Circular Economy Strategy Selection Through a Digital Twin Approach
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. “As-Is” Scenario
3.1.1. Linear Process
3.1.2. From a Linear to Circular Model
3.2. “To-Be” Scenarios
3.2.1. “To-Be 1”: Inspection at the Manufacturer’s Facility
3.2.2. “To-Be 2”: Inspection at the Customer’s Location
3.2.3. Design of Experiment
- Average profit [EUR/kg];
- Average CO2 emissions [kgCO2/kg].
- Raw material costs: unit cost (EUR/kg) × quantity (kg);
- Labor costs: unit labor cost (EUR/h) × number of hours (h);
- Energy costs: unit energy cost (EUR/kWh) × energy consumption (kWh);
- Transportation costs: based on the distance covered (km) and the quantity (kg) transported.
4. Results
5. Discussion
5.1. Main Findings
5.2. Final Remarks, Practical Implications, and Managerial Insights
- 1.
- Prioritize on-site inspections to reach environmental sustainability
- 2.
- Short distances can justify recycling at the manufacturer’s facility
- 3.
- Consider the quality of the returned item as the main driver
- 4.
- Digital twins and dynamic decision-making help improve sustainability
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, F.; Hao, H.; Bi, H. Evaluation on the development of urban low-carbon passenger transportation structure in Tianjin. Res. Transp. Bus. Manag. 2024, 55, 101142. [Google Scholar] [CrossRef]
- Paris Agreement. In Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris); HeinOnline: Getzville, NY, USA, 2017; Volume 4, p. 2.
- Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 Establishing the Framework for Achieving Climate Neutrality and Amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’). Off. J. Eur. Union 2021, 243, 1–17.
- Fantozzi, I.C.; Di Luozzo, S.; Schiraldi, M.M. The Impact of University Challenges on Students’ Attitudes and Career Paths in Industrial Engineering: A Comparative Study. Sustainability 2024, 16, 1600. [Google Scholar] [CrossRef]
- Neves, S.A.; Marques, A.C. Drivers and barriers in the transition from a linear economy to a circular economy. J. Clean. Prod. 2022, 341, 130865. [Google Scholar] [CrossRef]
- Gharfalkar, M.; Ali, Z.; Hillier, G. Clarifying the disagreements on various reuse options: Repair, recondition, refurbish and remanufacture. Waste Manag. Res. 2016, 34, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Manco, P.; Caterino, M.; Rinaldi, M.; Macchiaroli, R. A sustainability-oriented methodology to compare production strategies: The case of AM-based remanufacturing. J. Clean. Prod. 2023, 423, 138594. [Google Scholar] [CrossRef]
- Arnold, M.; Palomäki, K.; Le Blévennec, K.; Koop, C.; Geerken, T.; Jensen, P.; Colgan, S. Contribution of Remanufacturing to Circular Economy; Eionet Report-ETC/WMGE; European Environment Agency: Copenhagen, Denmark, 2021; Volume 10. [Google Scholar]
- Ghisellini, P.; Ulgiati, S. Circular economy transition in Italy. Achievements, perspectives and constraints. J. Clean. Prod. 2020, 243, 118360. [Google Scholar] [CrossRef]
- Han, F.; Sun, M.; Jia, X.; Klemeš, J.J.; Shi, F.; Yang, D. Agent-based model for simulation of the sustainability revolution in eco-industrial parks. Environ. Sci. Pollut. Res. 2022, 29, 23117–23128. [Google Scholar] [CrossRef]
- de Paula Ferreira, W.; Armellini, F.; De Santa-Eulalia, L.A. Simulation in industry 4.0: A state-of-the-art review. Comput. Ind. Eng. 2020, 149, 106868. [Google Scholar] [CrossRef]
- Caterino, M.; Greco, A.; D’ambra, S.; Manco, P.; Fera, M.; Macchiaroli, R.; Caputo, F. Simulation Techniques for Production Lines Performance Control. Procedia Manuf. 2020, 42, 91–96. [Google Scholar] [CrossRef]
- Leoni, L.; Cantini, A.; BahooToroody, F.; Khalaj, S.; De Carlo, F.; Abaei, M.M.; BahooToroody, A. Reliability estimation under scarcity of data: A comparison of three approaches. Math. Probl. Eng. 2021, 2021, 5592325. [Google Scholar] [CrossRef]
- Leoni, L.; De Carlo, F.; Abaei, M.M.; BahooToroody, A.; Tucci, M. Failure diagnosis of a compressor subjected to surge events: A data-driven framework. Reliab. Eng. Syst. Saf. 2023, 233, 109107. [Google Scholar] [CrossRef]
- Zils, M.; Howard, M.; Hopkinson, P. Circular economy implementation in operations & supply chain management: Building a pathway to business transformation. Prod. Plan. Control. 2025, 36, 501–520. [Google Scholar]
- Bressanelli, G.; Perona, M.; Saccani, N. Challenges in supply chain redesign for the Circular Economy: A literature review and a multiple case study. Int. J. Prod. Res. 2019, 57, 7395–7422. [Google Scholar] [CrossRef]
- Ravichandran, M.; Vimal, K.E.K.; Kumar, V.; Kulkarni, O.; Govindaswamy, S.; Kandasamy, J. Environment and economic analysis of reverse supply chain scenarios for remanufacturing using discrete-event simulation approach. Environ. Dev. Sustain. 2024, 26, 10183–10224. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.-H.; Yao, K.-C.; Wang, C.-H.; Chen, C.-H.; Huang, S.-H. Using a Circular Economy and Supply Chain as a Framework for Remanufactured Products in the Rubber Recycling Industry. Sustainability 2024, 16, 2824. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Caterino, M.; Fera, M.; Macchiaroli, R.; Pham, D.T. Cloud remanufacturing: Remanufacturing enhanced through cloud technologies. J. Manuf. Syst. 2022, 64, 133–148. [Google Scholar] [CrossRef]
