- Dynamic Risk PropagationDeveloping dynamic propagation models based on FPN. (Section 4.3).
4.1. Complex Network-Based Topological Modeling
- (1)
- Perimeter: Includes fencing/walls and access points for vehicles and personnel.
- (2)
- Surveillance Zone: Area between perimeter and buildings, including gathering points, parking lots, and outdoor pathways.
- (3)
- Protection Zone: The building area containing critical assets, including building exteriors and internal passageways.
- (4)
- Restricted Zone: Specific rooms containing core assets; unauthorized access to this zone signifies system failure.
- (1)
- Node N: represents sub-areas with defined functions and spatial boundaries within each PPS protection layer.
- (2)
- Edge E: denotes the pathways primarily connecting different functional areas within the PPS.
4.2. FPR-Driven Vulnerability Propagation Logic
- (1)
- Intrusion Path (R): Intrusion Path Set R comprises all possible paths (r1–rn) from potential entry points to critical asset locations, with each individual intrusion path rm representing a complete route from a specific entry point to a particular critical asset location.
- (2)
- Protection Chain (C): Protection Chain Set C consists of all protection chains (c1–cn). An individual protection chain cm is defined as the collection of all intrusion paths from potential entry points to a particular critical asset. A PPS containing multiple critical assets is considered to have multiple protection chains.
- (1)
- Component Failure: edge/node security compromise
- (2)
- Path Failure: security breach along an intrusion path R
- (3)
- Chain Failure: compromise of a protection chain c
- (4)
- System Failure: global security collapse
- Node/Edge → Path: AND logic governs the inference, as all components must fail to compromise a path.
- Path → Chain: OR logic applies, breaching one path suffices to compromise a chain.
- Chain → System: Two mission-driven logics exist: (1) AND: System vulnerability scales with partial asset loss (e.g., redundant systems); (2) OR: Any chain failure triggers total system failure (e.g., critical infrastructure)
4.3. Dynamic Risk Quantification via FPN Simulation
5. Example and Validation
5.1. Illustrative Example
- (1)
- Perimeter: includes one personnel access point, one vehicle passage, and perimeter fencing.
- (2)
- Surveillance Zone: comprises a parking lot and an open plaza.
- (3)
- Protection Zone: houses critical assets across two buildings (A and B).
- (4)
- Restricted Zone: contains an archive room in Building A and a data center in Building B.
- (1)
- The system exhibits moderate vulnerability (m36 = 0.406), necessitating scheduled risk mitigation measures.
- (2)
- Among all protection chains, c2 (associated with the data center) demonstrates the highest vulnerability, surpassing c1 (critical room). Data centers should be better protected.
- (3)
- Intrusion path r10 presents the most critical risk among 12 identified paths, warranting prioritized reinforcement of its constituent components.
- (4)
- Node n4 exhibits the highest vulnerability score of 0.575, approaching high vulnerability, which indicates insufficient protective capabilities in the parking lot. The PPS network diagram reveals that half of all intrusion paths include node n4, demonstrating its high importance within the overall PPS. Given the parking lot’s high importance and vulnerability, priority should be given to enhancing its security facilities and means of protection.
5.2. Simulation Validation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Zone (Primary Indicators) | Components (Secondary Indicators) | Points |
