Blockchain in Sports: A Comparative Analysis of Applications and Perceptions in Football and Basketball
Abstract
:1. Introduction
2. Applicability of Blockchain in Sports
2.1. Athlete Data Management
2.2. Sports Event Management
2.3. Anti-Doping Compliance
2.4. Sports Collectibles and Merchandise
2.5. Fan Engagement
2.6. Sponsorship and Crowdfunding
2.7. Esports and Sports Betting
2.8. Copyright Protection in Sports Media
3. Materials and Methods
3.1. The Purpose of the Research and the Instruments Used
3.2. Design and Research Phase
4. Results
4.1. Descriptive Statistics
4.2. Comparative Variance Analysis of Basketball Versus Football
4.2.1. Gender-Based Differences in Perceptions
4.2.2. Perceptual Differences Across Professional Roles
4.3. Model Fit and Path Coefficients
4.4. Cluster Analysis
5. Discussion
5.1. Key Findings and Implications
5.2. Practical Implication of Blockchain in Sport
6. Limitations and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shukla, A.; Jirli, P.; Mishra, A.; Singh, A.K. An overview of blockchain research and future agenda: Insights from structural topic modeling. J. Innov. Knowl. 2024, 9, 100605. [Google Scholar] [CrossRef]
- Agbozo, E.; Hayawi, W.M. A Bibliometric Overview of Blockchain Technology in Sports. Facta Univ.-Ser. Electron. Energetics 2024, 37, 157–168. [Google Scholar] [CrossRef]
- Li, A.; Huang, W. A comprehensive survey of artificial intelligence and cloud computing applications in the sports industry. Wirel. Netw. 2024, 30, 6973–6984. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C.C.; Tang, L.C.; Chieng, W.H. Enhancing Running Exercise with IoT, Blockchain, and Heart Rate Adaptive Running Music. IEEE Access 2024, 12, 14168–14181. [Google Scholar] [CrossRef]
- Bartholic, M.; Laszka, A.; Yamamoto, G.; Burger, E.W. A Taxonomy of Blockchain Oracles: The Truth Depends on the Question. In Proceedings of the 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Shanghai, China, 2–5 May 2022; pp. 1–15. [Google Scholar] [CrossRef]
- Mehra, V.; Bharany, S.; Singh, P.; Sawhney, R.S.; Kaur, U.; Rehman, A.U.; Hussen, S. Impacts of digital technologies and social media platforms on advocating environmental sustainability in the sports sector. Discov. Sustain. 2025, 6, 121. [Google Scholar] [CrossRef]
- Berkani, A.; Moumen, H.; Benharzallah, S.; Yahiaoui, S.; Bounceur, A. Blockchain Use Cases in the Sports Industry: A Systematic Review. Int. J. Networked Distrib. Comput. 2024, 12, 17–40. [Google Scholar] [CrossRef]
- Kanat, E.; Oget, E.; Kaya, F. The determinants of prices of fan tokens as a new sports finance tool. Ege Acad. Rev. 2024, 24, 221–232. [Google Scholar] [CrossRef]
- Schlimm, J.; Mereu, S.; Breuer, C. Why do consumers buy sports NFTs?—Decoding consumer values and needs driving purchase intention. Int. J. Sports Mark. Spons. 2024, 25, 1163–1184. [Google Scholar] [CrossRef]
- Manoli, A.E.; Dixon, K.; Antonopoulos, G.A. Football Fan Tokens as a mode of serious leisure: Unveiling the dual essence of identity and investment. Leis. Stud. 2024, 44, 294–308. [Google Scholar] [CrossRef]
- Tedesco, S.; Scheurer, S.; Brown, K.N.; Hennessy, L.; O’Flynn, B. A Survey on the Use of Artificial Intelligence for Injury Prediction in Sports. In Proceedings of the IEEE International Workshop on Sport, Technology and Research (STAR), Cavalese, Italy, 6–8 July 2022; pp. 127–131. [Google Scholar] [CrossRef]
- Li, J.N.; Quan, Z.P.; Song, W.J. Blockchain enhanced student physical performance analysis using machine learning-IoT and Apriori algorithm in physical education network teaching. Scalable Comput. Pract. Exp. 2024, 25, 1478–1490. [Google Scholar] [CrossRef]
