Tex-Crete—Carbon and Cost Assessment of Concrete with Textile and Carboard Fibres—Case Studies Towards Circular Economy
Abstract
:1. Introduction
2. Background
3. Research Methodology
3.1. Emission Scope
3.1.1. Goal and Scope Definition
3.1.2. Quantitative Approach
3.1.3. System Boundary
3.2. Laboratory Testing Procedure and Case Studies
3.2.1. Experimental Methodology
3.2.2. Case Studies
3.3. Parametric Assessment
3.4. Circularity Index (CI)
4. Results and Discussions
4.1. Laboratory Testing Results
4.1.1. Compressive Strength Results
4.1.2. Tensile Strength Results
4.2. Carbon Emission and Cost Results
4.3. Circularity Results
4.3.1. End-of-Life Usage of the Mix Designs
4.3.2. Circularity Comparison Results
4.4. Parametric Assessment Results
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habert, G.; De Lacaillerie, J.D.E.; Roussel, N. An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J. Clean. Prod. 2011, 19, 1229–1238. [Google Scholar] [CrossRef]
- Haigh, R.; Sandanayake, M.; Joseph, P.; Yaghoubi, E.; Vrcelj, Z. The mechanical and microstructural performance of waste textile and cardboard materials in concrete. Struct. Concr. 2024, 25, 4033–4047. [Google Scholar] [CrossRef]
- Hao, J.L.; Cheng, B.; Lu, W.; Xu, J.; Wang, J.; Bu, W.; Guo, Z. Carbon emission reduction in prefabrication construction during materialization stage: A BIM-based life-cycle assessment approach. J. Total Environ. 2020, 723, 137870. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Hobday, R. Energy Related Environmental Impact of Buildings; Technical Synthesis Report Annex 31: International Energy Agency Buildings and Community Systems; FaberMaunsell Ltd.: Hertfordshie, UK, 2006. [Google Scholar]
- Gunasekara, C.; Sandanayake, M.; Zhou, Z.; Law, D.W.; Setunge, S. Effect of nano-silica addition into high volume fly ash–hydrated lime blended concrete. Constr. Build. Mater. 2020, 253, 119205. [Google Scholar] [CrossRef]
- Haigh, R.; Sandanayake, M.; Bouras, Y.; Vrcelj, Z. A review of the mechanical and durability performance of kraft-fibre reinforced mortar and concrete. Constr. Build. Mater. 2021, 297, 123759. [Google Scholar] [CrossRef]
- Haigh, R.; Sandanayake, M.; Joseph, P.; Arun, M.; Yaghoubi, E.; Vrcelj, Z.; Sasi, S. The Thermo-Phase Change Reactivity of Textile and Cardboard Fibres in Varied Concrete Composites. Sustainability 2024, 16, 3221. [Google Scholar] [CrossRef]
- Merta, I.; Mladenovič, A.; Turk, J.; Šajna, A.; Mauko Pranjić, A. Life cycle assessment of natural fibre reinforced cementitious composites. Key Eng. Mater. 2018, 761, 204–209. [Google Scholar] [CrossRef]
- Sopov, V.; Korkh, O.; Izbash, M.Y. A study of the alkali-silica reaction in recycled glass concrete. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kharkiv, Ukraine, 21–22 May 2020; p. 012062. [Google Scholar]
- Dulsang, N.; Kasemsiri, P.; Posi, P.; Hiziroglu, S.; Chindaprasirt, P. Characterization of an environment friendly lightweight concrete containing ethyl vinyl acetate waste. Mater. Des. 2016, 96, 350–356. [Google Scholar] [CrossRef]
- Asante, R.; Faibil, D.; Agyemang, M.; Khan, S.A. Life cycle stage practices and strategies for circular economy: Assessment in construction and demolition industry of an emerging economy. Environ. Sci. Pollut. Res. 2022, 29, 82110–82121. [Google Scholar] [CrossRef]
- Mao, C.; Shen, Q.; Shen, L.; Tang, L. Comparative study of greenhouse gas emissions between off-site prefabrication and conventional construction methods: Two case studies of residential projects. Energy Build. 2013, 66, 165–176. [Google Scholar] [CrossRef]