---|---|---|
Personnel Access Points (10 points) | Visitor and personnel identification | 2 |
Contraband detection for individuals | 1.5 | |
Security checkpoint screening | 2 | |
Physical delay mechanisms | 1.5 | |
Guard response capability | 1.5 | |
Guard communication effectiveness | 1.5 | |
Vehicle Access Points (10 points) | Vehicle identification | 1.5 |
Occupant verification | 1.5 | |
Vehicular contraband inspection | 1.5 | |
Security personnel detection proficiency | 1 | |
Physical delay mechanisms | 1.5 | |
Guard response capability | 1.5 | |
Guard communication effectiveness | 1.5 | |
Perimeter Fencing/Walls (10 points) | Outdoor sensor performance | 3 |
Perimeter barrier delay efficiency | 2 | |
Patrol team intervention latency | 2.5 | |
Perimeter communication network integrity | 2.5 | |
Parking lots (10 points) | Parking lot video surveillance | 2 |
Security patrol monitoring | 2 | |
Vehicle movement control | 2 | |
Guard force deployment density | 2 | |
Guard communication effectiveness | 2 | |
Public Gathering Zones (10 points) | Crowd area video analytics | 2 |
Security patrol frequency | 2 | |
Physical access control measures | 2 | |
Comprehensive guard competency | 2 | |
Guard communication effectiveness | 2 | |
Building Exterior Security Zone (10 points) | Visitor-Personnel Identity Correlation | 2 |
Intrusion detection performance | 2 | |
Exterior patrol effectiveness | 1.5 | |
Structural delay mechanisms | 1.5 | |
Perimeter guard capability | 1.5 | |
Guard communication effectiveness | 1.5 | |
Critical Rooms (10 points) | Indoor sensor detection accuracy | 2 |
Room-specific video monitoring | 1.5 | |
Guard patrol verification | 1.5 | |
Compartmentalized delay systems | 1.5 | |
Configuration of guards | 2 | |
communications capability | 1.5 | |
Outdoor Pathways (10 points) | Outdoor Pathway Video Surveillance | 2 |
Route patrol intensity | 2 | |
Pathway obstruction effectiveness | 2 | |
Guard post placement | 2 | |
Guard communication effectiveness | 2 | |
Indoor Pathways (10 points) | Indoor pathway video surveillance | 2 |
Route patrol intensity | 2 | |
Physical delay mechanisms | 2 | |
Guard post placement | 2 | |
Communication response reliability | 2 |
Appendix B
Number | Description | Number | Description |
---|---|---|---|
n1 | South Gate | r8 | n2 → e6 → n11 → e30 → n18 → e44 → n29 |
n2 | West Gate 1 | r9 | n2 → e6 → n11 → e31 → n19 → e45 → n30 |
n3 | West Gate 2 | r10 | n3 → e7 → n12 → e32 → n25 → e51 → n36 |
n4 | North Gate | r11 | n3 → e8 → n13 → e33 → n22 → e48 → n33 |
n5 | East Gate | r12 | n3 → e9 → n15 → e38 → n24 → e50 → n35 |
n6 | Perimeter Fence | r13 | n4 → e10 → n14 → e34 → n22 → e48 → n33 |
n7 | Holding Point A | r14 | n4 → e10 → n14 → e35 → n23 → e49 → n34 |
n8 | Holding Point B | r15 | n4 → e10 → n14 → e36 → n25 → e51 → n36 |
n9 | Holding Point C | r16 | n4 → e10 → n14 → e37 → n26 → e52 → n37 |
n10 | Parking Lot A | r17 | n5 → e11 → n16 → e39 → n24 → e50 → n35 |
n11 | Parking Lot B | r18 | n5 → e11 → n16 → e40 → n27 → e53 → n38 |
n12 | Holding Point D | r19 | n5 → e11 → n16 → e41 → n28 → e54 → n39 |
n13 | Holding Point E | r20 | n5 → e12 → n17 → e42 → n20 → e46 → n31 |
n14 | Cafeteria | r21 | n5 → e12 → n17 → e43 → n21 → e47 → n32 |
n15 | Holding Point F | r22 | n6_5 → e13 → n7 → e24 → n18 → e44 → n29 |
n16 | Holding Point G | r23 | n6_5 → e13 → n7 → e25 → n19 → e45 → n30 |
n17 | Holding Point H | r24 | n6_6 → e14 → n8 → e26 → n19 → e45 → n30 |
n18 | Building A | r25 | n6_6 → e14 → n8 → e27 → n20 → e46 → n31 |
n19 | Building B | r26 | n6_4 → e15 → n9 → e28 → n18 → e44 → n29 |