- Cappiello, B.; Carullo, G. (Eds.) Blockchain, Law and Governance; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Fukuzawa, M.B.; McConnell, B.M.; Kay, M.G.; Thoney-Barletta, K.A.; Warsing, D.P. Implementing trades of the National Football League Draft on blockchain smart contracts. Int. J. Sports Mark. Spons. 2024, 25, 330–359. [Google Scholar] [CrossRef]
- Ghosh, S. Public vs private blockchains for decentralization layers. In The Age of Decentralization; Productivity Press: Park Forest, IL, USA, 2024. [Google Scholar]
- Calderone, D.C.; Costa, G. Blockchain Integration in FIFA Clearing House: Enhancing Security and Operational Efficiency. In Proceedings of the 2024 IEEE International Workshop on Sport, Technology and Research (STAR), Lecco, Italy, 8–10 July 2024; pp. 26–31. [Google Scholar] [CrossRef]
- Regner, F.; Schweizer, A.; Urbach, N. Utilizing non-fungible tokens for an event ticketing system. In Blockchains and the Token Economy: Theory and Practice; Lacity, M.C., Treiblmaier, H., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 315–343. [Google Scholar] [CrossRef]
- Sung, H.-M.; Chen, T.; Tseng, H.-C.; Prayogo, B.; Lin, J.-Y.; Hung, Y.-P. akaTick: Hybrid mobile e-ticketing system based on non-fungible tokens. In Proceedings of the 2023 IEEE International Conference on Metaverse Computing, Networking and Applications (MetaCom), Kyoto, Japan, 26–28 June 2023; pp. 686–687. [Google Scholar] [CrossRef]
- Goldsby, C.; Hanisch, M. The boon and bane of blockchain: Getting the governance right. Calif. Manag. Rev. 2022, 64, 141–168. [Google Scholar] [CrossRef]
- Ante, L.; Saggu, A.; Schellinger, B.; Wazinski, F.-P. Voting participation and engagement in blockchain-based fan tokens. Electron. Mark. 2024, 34, 26. [Google Scholar] [CrossRef]
- Potts, J.; Thomas, S.; Tierney, K. Blockchain innovation in sports economies. In 21st Century Sports; Springer: Berlin/Heidelberg, Germany, 2023; pp. 247–258. [Google Scholar] [CrossRef]
- Tripathi, G.; Ahad, M.A.; Casalino, G. A comprehensive review of blockchain technology: Underlying principles and historical background with future challenges. Decis. Anal. J. 2023, 9, 100344. [Google Scholar] [CrossRef]
- Wilson, K.B.; Karg, A.; Ghaderi, H. Prospecting non-fungible tokens in the digital economy: Stakeholders and ecosystem, risk and opportunity. Bus. Horiz. 2022, 65, 657–670. [Google Scholar] [CrossRef]
- Chen, X. Blockchain-based athlete health archives data sharing from the perspective of public health. Rev. Int. Med. Cienc. Act. Fis. Deporte 2024, 24, 336–352. [Google Scholar]
- Cheng, M.Y.; Yu, C.L.; An, X.; Wang, L.; Tsai, C.L.; Qi, F.; Wang, K.P. Evaluating EEG neurofeedback in sport psychology: A systematic review of RCT studies for insights into mechanisms and performance improvement. Front. Psychol. 2024, 15, 1331997. [Google Scholar] [CrossRef]
- Torrance, J.; Heath, C.; Andrade, M.; Newall, P. Gambling, cryptocurrency, and financial trading app marketing in English Premier League football: A frequency analysis of in-game logos. J. Behav. Addict. 2023, 12, 972–982. [Google Scholar] [CrossRef]
- UEFA Press Release. 2021. Available online: https://www.uefa.com (accessed on 25 January 2025).
- Lopez-Gonzalez, H.; Petrotta, B. Gambling-like digital assets and gambling severity: A correlational study with U.S. sports bettors consuming cryptocurrencies, NFTs, and fan tokens. Int. Gambl. Stud. 2023, 24, 341–356. [Google Scholar] [CrossRef]
- Ayres Principe, V.P.S.M.; da Silva, G.C.; Gomes de Souza Vale, R.; de Alkmim Moreira Nunes, R. Blockchain and sports industry: A systematic literature review of Fan Tokens and their implications. Retos 2024, 60, 823–840. [Google Scholar] [CrossRef]
- Billings, A.C. From gamification to personalization: Sports media, Web 3.0 and the desire for the ultimate fan experience, International. J. Sports Mark. Spons. 2024. ahead-of-print. [Google Scholar] [CrossRef]