- Dimoula, V.; Kehagia, F.; Tsakalidis, A.J.A.; Research, A.Q. A holistic approach for estimating carbon emissions of road and rail transport systems. Aerosol Air Qual. Res. 2016, 16, 61–68. [Google Scholar] [CrossRef]
- Kuruvachalil, L.; Sandanayake, M.; Kumanayake, R.; Radhakrishna. Carbon Emission and Cost Analysis of Using Hybrid Fibre White Topping Overlays & mdash; A Road Rehabilitation Feasibility Study. Future Transp. 2022, 2, 263–280. [Google Scholar]
- Sandanayake, M.; Gunasekara, C.; Law, D.; Zhang, G.; Setunge, S.; Wanijuru, D. Sustainable criterion selection framework for green building materials—An optimisation based study of fly-ash Geopolymer concrete. Sustain. Mater. Technol. 2020, 25, e00178. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Global Alliance for Buildings and Construction; Global Status Report for Buildings and Construction: Beyond Foundations—Mainstreaming Sustainable Solutions to Cut Emissions from the Buildings Sector; United Nations Environment Programme: Nairobi, Kenya, 2024. [Google Scholar]
- Yılmaz, Y.; Seyis, S. Mapping the scientific research of the life cycle assessment in the construction industry: A scientometric analysis. Build. Environ. 2021, 204, 108086. [Google Scholar] [CrossRef]
- Dong, Y.; Ng, S.T.; Liu, P. Towards the principles of life cycle sustainability assessment: An integrative review for the construction and building industry. Sustain. Cities Soc. 2023, 95, 104604. [Google Scholar] [CrossRef]
- Sustainable Ships Sustainability on Demand. What Is the Carbon Footprint of Steel? 2024. Available online: https://www.sustainable-ships.org/stories/2022/carbon-footprint-steel (accessed on 1 February 2025).
- Leaf The Voice of Impact by Greenly. What Is the Environmental Impact of Concrete? 2024. Available online: https://greenly.earth/en-gb/blog/ecology-news/what-is-the-carbon-footprint-of-concrete (accessed on 1 February 2025).
- Sandanayake, M.; Bouras, Y.; Haigh, R.; Vrcelj, Z. Current Sustainable Trends of Using Waste Materials in Concrete—A Decade Review. Sustainability 2020, 12, 9622. [Google Scholar] [CrossRef]
- Hou, G.; Chen, J.; Lu, B.; Chen, S.; Cui, E.; Naguib, H.M.; Guo, M.-Z.; Zhang, Q. Composition design and pilot study of an advanced energy-saving and low-carbon rankinite clinker. Cem. Concr. Res. 2020, 127, 105926. [Google Scholar] [CrossRef]
- Huo, Z.; Lu, B.; Sun, J.; Jiang, R.; Hou, G.; Ji, S.; Naguib, H.M. Preparation of high flexural strength rankinite cement benefiting from formation of aragonite whisker during carbonation curing. J. Sustain. Cem.-Based Mater. 2024, 13, 738–753. [Google Scholar] [CrossRef]
- Hou, G.; Yan, Z.; Sun, J.; Naguib, H.M.; Lu, B.; Zhang, Z. Microstructure and mechanical properties of CO2-cured steel slag brick in pilot-scale. Constr. Build. Mater. 2021, 271, 121581. [Google Scholar] [CrossRef]
- Amran, M.; Fediuk, R.; Abdelgader, H.S.; Murali, G.; Ozbakkaloglu, T.; Lee, Y.H.; Lee, Y.Y. Fiber-reinforced alkali-activated concrete: A review. J. Build. Eng. 2022, 45, 103638. [Google Scholar] [CrossRef]
- Sargent, P.; Sandanayake, M.; Law, D.W.; Hughes, D.J.; Shifa, F.; Borthwick, B.; Scott, P. Strength, mineralogical, microstructural and CO2 emission assessment of waste mortars comprising excavated soil, scallop shells and blast furnace slag. Constr. Build. Mater. 2024, 411, 134425. [Google Scholar] [CrossRef]