n20 | Building C | r27 | n6_7 → e16 → n10 → e29 → n21 → e47 → n32 |
n21 | Building D | r28 | n6_3 → e17 → n11 → e30 → n18 → e44 → n29 |
n22 | Workshop 1 | r29 | n6_3 → e17 → n11 → e31 → n19 → e45 → n30 |
n23 | Workshop 2 | r30 | n6_2 → e18 → n12 → e32 → n25 → e51 → n36 |
n24 | Workshop 3 | r31 | n6_1 → e19 → n13 → e33 → n22 → e48 → n33 |
n25 | Workshop 4 | r32 | n6_11 → e20 → n14 → e34 → n22 → e48 → n33 |
n26 | Workshop 5 | r33 | n6_11 → e20 → n14 → e35 → n23 → e49 → n34 |
n27 | Workshop 6 | r34 | n6_11 → e20 → n14 → e36 → n25 → e51 → n36 |
n28 | Workshop 7 | r35 | n6_11 → e20 → n14 → e37 → n26 → e52 → n37 |
n29 | Building A Room | r36 | n6_10 → e21 → n15 → e38 → n24 → e50 → n35 |
n30 | Building B Room | r37 | n6_9 → e22 → n16 → e39 → n24 → e50 → n35 |
n31 | Building C Room | r38 | n6_9 → e22 → n16 → e40 → n27 → e53 → n38 |
n32 | Building D Room | r39 | n6_9 → e22 → n16 → e41 → n28 → e54 → n39 |
n33 | Workshop 1 Room | r40 | n6_8 → e23 → n17 → e42 → n20 → e46 → n31 |
n34 | Workshop 2 Room | r41 | n6_8 → e23 → n17 → e43 → n21 → e47 → n32 |
n35 | Workshop 3 Room | c1 | r1, r8, r5, r22, r26, r28 |
n36 | Workshop 4 Room | c2 | r2, r3, r9, r23, r24, r29 |
n37 | Workshop 5 Room | c3 | r4, r20, r25, r40 |
n38 | Workshop 6 Room | c4 | r6, r7, r21, r27, r41 |
n39 | Workshop 7 Room | c5 | r11, r13, r31, r32 |
e1-e54 | Interregional pathways | c6 | r14, r33 |
r1 | n1 → e1 → n7 → e24 → n18 → e44 → n29 | c7 | r12, r17, r36, r37 |
r2 | n1 → e1 → n7 → e25 → n19 → e45 → n30 | c8 | r10, r15, r30, r34 |
r3 | n1 → e2 → n8 → e26 → n19 → e45 → n30 | c9 | r16, r35 |
r4 | n1 → e2 → n8 → e27 → n20 → e46 → n31 | c10 | r18, r38 |
r5 | n1 → e3 → n9 → e28 → n18 → e44 → n29 | c11 | r19, r39 |
r6 | n1 → e4 → n10 → e29 → n21 → e47 → n32 | PPS | c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11 |
r7 | n2 → e5 → n10 → e29 → n21 → e47 → n32 |
Appendix C
Number | Value | Number | Value | Number | Value | Number | Value |
---|---|---|---|---|---|---|---|
n1 | 0.4 | n38 | 0.2 | e36 | 0.4 | r19 | 0.608 |
n2 | 0.6 | n39 | 0.4 | e37 | 0.8 | r20 | 0.526 |
n3 | 0.7 | e1 | 0.4 | e38 | 0.7 | r21 | 0.484 |
n4 | 0.5 | e2 | 0.4 | e39 | 0.4 | r22 | 0.532 |
n5 | 0.5 | e3 | 0.5 | e40 | 0.5 | r23 | 0.477 |
n6 | 0.5 | e4 | 0.5 | e41 | 0.7 | r24 | 0.502 |
n7 | 0.6 | e5 | 0.6 | e42 | 0.6 | r25 | 0.585 |
n8 | 0.5 | e6 | 0.5 | e43 | 0.7 | r26 | 0.546 |
n9 | 0.6 | e7 | 0.4 | e44 | 0.5 | r27 | 0.515 |
n10 | 0.5 | e8 | 0.5 | e45 | 0.6 | r28 | 0.498 |
n11 | 0.4 | e9 | 0.4 | e46 | 0.7 | r29 | 0.446 |
n12 | 0.3 | e10 | 0.5 | e47 | 0.4 | r30 | 0.559 |
n13 | 0.7 | e11 | 0.6 | e48 | 0.5 | r31 | 0.476 |
n14 | 0.8 | e12 | 0.5 | e49 | 0.3 | r32 | 0.504 |
n15 | 0.8 | e13 | 0.4 | e50 | 0.4 | r33 | 0.505 |
n16 | 0.5 | e14 | 0.3 | e51 | 0.3 | r34 | 0.477 |
n17 | 0.5 | e15 | 0.4 | e52 | 0.5 | r35 | 0.507 |
n18 | 0.5 | e16 | 0.5 | e53 | 0.6 | r36 | 0.453 |
n19 | 0.6 | e17 | 0.4 | e54 | 0.5 | r37 | 0.547 |
n20 | 0.5 | e18 | 0.4 | r1 | 0.520 | r38 | 0.620 |
n21 | 0.6 | e19 | 0.6 | r2 | 0.457 | r39 | 0.624 |
n22 | 0.4 | e20 | 0.7 | r3 | 0.493 | r40 | 0.584 |
n23 | 0.5 | e21 | 0.8 | r4 | 0.589 | r41 | 0.551 |
n24 | 0.5 | e22 | 0.6 | r5 | 0.535 | c1 | 0.546 |
n25 | 0.7 | e23 | 0.4 | r6 | 0.524 | c2 | 0.502 |
n26 | 0.5 | e24 | 0.8 | r7 | 0.548 | c3 | 0.589 |
n27 | 0.3 | e25 | 0.6 | r8 | 0.498 | c4 | 0.551 |
n28 | 0.8 | e26 | 0.5 | r9 | 0.433 | c5 | 0.535 |
n29 | 0.7 | e27 | 0.8 | r10 | 0.615 | c6 | 0.505 |
n30 | 0.6 | e28 | 0.3 | r11 | 0.535 | c7 | 0.547 |
n31 | 0.4 | e29 | 0.7 | r12 | 0.524 | c8 | 0.615 |
n32 | 0.4 | e30 | 0.7 | r13 | 0.481 | c9 | 0.507 |
n33 | 0.5 | e31 | 0.8 | r14 | 0.480 | c10 | 0.62 |
n34 | 0.8 | e32 | 0.6 | r15 | 0.443 | c11 | 0.624 |