- Shao, S.F.; Cheng, J. Time-varying connectedness between sport cryptocurrency and listed European football stocks: Evidence from a LASSO-VAR approach. Appl. Econ. 2024, 1–14. [Google Scholar] [CrossRef]
- Sherif, K.; Mohamed, S.S.A.; Amanulla, R. Managing the environmental sustainability performance of mega-sport events: A blockchain-based smart control system. Sport Bus. Manag. Int. J. 2025, 15, 245–263. [Google Scholar] [CrossRef]
- Yadav, J.; Misra, M.; Rana, N.P.; Singh, K.; Goundar, S. Netizens’ behavior towards a blockchain-based esports framework: A TPB and machine learning integrated approach. Int. J. Sports Mark. Spons. 2022, 23, 665–683. [Google Scholar] [CrossRef]
- Di Francesco, M.; Di Vaio, A.; Palladino, R.; Hassan, R. Application of Blockchain Technology in the Sports Industry: A Systematic Literature Review. Mathematics 2023, 11, 1736. [Google Scholar] [CrossRef]
- Laar Van, S.; Braeken, J. Caught off Base: A Note on the Interpretation of Incremental Fit Indices. Struct. Equ. Model. Multidiscip. J. 2022, 29, 935–943. [Google Scholar] [CrossRef]
- Ringle, C.; Wende, S.; Becker, J.-M. SmartPLS 3; SmartPLS GmbH: Bönningstedt, Germany, 2015. [Google Scholar]
- Sarstedt, M.; Hair, J.; Pick, M.; Liengaard, B.; Radomir, L.; Ringle, C. Progress in partial least squares structural equation modeling use in marketing research in the last decade. Psychol. Mark. 2022, 39, 1035–1064. [Google Scholar] [CrossRef]
- Sai Radha, K.; Kalakota, S.; Harshavardhan, R. Performance prediction of cricket player using blockchain enabled HMM model. In Proceedings of the Second International Conference on Emerging Trends in Engineering (ICETE 2023), Hyderabad, India, 28–30 April 2023; Advances in Engineering Research Series; Atlantis Press: Dordrecht, The Netherlands, 2023. [Google Scholar] [CrossRef]
Kruskal–Wallis | Sport | Gender | Profession | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | df | p | ε2 | χ2 | df | p | ε2 | χ2 | df | P | ε2 | |
CryptoSponsorship | 0.01 | 1 | 0.92 | 3.51 × 10−5 | 2.73 | 2 | 0.26 | 0.0093 | 4 | 4 | 0.4 | 0.0138 |
PlayerTokens | 0.274 | 1 | 0.6 | 9.39 × 10−4 | 2.25 | 2 | 0.33 | 0.0077 | 5.5 | 4 | 0.24 | 0.0188 |
Smart tickets | 0.534 | 1 | 0.47 | 0.00183 | 1.46 | 2 | 0.48 | 0.005 | 6.1 | 4 | 0.19 | 0.021 |
DecentralizationTicket | 0.148 | 1 | 0.7 | 5.06 × 10−4 | 1.97 | 2 | 0.37 | 0.0068 | 3.4 | 4 | 0.5 | 0.0115 |
SecureData | 0.465 | 1 | 0.5 | 0.00159 | 2.64 | 2 | 0.27 | 0.009 | 6.2 | 4 | 0.19 | 0.0212 |
Anti-doping | 0.039 | 1 | 0.84 | 1.33 × 10−4 | 1.81 | 2 | 0.4 | 0.0062 | 5.6 | 4 | 0.23 | 0.0192 |
FinancialSupport | 4.252 | 1 | 0.04 | 0.01456 | 0.78 | 2 | 0.68 | 0.0027 | 4.9 | 4 | 0.3 | 0.0167 |
RewardingFan | 1.214 | 1 | 0.27 | 0.00416 | 1.43 | 2 | 0.49 | 0.0049 | 1.9 | 4 | 0.75 | 0.0066 |
Subscription | 0.379 | 1 | 0.54 | 0.0013 | 0.59 | 2 | 0.75 | 0.002 | 2.6 | 4 | 0.63 | 0.0089 |
AppSponsor | 0.814 | 1 | 0.37 | 0.00279 | 2.5 | 2 | 0.29 | 0.0086 | 5.6 | 4 | 0.24 | 0.019 |
AppPlayer | 1.456 | 1 | 0.23 | 0.00499 | 2.3 | 2 | 0.32 | 0.0079 | 4.9 | 4 | 0.3 | 0.0166 |
AppTickets | 1.013 | 1 | 0.31 | 0.00347 | 2.45 | 2 | 0.29 | 0.0084 | 6.6 | 4 | 0.16 | 0.0226 |
AppDescentralization | 0.892 | 1 | 0.35 | 0.00306 | 0.47 | 2 | 0.79 | 0.0016 | 3.3 | 4 | 0.51 | 0.0113 |
AppData | 0.187 | 1 | 0.67 | 6.41 × 10−4 | 2.13 | 2 | 0.35 | 0.0073 | 2.8 | 4 | 0.6 | 0.0094 |
AppPay | 0.419 | 1 | 0.52 | 0.00143 | 2.75 | 2 | 0.25 | 0.0094 | 7.2 | 4 | 0.12 | 0.0248 |
AppRevenue | 4.685 | 1 | 0.03 | 0.01604 | 8.06 | 2 | 0.02 | 0.0276 | 5.5 | 4 | 0.24 | 0.0187 |
AppReward | 1.268 | 1 | 0.26 | 0.00434 | 2.64 | 2 | 0.27 | 0.0091 | 8.2 | 4 | 0.08 | 0.0281 |
AppInfo | 1.662 | 1 | 0.2 | 0.00569 | 2.26 | 2 | 0.32 | 0.0077 | 2.9 | 4 | 0.57 | 0.01 |