- Panagou, S.; La Cava, G.; Fruggiero, F.; Mancusi, F. Selective complexity determination at cost based alternatives to re-manufacture. In IFIP International Conference on Advances in Production Management Systems; Springer Nature: Cham, Switzerland, 2023; pp. 215–228. [Google Scholar]
- Leoni, L.; De Carlo, F.; Sgarbossa, F.; Paltrinieri, N. Comparison of risk-based maintenance approaches applied to a natural gas regulating and metering station. Chem. Eng. Trans. 2020, 82, 115–120. [Google Scholar]
- Liu, C.; Yang, Y.; Liu, X. A holistic sustainability framework for remanufacturing under uncertainty. J. Manuf. Syst. 2024, 76, 540–552. [Google Scholar] [CrossRef]
- Jakowczyk, M.; Quariguasi Frota Neto, J.; Gibson, A.; Van Wassenhove, L.N. Understanding the market for remanufactured products: What can we learn from online trading and Web search sites? Int. J. Prod. Res. 2017, 55, 3465–3479. [Google Scholar] [CrossRef]
- Mahalakshmi, S.; Nallasivam, A.; Kumar, H.; Kautish, S.; Madan, S. From Assembly to Reassembly: Ikea’s Circular Design for a Sustainable Future. In Utilizing Technology for Sustainable Resource Management Solutions; IGI Global: Hershey, PA, USA, 2024; pp. 261–280. [Google Scholar]
- Mallick, P.K.; Salling, K.B.; Pigosso, D.C.; McAloone, T.C. Closing the loop: Establishing reverse logistics for a circular economy, a systematic review. J. Environ. Manag. 2023, 328, 117017. [Google Scholar] [CrossRef]
- Dat, L.Q.; Linh, D.T.T.; Chou, S.-Y.; Yu, V.F. Optimizing reverse logistic costs for recycling end-of-life electrical and electronic products. Expert Syst. Appl. 2012, 39, 6380–6387. [Google Scholar] [CrossRef]
- Errington, M.; Childe, S.J. A business process model of inspection in remanufacturing. J. Remanuf. 2013, 3, 7. [Google Scholar] [CrossRef]
- Lander, L.; Tagnon, C.; Nguyen-Tien, V.; Kendrick, E.; Elliott, R.J.; Abbott, A.P.; Edge, J.S.; Offer, G.J. Breaking it down: A techno-economic assessment of the impact of battery pack design on disassembly costs. Appl. Energy 2023, 331, 120437. [Google Scholar] [CrossRef]
- Smith, S.; Hsu, L.-Y.; Smith, G.C. Partial disassembly sequence planning based on cost-benefit analysis. J. Clean. Prod. 2016, 139, 729–739. [Google Scholar] [CrossRef]
- Guevara-Rivera, E.; Osorno-Hinojosa, R.; Zaldívar-Carrillo, V.H. A simulation methodology for circular economy implementation. In Proceedings of the 2020 10th International Conference on Advanced Computer Information Technologies (ACIT), Deggendorf, Germany, 16–18 September 2020; IEEE: Piscataway, NY, USA, 2020; pp. 43–48. [Google Scholar]
- Guevara-Rivera, E.; Osorno, R.H.; Zaldivar-Carrillo, V.; Perez-Ortiz, H. Dynamic simulation methodology for implementing circular economy: A new case study. J. Ind. Eng. Manag. 2021, 14, 850–862. [Google Scholar] [CrossRef]
- Charnley, F.; Tiwari, D.; Hutabarat, W.; Moreno, M.; Okorie, O.; Tiwari, A. Simulation to enable a data-driven circular economy. Sustainability 2019, 11, 3379. [Google Scholar] [CrossRef]
- Goodall, P.; Sharpe, R.; West, A. A data-driven simulation to support remanufacturing operations. Comput. Ind. 2019, 105, 48–60. [Google Scholar] [CrossRef]
- Okorie, O.; Charnley, F.; Ehiagwina, A.; Tiwari, D.; Salonitis, K. Towards a simulation-based understanding of smart remanufacturing operations: A comparative analysis. J. Remanuf. 2020, 14, 45–68. [Google Scholar] [CrossRef]
- He, P. Optimization and Simulation of Remanufacturing Production Scheduling under Uncertainties. Int. J. Simul. Model. 2018, 17, 734–743. [Google Scholar] [CrossRef]
- Stamer, F.; Sauer, J. Optimizing quality and cost in remanufacturing under uncertainty. Prod. Eng. 2024, 19, 369–390. [Google Scholar] [CrossRef]
- Zhang, R.; Ong, S.; Nee, A. A simulation-based genetic algorithm approach for remanufacturing process planning and scheduling. Appl. Soft Comput. 2015, 37, 521–532. [Google Scholar] [CrossRef]
- Huster, S.; Glöser-Chahoud, S.; Rosenberg, S.; Schultmann, F. A simulation model for assessing the potential of remanufacturing electric vehicle batteries as spare parts. J. Clean. Prod. 2022, 363, 132225. [Google Scholar] [CrossRef]
- Li, X.; Mu, D.; Du, J.; Cao, J.; Zhao, F. Game-based system dynamics simulation of deposit-refund scheme for electric vehicle battery recycling in China. Resour. Conserv. Recycl. 2020, 157, 104788. [Google Scholar] [CrossRef]
- Lieder, M.; Asif, F.M.; Rashid, A. Towards Circular Economy implementation: An agent-based simulation approach for business model changes. Auton. Agents Multi-Agent Syst. 2017, 31, 1377–1402. [Google Scholar] [CrossRef]
- Available online: https://cordis.europa.eu/project/id/101003893 (accessed on 23 February 2025).