n35 | 0.6 | e33 | 0.8 | r16 | 0.482 | PPS | 0.624 |
n36 | 0.6 | e34 | 0.4 | r17 | 0.509 | ||
n37 | 0.3 | e35 | 0.5 | r18 | 0.603 |
Appendix D
Node/ Edge | Successful Intrusions | Failed Intrusions | Interception Probability | Node /Edge | Successful Intrusions | Failed Intrusions | Interception Probability |
---|---|---|---|---|---|---|---|
n1 | 3688 | 2312 | 0.385 | e4 | 313 | 319 | 0.505 |
n2 | 2127 | 873 | 0.291 | e5 | 234 | 474 | 0.669 |
n3 | 2063 | 937 | 0.312 | e6 | 472 | 947 | 0.667 |
n4 | 2259 | 1741 | 0.435 | e7 | 448 | 254 | 0.362 |
n5 | 3405 | 1595 | 0.319 | e8 | 526 | 160 | 0.233 |
n6_1 | 656 | 344 | 0.344 | e9 | 520 | 155 | 0.230 |
n6_2 | 636 | 364 | 0.364 | e10 | 1091 | 1168 | 0.517 |
n6_3 | 1276 | 724 | 0.362 | e11 | 1101 | 933 | 0.459 |
n6_4 | 673 | 327 | 0.327 | e12 | 626 | 745 | 0.543 |
n6_5 | 1291 | 709 | 0.355 | e13 | 363 | 928 | 0.719 |
n6_6 | 1264 | 736 | 0.368 | e14 | 604 | 660 | 0.522 |
n6_7 | 668 | 332 | 0.332 | e15 | 369 | 304 | 0.452 |
n6_8 | 1273 | 727 | 0.364 | e16 | 219 | 449 | 0.672 |
n6_9 | 1955 | 1045 | 0.348 | e17 | 574 | 702 | 0.550 |
n6_10 | 657 | 343 | 0.343 | e18 | 334 | 302 | 0.475 |
n6_11 | 2582 | 1418 | 0.355 | e19 | 286 | 370 | 0.564 |
n7 | 426 | 412 | 0.492 | e20 | 1371 | 1211 | 0.469 |
n8 | 764 | 395 | 0.341 | e21 | 305 | 352 | 0.536 |
n9 | 485 | 218 | 0.310 | e22 | 1273 | 682 | 0.349 |
n10 | 597 | 169 | 0.221 | e23 | 1273 | 0 | 0.000 |
n11 | 767 | 279 | 0.267 | e24 | 122 | 108 | 0.470 |
n12 | 587 | 195 | 0.249 | e25 | 55 | 141 | 0.719 |
n13 | 558 | 254 | 0.313 | e26 | 186 | 178 | 0.489 |
n14 | 1714 | 748 | 0.304 | e27 | 233 | 167 | 0.418 |
n15 | 598 | 227 | 0.275 | e28 | 129 | 356 | 0.734 |
n16 | 2374 | 0 | 0.000 | e29 | 135 | 462 | 0.774 |
n17 | 920 | 979 | 0.516 | e30 | 97 | 271 | 0.736 |
n18 | 186 | 162 | 0.466 | e31 | 99 | 300 | 0.752 |
n19 | 215 | 125 | 0.368 | e32 | 343 | 244 | 0.416 |
n20 | 369 | 112 | 0.233 | e33 | 158 | 400 | 0.717 |
n21 | 297 | 163 | 0.354 | e34 | 110 | 307 | 0.736 |
n22 | 182 | 86 | 0.321 | e35 | 116 | 314 | 0.730 |
n23 | 116 | 0 | 0.000 | e36 | 3 | 417 | 0.993 |
n24 | 212 | 160 | 0.430 | e37 | 124 | 323 | 0.723 |
n25 | 224 | 122 | 0.353 | e38 | 156 | 442 | 0.739 |
n26 | 82 | 42 | 0.339 | e39 | 216 | 578 | 0.728 |
n27 | 356 | 112 | 0.239 | e40 | 468 | 314 | 0.402 |
n28 | 308 | 162 | 0.345 | e41 | 470 | 328 | 0.411 |
n29 | 101 | 85 | 0.457 | e42 | 248 | 248 | 0.500 |
n30 | 43 | 32 | 0.427 | e43 | 325 | 99 | 0.233 |
n31 | 97 | 75 | 0.436 | e44 | 186 | 0 | 0.000 |
n32 | 24 | 10 | 0.294 | e45 | 75 | 140 | 0.651 |
n33 | 78 | 69 | 0.469 | e46 | 172 | 197 | 0.534 |
n34 | 43 | 21 | 0.328 | e47 | 34 | 263 | 0.886 |
n35 | 50 | 29 | 0.367 | e48 | 147 | 35 | 0.192 |
n36 | 67 | 54 | 0.446 | e49 | 64 | 52 | 0.448 |
n37 | 16 | 27 | 0.628 | e50 | 79 | 133 | 0.627 |
n38 | 110 | 55 | 0.333 | e51 | 121 | 103 | 0.460 |
n39 | 111 | 54 | 0.327 | e52 | 43 | 39 | 0.476 |
e1 | 475 | 750 | 0.612 | e53 | 165 | 191 | 0.537 |
e2 | 555 | 667 | 0.546 | e54 | 165 | 143 | 0.464 |
e3 | 334 | 275 | 0.452 |
Node /Edge | Successful Intrusions | Failed Intrusions | Interception Probability | Node /Edge | Successful Intrusions | Failed Intrusions | Interception Probability |
---|---|---|---|---|---|---|---|
r1 | 24 | 976 | 0.976 | r22 | 20 | 980 | 0.98 |
r2 | 8 | 992 | 0.992 | r23 | 8 | 992 | 0.992 |
r3 | 14 | 986 | 0.986 | r24 | 20 | 980 | 0.98 |
r4 | 15 | 985 | 0.985 | r25 | 30 | 970 | 0.97 |
r5 | 22 | 978 | 0.978 | r26 | 32 | 968 | 0.968 |
r6 | 4 | 996 | 0.996 | r27 | 2 | 998 | 0.998 |
r7 | 7 | 993 | 0.993 | r28 | 23 | 977 | 0.977 |
r8 | 18 | 982 | 0.982 | r29 | 17 | 983 | 0.983 |
r9 | 15 | 985 | 0.985 | r30 | 32 | 968 | 0.968 |