- Mohtasham Moein, M.; Rahmati, K.; Mohtasham Moein, A.; Rigby, S.E.; Saradar, A.; Karakouzian, M. Utilizing construction and demolition waste in concrete as a sustainable cement substitute: A comprehensive study on behavior under short-term dynamic and static loads via laboratory and numerical analysis. J. Build. Eng. 2024, 97, 110778. [Google Scholar] [CrossRef]
- Wu, H.; Gao, J.; Liu, C.; Guo, Z.; Luo, X. Reusing waste clay brick powder for low-carbon cement concrete and alkali-activated concrete: A critical review. J. Clean. Prod. 2024, 449, 141755. [Google Scholar] [CrossRef]
- Annalisa Franco, G.P.; Schiavi, L.; De Luca, G.; Bonati, A. Influence of displacement rate in the tensile testing of dry yarns for composite materials used in masonry strengthening. Struct. Integr. Procedia 2023, 44, 2246–2253. [Google Scholar] [CrossRef]
- Vinod Kumar, R.; Rupesh Kumar, D.D. Recycled plastic (HDPE) coarse aggregate manufacturing method and performance in concrete. Mater. Today Proc. 2023, 92, 1304–1309. [Google Scholar] [CrossRef]
- Tao, Y.; Hadigheh, S.A.; Wang, Z. Void geometry analysis and multifaceted characterisation of cementitious mortar reinforced with short carbon and glass fibres—A comparative study. J. Build. Eng. 2024, 89, 109283. [Google Scholar] [CrossRef]
- Bai, R.; Zhang, J.; Yan, C.; Liu, S.; Wang, X.; Jiang, Z. Waste rubber-modified sulfur-fly ash-sand composites as low CO2-emission cements. Mater. Chem. Phys. 2023, 306, 108060. [Google Scholar] [CrossRef]
- Boquera, L.; Castro, J.R.; Fernandez, A.G.; Navarro, A.; Pisello, A.L.; Cabeza, L.F. Thermo-mechanical stability of concrete containing steel slag as aggregate after high temperature thermal cycles. Sol. Energy 2022, 239, 59–73. [Google Scholar] [CrossRef]
- Kumar Gautam, C.; Alam, P. To study the effect of geopolymer concrete by using metakaolin & bottom ash. Mater. Today Proc. 2023, 74, 1028–1034. [Google Scholar]
- Vashistha, P.; Oinam, Y.; Pyo, S. Valorization of waste concrete powder (WCP) through silica fume incorporation to enhance the reactivity and hydration characteristics. Dev. Built Environ. 2023, 16, 100272. [Google Scholar] [CrossRef]
- Sabbrojjaman, M.; Liu, Y.; Tafsirojjaman, T. A comparative review on the utilisation of recycled waste glass, ceramic and rubber as fine aggregate on high performance concrete: Mechanical and durability properties. Dev. Built Environ. 2024, 17, 100371. [Google Scholar] [CrossRef]
- Igini, M. 10 Concerning Fast Fashion Waste Statistics 2023. Available online: https://earth.org/statistics-about-fast-fashion-waste/ (accessed on 14 January 2025).
- Joe Pickin, J.M. National Waste and Resource Recovery Report 2024; Blue Environment: Docklands, Australia, 2025. [Google Scholar]
- Haigh, R.; Sandanayake, M.; Yaghoubi, E.; Joseph, P.; Vrcelj, Z. The mechanical and microstructural investigations of concrete incorporating waste textile and cardboard fibers following thermal and freeze–thaw cycles. Struct. Concr. 2025, 26, 2757–2772. [Google Scholar] [CrossRef]
- Haigh, R.; Sandanayake, M.; Bouras, Y.; Vrcelj, Z. A life cycle assessment of cardboard waste in low stress grade concrete applications. Environ. Manag. 2024, 354, 120428. [Google Scholar] [CrossRef]
- Rashedi, A.; Muhammadi, I.U.; Hadi, R.; Nadeem, S.G.; Khan, N.; Ibrahim, F.; Hassan, M.Z.; Khanam, T.; Jeong, B.; Hussain, M. Characterization and life cycle exergo-environmental analysis of wood pellet biofuel produced in Khyber Pakhtunkhwa, Pakistan. Sustainability 2022, 14, 2082. [Google Scholar] [CrossRef]
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. The International Organization for Standardization: Geneva, Switzerland, 1997.
