Defect Detection and Error Source Tracing in Laser Marking of Silicon Wafers with Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lazov, L.; Deneva, H.; Narica, P. Laser Marking Methods. ETR 2015, 1, 108–115. [Google Scholar] [CrossRef]
- Fu, Y.; Downey, A.R.J.; Yuan, L.; Zhang, T.; Pratt, A.; Balogun, Y. Machine learning algorithms for defect detection in metal laser-based additive manufacturing: A review. J. Manuf. Process. 2022, 75, 693–710. [Google Scholar] [CrossRef]
- Du, Y.; Chen, J.; Zhou, H.; Yang, X.; Wang, Z.; Zhang, J.; Shi, Y.; Chen, X.; Zheng, X. An automated optical inspection (AOI) platform for three-dimensional (3D) defects detection on glass micro-optical components (GMOC). Opt. Commun. 2023, 545, 129736. [Google Scholar] [CrossRef]
- Qu, D.; Zhou, Z.; Li, Z.; Ding, R.; Jin, W.; Luo, H.; Xiong, W. Wafer Eccentricity Deviation Measurement Method Based on Line-Scanning Chromatic Confocal 3D Profiler. Photonics 2023, 10, 398. [Google Scholar] [CrossRef]
- de la Rosa, F.L.; Sánchez-Reolid, R.; Gómez-Sirvent, J.L.; Morales, R.; Fernández-Caballero, A. A Review on Machine and Deep Learning for Semiconductor Defect Classification in Scanning Electron Microscope Images. Appl. Sci. 2021, 11, 9508. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, Y.; Han, X.; Xu, M.; Dai, S. Imaging features of different defects in metals using laser ultrasonic techniques. Opt. Laser Technol. 2023, 158 Pt A, 108785. [Google Scholar] [CrossRef]
- Webster, P.J.L.; Wright, L.G.; Mortimer, K.D.; Leung, B.Y.; Yu, J.X.Z.; Fraser, J.M. Automatic real-time guidance of laser machining with inline coherent imaging. J. Laser Appl. 2011, 23, 022001. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, L.; Wang, C.; Li, C.; Lin, N.; Niu, S.; Han, Z.; Duan, J. Bioinspired Near-Full Transmittance MgF2 Window for Infrared Detection in Extremely Complex Environments. Am. Chem. Soc. 2023, 25, 30985–30997. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Lin, J.; Li, Z.; Wang, C.; Li, K.; Wang, C.; Duan, J. Continuous wave laser ablation of alumina ceramics under long focusing condition. J. Manuf. Process. 2025, 134, 530–546. [Google Scholar] [CrossRef]
- Nazzal, D.; El-Nashar, A. Survey of research in modeling conveyor-based automated material handling systems in wafer fabs. In Proceedings of the 2007 Winter Simulation Conference, Washington, DC, USA, 9–12 December 2007; pp. 1781–1788. [Google Scholar] [CrossRef]
- Ahmed, Y.S.; Amorim, F.L. Advances in Computer Numerical Control Geometric Error Compensation: Integrating AI and On-Machine Technologies for Ultra- Precision Manufacturing. Machines 2025, 13, 140. [Google Scholar] [CrossRef]
- Hsu, F.-H.; Shen, C.-A. The Design and Implementation of an Embedded Real-Time Automated IC Marking Inspection System. IEEE Trans. Semicond. Manuf. 2019, 32, 112–120. [Google Scholar] [CrossRef]
- Tulbure, A.-A.; Tulbure, A.-A.; Dulf, E.-H. A review on modern defect detection models using DCNNs—Deep convolutional neural networks. J. Adv. Res. 2022, 35, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Chee, K.-W.A. Advanced Techniques in Semiconductor Defect Detection and Classification: Overview of Current Technologies and Future Trends in AI/ML Integration. In Proceedings of the 2024 World Rehabilitation Robot Convention (WRRC), Shanghai, China; 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, C.-H.; Kuo, W.; Bensmail, H. Detection and classification of defect patterns on semiconductor wafers. IIE Trans. 2006, 38, 1059–1068. [Google Scholar] [CrossRef]
- More, A.S.; Rana, D.P. Review of random forest classification techniques to resolve data imbalance. In Proceedings of the 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM), Aurangabad, India; 2017; pp. 72–78. [Google Scholar] [CrossRef]
- Agrawal, H.; Desai, K. Canny Edge Detection: A Comprehensive Review. Int. J. Tech. Res. Sci. 2024, 9, 27–35. [Google Scholar] [CrossRef] [PubMed]
Item | Specification |
---|---|
Frame Rate | 60 fps |
Image Resolution | 1920 × 1080 pixel |
Sensor | 1/2.8” SONY |
Pixel Size | 2.9 × 2.9 μm |
Picture | SD card 38M |
Light | Ring Light 52D LED |
Measurement | Via software |
Output Interface | HDMI + USB |
Laser Power | 10 W |
---|---|
Repeat Accuracy | ≤0.001 mm |
Marking Depth | 0.012–0.2 mm |
Marking Precision | ≤0.001 mm |
Marking Speed | ≤10,000 mm/s |
Laser Wavelength | 1064 nm |
Marking Area | 70 × 70 mm |
Marking Line Width | 0.001–0.05 mm |
Product | ||
---|---|---|
Result | 570 | 9 |
21 | 400 |
Product | Improper Alignment of Marks | Missing Marks | Excessive or Insufficient Marking Depth | Blurred or Illegible Marks | |
---|---|---|---|---|---|
Result | |||||
Improper alignment of marks | 94 | 1 | 4 | 9 | 108 |
Missing marks | 2 | 96 | 2 | 1 | 101 |
Excessive or insufficient marking depth | 3 | 0 | 93 | 3 | 99 |
Blurred or illegible marks | 5 | 0 | 4 | 92 | 101 |
104 | 97 | 103 | 105 | 409 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-C.; Yu, T.-T.; Peng, W.-F. Defect Detection and Error Source Tracing in Laser Marking of Silicon Wafers with Machine Learning. Appl. Sci. 2025, 15, 7020. https://doi.org/10.3390/app15137020
Wang H-C, Yu T-T, Peng W-F. Defect Detection and Error Source Tracing in Laser Marking of Silicon Wafers with Machine Learning. Applied Sciences. 2025; 15(13):7020. https://doi.org/10.3390/app15137020
Chicago/Turabian StyleWang, Hsiao-Chung, Teng-To Yu, and Wen-Fei Peng. 2025. "Defect Detection and Error Source Tracing in Laser Marking of Silicon Wafers with Machine Learning" Applied Sciences 15, no. 13: 7020. https://doi.org/10.3390/app15137020
APA StyleWang, H.-C., Yu, T.-T., & Peng, W.-F. (2025). Defect Detection and Error Source Tracing in Laser Marking of Silicon Wafers with Machine Learning. Applied Sciences, 15(13), 7020. https://doi.org/10.3390/app15137020