r10 | 37 | 963 | 0.963 | r31 | 30 | 970 | 0.97 |
r11 | 52 | 948 | 0.948 | r32 | 23 | 977 | 0.977 |
r12 | 16 | 984 | 0.984 | r33 | 18 | 982 | 0.982 |
r13 | 17 | 983 | 0.983 | r34 | 3 | 997 | 0.997 |
r14 | 18 | 982 | 0.982 | r35 | 23 | 977 | 0.977 |
r15 | 4 | 996 | 0.996 | r36 | 7 | 993 | 0.993 |
r16 | 15 | 985 | 0.985 | r37 | 13 | 987 | 0.987 |
r17 | 10 | 990 | 0.99 | r38 | 59 | 941 | 0.941 |
r18 | 38 | 962 | 0.962 | r39 | 63 | 937 | 0.937 |
r19 | 34 | 966 | 0.966 | r40 | 22 | 978 | 0.978 |
r20 | 26 | 974 | 0.974 | r41 | 20 | 980 | 0.98 |
r21 | 13 | 987 | 0.987 |
References
- Zhang, J.; Liu, J.; Liu, Y.; Wang, Z.; Chen, H.; Wang, B.; Liu, X. Using 3D model and simulation to support the force-on-force test of physical protection system. IEEE Access 2021, 9, 63833–63840. [Google Scholar] [CrossRef]
- Zeng, T.; Yang, X.; Wan, Y.; Mao, Y.; Liu, Z. Effectiveness assessment of improvement measures in physical protection system monitoring center. Kerntechnik 2021, 86, 33–38. [Google Scholar] [CrossRef]
- Garcia, M.L. Vulnerability Assessment of Physical Protection Systems; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Garcia, M.L. Design and Evaluation of Physical Protection Systems; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Vintr, Z.; Vintr, M.; Malach, J. Evaluation of physical protection system effectiveness. In Proceedings of the 2012 IEEE International Carnahan Conference on Security Technology (ICCST), Newton, MA, USA, 15–18 October 2012; pp. 15–21. [Google Scholar]
- Drago, A.; Marrone, S.; Mazzocca, N.; Nardone, R.; Tedesco, A.; Vittorini, V. A model-driven approach for vulnerability evaluation of modern physical protection systems. Softw. Syst. Model. 2019, 18, 523–556. [Google Scholar] [CrossRef]
- Čakija, D.; Ban, Ž.; Golub, M.; Čakija, D. Optimizing physical protection system using domain experienced exploration method. Autom. Časopis Autom. Mjer. Elektron. Računarstvo Komun. 2020, 61, 207–218. [Google Scholar] [CrossRef]
- Moo, J.H.; Chirayath, S.S.; Cho, S.G. Physical protection system vulnerability assessment of a small nuclear research reactor due to TNT-shaped charge impact on its reinforced concrete wall. Nucl. Eng. Technol. 2022, 54, 2135–2146. [Google Scholar] [CrossRef]
- Gregoire, O. The application of defence in depth in nuclear security. In Proceedings of the 42nd Annual CNS Conference and 47th CNS/CNA Student Conference: Shifting the Paradigm of Thought, Saint John, NB, Canada, 4–7 June 2023; Canadian Nuclear Society: Toronto, ON, Canada, 2023; pp. 4–8. [Google Scholar]
- Kapusta, J.; Bauer, W.; Baranowski, J. Evaluation of the Effectiveness Of Physical Protection Systems with Consideration of its Cyber-Resilience. In Proceedings of the 2023 27th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 22–25 August 2023; pp. 457–461. [Google Scholar]
- Yaseen, A.T.; Jarry, A.M. Designing a Physical Protection System for a Nuclear or Radiological Site or Facility (Threat Analysis and Evaluation). In Proceedings of the 16th Arab Conference on the Peaceful Uses of Atomic Energy, Amman, Jordan, 15–19 December 2024. [Google Scholar]
- Winblad, A.E. The SAVI vulnerability assessment model. Nucl. Mater. Manag. 1987, 16, 24–28. [Google Scholar]
- Snell, M.K. Multipath Very-Simplified Estimate of Adversary Sequence Interruption v. 2.1; No. MP VEASI; 005477IBMPC00; Sandia National Lab.(SNL-NM): Albuquerque, NM, USA, 2017.
- O’Connor, S.L.; Whitehead, D.W.; Potter, C.S., III. Nuclear Power Plant Security Assessment Technical Manual; No. SAND2007-5591; Sandia National Laboratories (SNL): Albuquerque, NM, USA; Livermore, CA, USA, 2007.