Variables | Block Benefits | Block Apps | Performance |
---|---|---|---|
Blockchain Benefits | |||
Blockchain Apps | 0.591 | ||
Performance | 0.141 | 0.243 |
Saturated Model | Estimated Model | |
---|---|---|
SRMR | 0.024 | 0.024 |
d_ULS | 0.077 | 0.077 |
d_G | 0.078 | 0.078 |
Chi-Square | 116.318 | 116.347 |
NFI | 0.960 | 0.960 |
Variable | VIF | Variable | VIF |
---|---|---|---|
AppData | 3.06 | DecentralizationTicket | 2.80 |
AppDescentralization | 3.84 | EuropePerf | 1.15 |
AppInfo | 3.67 | FinancialSupport | 2.32 |
AppRevenue | 3.14 | NatPerf | 1.03 |
AppSponsor | 2.27 | PlayerTokens | 2.65 |
AppTickets | 3.80 | RewardingFan | 2.69 |
BestPerform | 1.12 | Smart tickets | 2.85 |
CryptoSponsorship | 2.14 | WorldSelect | 1.00 |
Cluster | Error | F | Sig. | |||
---|---|---|---|---|---|---|
Mean Square | df | Mean Square | df | |||
BlockchainAdv | 50.222 | 2 | 0.183 | 290 | 273.892 | 0.000 |
BlockchainApps | 65.359 | 2 | 0.152 | 290 | 429.864 | 0.000 |
Blockchain Application | Football (Soccer) | Basketball | Key Differences |
---|---|---|---|
Smart Tickets | UEFA used blockchain for EURO 2020 ticketing | Limited adoption | Football faces higher ticket fraud risks, necessitating blockchain solutions. |
Fan Engagement | Fan tokens (FC Barcelona and PSG) | NBA Top Shot (NFTs) | Football engages fans through ownership; basketball leverages collectibles |
Player Performance Data | Less adoption, mostly in elite clubs | NBA experimenting with blockchain-based tracking | NBA teams more focused on individual analytics |
Sponsorship Management | Crypto sponsorships (e.g., eToro and Crypto.com) | Smart contracts used for sponsor deals (e.g., FTX) | Basketball relies more on digital asset sponsorships |
Blockchain Use Case | Sports | Finance | Healthcare | Supply Chain |
---|---|---|---|---|
Smart Contracts | Used for player contracts and sponsorships | Used for cross-border transactions (Ripple and Ethereum) | Used for insurance and patient consent management | Used for automating vendor contracts and shipments |
Data Security and Privacy | Protects athlete performance and health data | Secures financial transactions and identities (e.g., KYC compliance) | Used for electronic medical records (EMRs) | Tracks product origins and reduces fraud (Walmart, IBM Food Trust) |
NFTs and Digital Ownership | Used for fan engagement and sports collectibles | Used for digital art and music royalties | Potential for patient data ownership via NFTs | Used for tokenized tracking of high-value goods |
Decentralized Governance | Used in fan voting and club decision-making (DAOs) | Used in Decentralized Finance (DeFi) | Not widely adopted yet | Blockchain-based supply chain consortia (e.g., TradeLens by Maersk) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bucea-Manea-Țoniș, R.; Antonescu, A.G.; Mihăilă, C. Blockchain in Sports: A Comparative Analysis of Applications and Perceptions in Football and Basketball. Appl. Sci. 2025, 15, 6829. https://doi.org/10.3390/app15126829
Bucea-Manea-Țoniș R, Antonescu AG, Mihăilă C. Blockchain in Sports: A Comparative Analysis of Applications and Perceptions in Football and Basketball. Applied Sciences. 2025; 15(12):6829. https://doi.org/10.3390/app15126829
Chicago/Turabian StyleBucea-Manea-Țoniș, Rocsana, Andrei Gabriel Antonescu, and Constanța Mihăilă. 2025. "Blockchain in Sports: A Comparative Analysis of Applications and Perceptions in Football and Basketball" Applied Sciences 15, no. 12: 6829. https://doi.org/10.3390/app15126829
APA StyleBucea-Manea-Țoniș, R., Antonescu, A. G., & Mihăilă, C. (2025). Blockchain in Sports: A Comparative Analysis of Applications and Perceptions in Football and Basketball. Applied Sciences, 15(12), 6829. https://doi.org/10.3390/app15126829