Study on the Wrinkling Mechanisms of Human Skin Based on the Digital Image Correlation and Facial Action Coding System
Abstract
1. Introduction
2. Methods
2.1. Experiments
2.2. Determination of Strain
2.3. Establishment of the FE Model
3. Results
3.1. Strain Parameters of Basic Expressions
3.2. Relationship Between the Principal Strain and Wrinkles
3.3. Wrinkle Analyses Based on the FE Method
4. Discussion
4.1. Comparison of Skin Wrinkles Between Muscle Compression and Skin Compression
4.2. Influence of Mechanical and Thickness Parameters
4.3. Application in Sensor Based on Skin Wrinkling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D-DIC | Three-dimensional digital image correlation |
FACS | Facial Action Coding System |
AUs | Action Units |
FE | Finite element |
MC | Muscle compression |
SC | Skin compression |
Appendix A
References
- Hillebrand, G. Facial Wrinkling: The Marquee Clinical Sign of Aging Skin. In Textbook of Aging Skin; Farage, M.A., Miller, K.W., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germay, 2016; pp. 1–10. [Google Scholar]
- Khan, S.A.; Hussain, A.; Basit, A.; Akram, S. Kruskal-Wallis-Based Computationally Efficient Feature Selection for Face Recognition. Sci. World J. 2014, 2014, 672630. [Google Scholar]
- Khan, A.; Alam, I.; Khan, M.F.; Ahmed, I.; Islam, Z.U.; Azam, M.; Akhtar, A. A comprehensive analysis of adaptive image restoration techniques in the presence of different noise models. Found. Univ. J. Eng. Appl. Sci. 2020, 1, 2. [Google Scholar] [CrossRef]
- Muslim, H.S.M.; Khan, S.A.; Hussain, S.; Jamal, A.; Qasim, H.S.A. A knowledge-based image enhancement and denoising approach. Comput. Math. Organ. Theory 2019, 25, 108–121. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, B.; Lee, J.; Lu, N.; Pierce, D.M. A multi-layered model of human skin elucidates mechanisms of wrinkling in the forehead. J. Mech. Behav. Biomed. Mater. 2020, 105, 103694. [Google Scholar] [CrossRef] [PubMed]
- Campiche, R.; Pascucci, F.; Jiang, L.; Vergne, T.; Cherel, M.; Gougeon, S.; Préstat-Marquis, E.; François, G.; Laurent, G.; Gempeler, M. Facial Expression Wrinkles and Their Relaxation by a Synthetic Peptide. Int. J. Pept. Res. Ther. 2021, 27, 1009–1017. [Google Scholar] [CrossRef]
- Franco, A.C.; Aveleira, C.; Cavadas, C. Skin senescence: Mechanisms and impact on whole-body aging. Trends Mol. Med. 2022, 28, 97–109. [Google Scholar] [CrossRef]
- Miura, N.; Arikawa, S.; Yoneyama, S.; Koike, M.; Murakami, M.; Tanno, O. Digital Image Correlation Strain Analysis for the Study of Wrinkle Formation on Facial Skin. J. Solid Mech. Mater. Eng. 2012, 6, 545–554. [Google Scholar] [CrossRef]
- Celleno, L.; Tamburi, F. Chapter 1—Structure and Function of the Skin. In Nutritional Cosmetics; Tabor, A., Blair, R.M., Eds.; William Andrew Publishing: Boston, MA, USA, 2009; pp. 3–45. [Google Scholar]
- Holzapfel, G.A.; Ogden, R.W. On the tension–compression switch in soft fibrous solids. Eur. J. Mech.-A/Solids 2015, 49, 561–569. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Ogden, R.W. Biomechanical relevance of the microstructure in artery walls with a focus on passive and active components. Am. J. Physiol.-Heart Circ. Physiol. 2018, 315, 540–549. [Google Scholar] [CrossRef]
- Magnenat-Thalmann, N.; Kalra, P.; Leveque, J.L.; Bazin, R.; Batisse, D.; Querleux, B. A computational skin model: Fold and wrinkle formation. IEEE Trans. Inf. Technol. Biomed. 2002, 6, 317–323. [Google Scholar] [CrossRef]