- Andiwijayakusuma, D.; Mardhi, A.; Asmoro, T.; Setiadipura, T.; Purqon, A.; Su’ud, Z. Physical protection system effectiveness calculation in nuclear reactor facility using EASI code: Case study sabotage scenario. J. Phys. Conf. Ser. 2021, 2072, 012010. [Google Scholar] [CrossRef]
- Zou, B.; Yang, M.; Zhang, Y.; Benjamin, E.R.; Tan, K.; Wu, W.; Yoshikawa, H. Evaluation of vulnerable path: Using heuristic path-finding algorithm in physical protection system of nuclear power plant. Int. J. Crit. Infrastruct. Prot. 2018, 23, 90–99. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Wei, G.; Yang, M.; Lu, H. An adaptive probabilistic mapping matrix search algorithm for vulnerability analysis of PPS. Ann. Nucl. Energy 2019, 131, 433–442. [Google Scholar] [CrossRef]
- Jiwei, Z.; Shunlong, J.; Jian, L.; Zhang, L.; Huaping, C.; Xiaofeng, L. Optimization of communication probability in effectiveness evaluation of physical protection system. IEEE Access 2020, 8, 228199–228205. [Google Scholar] [CrossRef]
- Wadoud, A.A.; Alhawsawi, A.M.; Ghandourah, E.; Abdel-Rahman, M.A. A detection and defense security system design for nuclear waste storage against stealth terrorists attack. Kerntechnik 2024, 89, 426–437. [Google Scholar] [CrossRef]
- Wadoud, A.A.; Saleh, A.A.; Abdel-Rahman, M.A. Risk analysis and protection in case of intrusion of nuclear facilities. Kerntechnik 2025, 90, 217–230. [Google Scholar] [CrossRef]
- Li, A.; Deng, Y. A 3D most vulnerable path search method for physical protection systems based on the EASI model. IEEE Access 2025, 13, 37457–37466. [Google Scholar] [CrossRef]
- Artime, O.; Grassia, M.; De Domenico, M.; Gleeson, J.P.; Makse, H.A.; Mangioni, G.; Perc, M.; Radicchi, F. Robustness and resilience of complex networks. Nat. Rev. Phys. 2024, 6, 114–131. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Y.; Meng, F.; Zhou, X.; Liu, S.; Huang, Y.; Wu, X. A review of graph and complex network theory in water distribution networks: Mathematical foundation, application and prospects. Water Res. 2024, 253, 121238. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Dai, G.; Zhou, Y.; Huang, Y.; Zhou, D. Conflicting evidence fusion using a correlation coefficient-based approach in complex network. Chaos Solitons Fractals 2023, 176, 114087. [Google Scholar] [CrossRef]
- Lü, J.; Wen, G.; Lu, R.; Wang, Y.; Zhang, S. Networked knowledge and complex networks: An engineering view. IEEE/CAA J. Autom. Sin. 2022, 9, 1366–1383. [Google Scholar] [CrossRef]
- Lin, J.; Ban, Y. Complex network topology of transportation systems. Transp. Rev. 2013, 33, 658–685. [Google Scholar] [CrossRef]
- Porta, S.; Latora, V.; Crucitti, P. The network analysis of urban streets: A primal approach. In Environment and Planning; SAGE Publications Ltd.: London, UK, 2012; pp. 247–276. [Google Scholar]
- Li, J.J. Research on Construction Method and Application of Complex Public Transport Network Model. Master’s Thesis, Dalian Maritime University, Dalian, China, 2023. [Google Scholar] [CrossRef]
- Börner, K.; Sanyal, S.; Vespignani, A. Network science. Annu. Rev. Inf. Sci. Technol. 2007, 41, 537–607. [Google Scholar] [CrossRef]
- Duan, J.Y.; Zheng, H.D. Vulnerability analysis method for complex networks based on node importance. Control Eng. China 2020, 4, 692–696. [Google Scholar] [CrossRef]
- Kabir, S.; Papadopoulos, Y. Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review. Saf. Sci. 2019, 115, 154–175. [Google Scholar] [CrossRef]
- Guo, Y.; Meng, X.; Wang, D.; Meng, T.; Liu, S.; He, R. Comprehensive risk evaluation of long-distance oil and gas transportation pipelines using a fuzzy Petri net model. J. Nat. Gas. Sci. Eng. 2016, 33, 18–29. [Google Scholar] [CrossRef]
- Zhou, J.; Reniers, G.; Zhang, L. A weighted fuzzy Petri-net based approach for security risk assessment in the chemical industry. Chem. Eng. Sci. 2017, 174, 136–145. [Google Scholar] [CrossRef]
- Wang, X.; Lu, F.; Zhou, M.; Zeng, Q. A synergy-effect-incorporated fuzzy Petri net modeling paradigm with application in risk assessment. Expert. Syst. Appl. 2022, 199, 117037. [Google Scholar] [CrossRef]
- Lin, J.; Li, Q.; Wang, Y. Comprehensive evaluation of intrinsic safety of railway facilities and equipment based on improved cloud model-fuzzy Petri net. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2025, 239, 298–309. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, X.; Liu, Y.; Gao, Z.; Ye, M. Airspace Safety Assessment and Risk Estimation based on the Fuzzy Petri Net Model with Multi-Risk Factor Analysis. Transp. Res. Rec. 2024, 2679, 718–732. [Google Scholar] [CrossRef]
- Liu, H.C.; Liu, L.; Lin, Q.L.; Liu, N. Knowledge acquisition and representation using fuzzy evidential reasoning and dynamic adaptive fuzzy Petri nets. IEEE Trans. Cybern. 2012, 43, 1059–1072. [Google Scholar] [CrossRef]
- Jiang, W.; Zhou, K.Q.; Sarkheyli-Hägele, A.; Zain, A.M. Modeling, reasoning, and application of fuzzy Petri net model: A survey. Artif. Intell. Rev. 2022, 55, 6567–6605. [Google Scholar] [CrossRef]
- Xu, X.G.; Shi, H.; Xu, D.H.; Liu, H.C. Picture fuzzy Petri nets for knowledge representation and acquisition in considering conflicting opinions. Appl. Sci. 2019, 9, 983. [Google Scholar] [CrossRef]
- GB 50348-2018; Technical Standard for Security Engineering. State Administration for Market Regulation, Standardization Administration of China: Beijing, China, 2018.