- Hussain, M.; Malik, R.N.; Taylor, A. Environmental profile analysis of particleboard production: A study in a Pakistani technological condition. Int. J. Life Cycle Assess. 2018, 23, 1542–1561. [Google Scholar] [CrossRef]
- Sandanayake, M.; Law, D.; Sargent, P. A new framework for assessing the environmental impacts of circular economy friendly soil waste-based geopolymer cements. Build. Environ. 2022, 210, 108702. [Google Scholar] [CrossRef]
- Fernando, A.; Gunasekara, C.; Siriwardana, C.; Law, D.; Zhang, G.K.; Gamage, J.C.P.H. Evaluating the Environmental Performance of Blended Cement-Based Concrete: A Comparative Life-Cycle Analysis to Derive an Environmental Score. J. Mater. Civ. Eng. 2025, 37, 04025093. [Google Scholar] [CrossRef]
- Treloar, G.; Love, P.; Faniran, O.; Iyer-Raniga, U. A hybrid life cycle assessment method for construction. Constr. Manag. Econ. 2000, 18, 5–9. [Google Scholar] [CrossRef]
- Crawford, R.H. Validation of a hybrid life-cycle inventory analysis method. J. Environ. Manag. 2008, 88, 496–506. [Google Scholar] [CrossRef]
- Chang, Y.; Ries, R.J.; Lei, S. The embodied energy and emissions of a high-rise education building: A quantification using process-based hybrid life cycle inventory model. Energy Build. 2012, 55, 790–798. [Google Scholar] [CrossRef]
- Chang, Y.; Ries, R.J.; Wang, Y. The embodied energy and environmental emissions of construction projects in China: An economic input–output LCA model. Energy Policy 2010, 38, 6597–6603. [Google Scholar] [CrossRef]
- Sandanayake, M.; Zhang, G.; Setunge, S. Environmental emissions at foundation construction stage of buildings—Two case studies. Build. Environ. 2016, 95, 189–198. [Google Scholar] [CrossRef]
- AS/NZS-1012.8.2; Methods of Testing Concrete. Method for Making and Curing Concrete-Flexure Test Specimens. Australian Standard: Sydney, Australia, 2014.
- AS/NZS-1012.9; Methods of Testing Concrete. Method 9: Compressive Strength Tests-Concrete, Mortar and Grout Specimens. Australian Standard: Sydney, Australia, 2014.
- AS/NZS-1012.10; Methods of Testing Concrete. Method 10: Determination of Indirect Tensile Strength of Concrete Cylinders (“Brazil” or Splitting Test). Australian Standard: Sydney, Australia, 2000.
- AS/NZS-3582; Supplementary Cementitious Materials. Part 3: Amorphous Silica. Australian Standard: Sydney, Australia, 2016.
- ASTM-C-618; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2019.
- AS/NZS-3972; General Purpose and Blended Cements. Australian Standard: Sydney, Australia, 2010.
- AS/NZS-1141.6.2; Methods for Sampling and Testing Aggregates—Particle Density and Water Absorption of Coarse Aggregate—Pycnometer Method. Australian Standard: Sydney, Australia, 2016.
- AS/NZS-1141.5; Methods for Sampling and Testing Aggregates-Particle Density and Water Absorption of Fine Aggregate. Australian Standard: Sydney, Australia, 2000.
- AS/NZS-1012.2; Methods of Testing Concrete. Preparing Concrete Mixes in the Laboratory. Australian Standard: Sydney, Australia, 2014.
- AS/NZS-1012.3.1; Methods of Testing Concrete. Determination of Properties Related to the Consistency of Concrete—Slump Test. Australian Standard: Sydney, Australia, 2014.
- AGGA. Australian National Greenhouse Gas Accounts 2023. Available online: https://www.dcceew.gov.au/sites/default/files/documents/national-greenhouse-account-factors-2023.pdf (accessed on 6 March 2025).