- Available online: https://circulareconomy.europa.eu/platform/en/good-practices/iobac-adhesive-free-flooring-tiles-which-can-be-readily-reused-and-recycled (accessed on 23 February 2025).
- Available online: https://circulareconomy.europa.eu/platform/en/good-practices/circular-flooring-partnership-tarkett-ikea (accessed on 23 February 2025).
- Parvaresh, F.; Amini, M.H. Application of circular economy for sustainable waste management in the carpet industry. Int. J. Res. Ind. Eng. 2024, 13, 188–206. [Google Scholar]
- Wiesinger, H.; Bleuler, C.; Christen, V.; Favreau, P.; Hellweg, S.; Langer, M.; Pasquettaz, R.; Schönborn, A.; Wang, Z. Legacy and Emerging Plasticizers and Stabilizers in PVC Floorings: Impacts of an Industrial Transition and Recycling. Environ. Sci. Technol. 2024, 58, 1894–1907. [Google Scholar] [CrossRef]
- Jeswiet, J.; Kara, S. Carbon emissions and CES™ in manufacturing. CIRP Ann. 2008, 57, 17–20. [Google Scholar] [CrossRef]
- Rinaldi, M.; Caterino, M.; Fera, M.; Manco, P.; Macchiaroli, R. Technology selection in green supply chains-the effects of additive and traditional manufacturing. J. Clean. Prod. 2021, 282, 124554. [Google Scholar] [CrossRef]
Scenario | Distance [km] |
---|---|
Scenario 1 | 300 |
Scenario 2 | 1000 |
Scenario | High Quality [%] | Medium Quality [%] | Low Quality [%] |
---|---|---|---|
Scenario 1 | 50% | 30% | 20% |
Scenario 2 | 50% | 40% | 10% |
Scenario 3 | 60% | 20% | 20% |
Scenario 4 | 60% | 30% | 10% |
Scenario 5 | 70% | 20% | 10% |
Scenario 6 | 70% | 10% | 20% |
Scenario 7 | 80% | 10% | 10% |
Scenario 8 | 80% | 15% | 5% |
Scenario | Low Thickness [%] | Medium Thickness [%] | High Thickness [%] |
---|---|---|---|
Scenario 1 | 33.3% | 33.3% | 33.3% |
Scenario 2 | 60% | 20% | 20% |
Scenario 3 | 20% | 60% | 20% |
Scenario 4 | 20% | 20% | 60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinaldi, M.; Caterino, M.; Fera, M.; Abbate, R.; Daniele, U.; Macchiaroli, R. Circular Economy Strategy Selection Through a Digital Twin Approach. Appl. Sci. 2025, 15, 7016. https://doi.org/10.3390/app15137016
Rinaldi M, Caterino M, Fera M, Abbate R, Daniele U, Macchiaroli R. Circular Economy Strategy Selection Through a Digital Twin Approach. Applied Sciences. 2025; 15(13):7016. https://doi.org/10.3390/app15137016
Chicago/Turabian StyleRinaldi, Marta, Mario Caterino, Marcello Fera, Raffaele Abbate, Umberto Daniele, and Roberto Macchiaroli. 2025. "Circular Economy Strategy Selection Through a Digital Twin Approach" Applied Sciences 15, no. 13: 7016. https://doi.org/10.3390/app15137016
APA StyleRinaldi, M., Caterino, M., Fera, M., Abbate, R., Daniele, U., & Macchiaroli, R. (2025). Circular Economy Strategy Selection Through a Digital Twin Approach. Applied Sciences, 15(13), 7016. https://doi.org/10.3390/app15137016