- GJB 7674-2012; Guide for Inspection of Physical Protection of Military Nuclear Materials. Equipment Development Department of the Central Military Commission: Beijing, China, 2012.
- GJB 6118-2007; Guide for Access Control of Physical Protection System of Military Nuclear Material. Equipment Development Department of the Central Military Commission: Beijing, China, 2007.
- GAT 1093-2013; Technical Requirements for Face Recognition System For Access Control. Ministry of Public Security of the People’s Republic of China: Beijing, China, 2013.
- GAT 1399.1-2017; Video and Image Analysis System for Public Security—Part 1: General Technical Requirements. Ministry of Public Security of the People’s Republic of China: Beijing, China, 2017.
- GAT 1399.2-2017; Video and Image Analysis System for Public Security—Part 2: Technical Specifications for Analysis and Description of Video and Image Content. Ministry of Public Security of the People’s Republic of China: Beijing, China, 2017.
- GAT 992-2012; Technical Requirements for Access Control Devices in Parking Lots. Ministry of Public Security of the People’s Republic of China: Beijing, China, 2012.
Protection Level | Number | Contents |
---|---|---|
intrusion path | r1 | n1 → e1 → n3 → e3 → n4 → e4 → n5 |
r2 | n1 → e1 → n3 → e3 → n4 → e5 → n6 | |
r3 | n2 → e2 → n3 → e3 → n4 → e4 → n5 | |
r4 | n2 → e2 → n3 → e3 → n4 → e5 → n6 | |
protection chain | c1 | r1, r3 |
c2 | r2, r4 |
p/d | Proposition | p/d | Proposition |
---|---|---|---|
Node n1 failure | Edge e4 failure | ||
Node n2 failure | Edge e5 failure | ||
Node n3 failure | Path r1 failure | ||
Node n4 failure | Path r2 failure | ||
Node n5 failure | Path r3 failure | ||
Node n6 failure | Path r4 failure | ||
Edge e1 failure | Chain c1 failure | ||
Edge e2 failure | Chain c2 failure | ||
Edge e3 failure | System failure |
Level of Inference | Contents |
---|---|
Node/Edge → Path | IF d1 and d7 and d3 and d9 and d4 and d10 and d5 Then d12 |
IF d1 and d7 and d3 and d9 and d4 and d11 and d6 Then d13 | |
IF d2 and d8 and d3 and d9 and d4 and d10 and d5 Then d14 | |
IF d2 and d8 and d3 and d9 and d4 and d11 and d6 Then d15 | |
Path → Chain | IF d12 or d14 Then d16 |
IF d13 or d15 Then d17 | |
Chain → System | IF d16 and d17 Then d18 |
mn | Vulnerability | Recommended Action |
---|---|---|
[0, 0.2) | Low | Maintain operations |
[0.2, 0.4) | Moderate-Low | Implement risk mitigation |
[0.4, 0.6) | Medium | Schedule urgent mitigation |
[0.6, 0.8) | High | Immediate remediation required |
[0.8, 1] | Critical | Cease operations; emergency response |
Number | Zone | Number | Zone |
---|---|---|---|
n1 | Personnel access point | n6 | Building A |
n2 | Vehicle passage | n7 | Building B |
n3 | Perimeter fence | n8 | Archive room |
n4 | Parking lot | n9 | Data center |
n5 | Open plaza |
Number | Path/Protection Chain | Number | Path/Protection Chain |
---|---|---|---|
r1 | n1 → e1 → n4 → e7 → n6 → e11 → n8 | r8 | n2 → e4 → n5 → e10 → n7 → e12 → n9 |
r2 | n1 → e1 → n4 → e8 → n7 → e12 → n9 | r9 | n3 → e5 → n4 → e7 → n6 → e11 → n8 |
r3 | n1 → e2 → n5 → e9 → n6 → e11 → n8 | r10 | n3 → e5 → n4 → e8 → n7 → e12 → n9 |
r4 | n1 → e2 → n5 → e10 → n7 → e12 → n9 | r11 | n3 → e6 → n5 → e9 → n6 → e11 → n8 |
r5 | n2 → e3 → n4 → e7 → n6 → e11 → n8 | r12 | n3 → e6 → n5 → e10 → n7 → e12 → n9 |
r6 | n2 → e3 → n4 → e8 → n7 → e12 → n9 | c1 | r1, r3, r5, r7, r9, r11 |
r7 | n2 → e4 → n5 → e9 → n6 → e11 → n8 | c2 | r2, r4, r6, r8, r10, r12 |
p/d | Proposition | p/d | Proposition |
---|---|---|---|
Node failure | failure | ||
failure | failure | ||
failure | failure | ||
failure | failure | ||
failure | failure | ||