- Ghisellini, P.; Ripa, M.; Ulgiati, S. Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. J. Clean. Prod. 2018, 178, 618–643. [Google Scholar] [CrossRef]
- Mhatre, P.; Gedam, V.V.; Unnikrishnan, S. Material circularity potential for construction materials—The case of transportation infrastructure in India. Resour. Policy 2021, 74, 102446. [Google Scholar] [CrossRef]
- Yatim, F.E.; Boumanchar, I.; Srhir, B.; Chhiti, Y.; Jama, C.; Alaoui, F.E.M.H. Waste-to-energy as a tool of circular economy: Prediction of higher heating value of biomass by artificial neural network (ANN) and multivariate linear regression (MLR). Waste Manag. 2022, 153, 293–303. [Google Scholar] [CrossRef]
- Elia, V.; Gnoni, M.G.; Tornese, F. Measuring circular economy strategies through index methods: A critical analysis. J. Clean. Prod. 2017, 142, 2741–2751. [Google Scholar] [CrossRef]
- Narule, G.N.; Ulape, Y.B. Performance on steel fiber reinforced concrete using metakaolin. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
Mix Design | Fibre | Cement | Metakaolin | Coarse Aggregate | Fine Aggregate | Water |
---|---|---|---|---|---|---|
Control | 424 | 1241 | 587 | 195 | ||
T2.5 | 4.16 | 424 | 1241 | 587 | 195 | |
MKT | 7.46 | 381.6 | 21.2 | 1241 | 587 | 195 |
SFKF5 | 3.3 | 402.8 | 1241 | 587 | 195 | |
KFT | 7.46 | 402.8 | 1241 | 587 | 195 |
Material/Item | Case Study A | Case Study B |
---|---|---|
Concrete (m3) | 6.8 | 24.10 |
Steel (m2) | 76.8 | 259.20 |
Transportation distance for textile fibres to batching plant | 41 km | 88 km |
Transportation distance for kraft fibres to batching plant | 36 km | 71 km |
Transportation distance from batching plant to construction site | 20 km | 15 km |
Power of shredding machines | 18.5 kW | 18.5 kW |
Power of mixing machines | 0.5 kW | 0.5 kW |
No | Variable | Range | Unit | Distribution | Reference |
---|---|---|---|---|---|
S1 | Electricity emission factor | 0.02–0.08 | kgCO2-eq/kWh | Linear | [8] |
S2 | Unit cost of electricity | 0.2–0.45 | cents | Linear | Case study |
S3 | Capacity of the transport truck | 15–42.5 | Tonnes | Discrete * | Case study |
S4 | Transportation distance for fibres | 5–200 | km | Linear | Case study |
S5 | Power of shredding machine | 56–187 | kW | Discrete * | [5] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandanayake, M.; Kraus, R.; Haigh, R.; Yaghoubi, E.; Vrcelj, Z. Tex-Crete—Carbon and Cost Assessment of Concrete with Textile and Carboard Fibres—Case Studies Towards Circular Economy. Appl. Sci. 2025, 15, 6962. https://doi.org/10.3390/app15136962
Sandanayake M, Kraus R, Haigh R, Yaghoubi E, Vrcelj Z. Tex-Crete—Carbon and Cost Assessment of Concrete with Textile and Carboard Fibres—Case Studies Towards Circular Economy. Applied Sciences. 2025; 15(13):6962. https://doi.org/10.3390/app15136962
Chicago/Turabian StyleSandanayake, Malindu, Ronja Kraus, Robert Haigh, Ehsan Yaghoubi, and Zora Vrcelj. 2025. "Tex-Crete—Carbon and Cost Assessment of Concrete with Textile and Carboard Fibres—Case Studies Towards Circular Economy" Applied Sciences 15, no. 13: 6962. https://doi.org/10.3390/app15136962
APA StyleSandanayake, M., Kraus, R., Haigh, R., Yaghoubi, E., & Vrcelj, Z. (2025). Tex-Crete—Carbon and Cost Assessment of Concrete with Textile and Carboard Fibres—Case Studies Towards Circular Economy. Applied Sciences, 15(13), 6962. https://doi.org/10.3390/app15136962