failure | failure | ||
failure | failure | ||
failure | failure | ||
failure | failure | ||
failure | failure | ||
failure | failure | ||
failure | failure | ||
failure | failure | ||
failure | failure | ||
failure | failure | ||
failure | failure | ||
failure | failure | ||
failure | System failure |
Level of Inference | Contents |
---|---|
Node/Edge → Path | IF d1 and d10 and d4 and d16 and d6 and d20 and d8 then d22 |
IF d1 and d10 and d4 and d17 and d7 and d21 and d9 then d23 | |
IF d1 and d11 and d5 and d18 and d6 and d20 and d8 then d24 | |
IF d1 and d11 and d5 and d19 and d7 and d21 and d9 then d25 | |
IF d2 and d12 and d4 and d16 and d6 and d20 and d8 then d26 | |
IF d2 and d12 and d4 and d17 and d7 and d21 and d9 then d27 | |
IF d2 and d13 and d5 and d18 and d6 and d20 and d8 then d28 | |
IF d2 and d13 and d5 and d19 and d7 and d21 and d9 then d29 | |
IF d3 and d14 and d4 and d16 and d6 and d20 and d8 then d30 | |
IF d3 and d14 and d4 and d17 and d7 and d21 and d9 then d31 | |
IF d3 and d15 and d5 and d18 and d6 and d20 and d8 then d32 | |
IF d3 and d15 and d5 and d19 and d7 and d21 and d9 then d33 | |
Path → Chain | IF d22 or d24 or d26 or d28 or d30 or d32 then d34 |
IF d23 or d25 or d27 or d29 or d31 or d33 then d35 | |
Chain → System | IF d34 or d35 then d36 |
Value | Value | Value | |||
---|---|---|---|---|---|
0.111 | 0.111 | 0.111 | |||
0.171 | 0.171 | 0.171 | |||
0.152 | 0.152 | 0.152 | |||
0.124 | 0.124 | 0.124 | |||
0.141 | 0.141 | 0.141 | |||
0.162 | 0.162 | 0.162 | |||
0.138 | 0.138 | 0.138 | |||
0.111 | 0.111 | 0.111 | |||
0.171 | 0.171 | 0.171 | |||
0.152 | 0.152 | 0.152 | |||
0.124 | 0.124 | 0.124 | |||
0.141 | 0.141 | 0.141 | |||
0.162 | 0.162 | 0.162 | |||
0.138 | 0.138 | 0.138 | |||
0.111 | 0.111 | 0.111 | |||
0.171 | 0.171 | 0.171 | |||
0.152 | 0.152 | 0.152 | |||
0.124 | 0.124 | 0.124 | |||
0.141 | 0.141 | 0.141 | |||
0.162 | 0.162 | 0.162 | |||
0.138 | 0.138 | 0.138 | |||
0.111 | 0.111 | 0.111 | |||
0.171 | 0.171 | 0.171 | |||
0.152 | 0.152 | 0.152 | |||
0.124 | 0.124 | 0.124 | |||
0.141 | 0.141 | 0.141 | |||
0.162 | 0.162 | 0.162 | |||
0.138 | 0.138 | 0.138 |
Place | Truth Degree | Place | Truth Degree | Place | Truth Degree |
---|---|---|---|---|---|
0.40 | 0.15 | 0.55 | |||
0.35 | 0.20 | 0.45 | |||
0.45 | 0.575 | 0.40 | |||
0.575 | 0.55 | 0.375 | |||
0.50 | 0.55 | 0.425 | |||
0.30 | 0.60 | 0.325 | |||
0.35 | 0.575 | 0.40 |
Place | Truth Degree | Place | Truth Degree | Place | Truth Degree |
---|---|---|---|---|---|
0.386 | 0.393 | 0.364 | |||
0.401 | 0.360 | 0.395 | |||
0.359 | 0.391 | 0.391 | |||
0.389 | 0.391 | 0.406 | |||
0.377 | 0.406 | 0.406 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Wang, Z.; Jin, B.; Tong, X.; Jin, H. Vulnerability Assessment Framework for Physical Protection Systems Integrating Complex Networks and Fuzzy Petri Nets. Appl. Sci. 2025, 15, 7062. https://doi.org/10.3390/app15137062
Chen S, Wang Z, Jin B, Tong X, Jin H. Vulnerability Assessment Framework for Physical Protection Systems Integrating Complex Networks and Fuzzy Petri Nets. Applied Sciences. 2025; 15(13):7062. https://doi.org/10.3390/app15137062
Chicago/Turabian StyleChen, Si, Ziming Wang, Bo Jin, Xin Tong, and Hua Jin. 2025. "Vulnerability Assessment Framework for Physical Protection Systems Integrating Complex Networks and Fuzzy Petri Nets" Applied Sciences 15, no. 13: 7062. https://doi.org/10.3390/app15137062
APA StyleChen, S., Wang, Z., Jin, B., Tong, X., & Jin, H. (2025). Vulnerability Assessment Framework for Physical Protection Systems Integrating Complex Networks and Fuzzy Petri Nets. Applied Sciences, 15(13), 7062. https://doi.org/10.3390/app15137062