- Flynn, C.; McCormack, B. A three-layer model of skin and its application in simulating wrinkling. Comput. Methods Biomech. Biomed. Eng. 2008, 12, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Flynn, C.; McCormack, B.A.O. Simulating the wrinkling and aging of skin with a multi-layer finite element model. J. Biomech. 2010, 43, 442–448. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, B.; Lee, J.; Lu, N.; Pierce, D.M. A multi-layered computational model for wrinkling of human skin predicts aging effects. J. Mech. Behav. Biomed. Mater. 2020, 103, 103552. [Google Scholar] [CrossRef]
- Guissouma, I.; Hambli, R.; Rekik, A.; Hivet, A. A multiscale four-layer finite element model to predict the effects of collagen fibers on skin behavior under tension. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 1274–1287. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Gerling, G.J.; Chen, X. Mechanical modeling of a wrinkled fingertip immersed in water. Acta Biomater. 2010, 6, 1487–1496. [Google Scholar] [CrossRef]
- Diosa, J.; Moreno, R.; Chica, E.; Villarraga Ossa, J.; Buganza Tepole, A. Changes in the three-dimensional microscale topography of human skin with aging impact its mechanical and tribological behavior. PLoS ONE 2020, 16, 0241533. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Wang, B.; Yang, T.; Yin, R.; Wang, F.; Zhang, H.; Zhang, W. Three-Dimensional Bioprinted Skin Microrelief and Its Role in Skin Aging. Biomimetics 2024, 9, 366. [Google Scholar] [CrossRef]
- Yoneyama, S. Measuring Facial Displacements and Strains for Cosmetics Development and Beauty Care. In Gerontology as an Interdisciplinary Science; Shiozawa, T., Hirata, H., Inoue, T., Kanikowska, D., Takada, H., Eds.; Springer Nature: Singapore, 2024; pp. 175–189. [Google Scholar]
- Yoo, M.A.; Seo, Y.K.; Shin, M.K.; Koh, J.S. How much related to skin wrinkles between facial and body site? Age-related changes in skin wrinkle on the knee assessed by skin bioengineering techniques. Ski. Res. Technol. 2016, 22, 69–74. [Google Scholar] [CrossRef]
- Wang, Y.; Li, R.; Lu, M.; Fan, Z.; Chen, Y.; Xu, Y.; Jiang, Z.; Sun, T. Photo-crosslinking speckle patterns for large deformation measurement of hydrogels using digital image correlation. Appl. Phys. Lett. 2023, 123, 181904. [Google Scholar] [CrossRef]
- Jiang, Z. OpenCorr: An open source library for research and development of digital image correlation. Opt. Lasers Eng. 2023, 165, 107566. [Google Scholar] [CrossRef]
- Wang, L.; Lei, Z. Deep learning based speckle image super-resolution for digital image correlation measurement. Opt. Laser Technol. 2025, 181, 111746. [Google Scholar] [CrossRef]
- Zhan, N.; Zhang, X.; Ye, J.; Wang, T.; Dong, Z.; Song, Z. High-precision parameter-free optical distortion measurement and correction via digital image correlation. Opt. Laser Technol. 2024, 177, 111129. [Google Scholar] [CrossRef]
- Radi, K.; Allamand, F.; Kochmann, D.M. Deformation tracking of truss lattices under dynamic loading based on Digital Image Correlation. Mech. Mater. 2023, 183, 104658. [Google Scholar] [CrossRef]
- Youn, J.; Kim, D.; Kwak, H.; Lee, A.; Kim, D.S. Tissue-scale in vitro epithelial wrinkling and wrinkle-to-fold transition. Nat. Commun. 2024, 15, 7118. [Google Scholar] [CrossRef]
- Min, D.; Ahn, Y.; Lee, H.K.; Jung, W.; Kim, H.-J. A novel optical coherence tomography-based in vitro method of anti-aging skin analysis using 3D skin wrinkle mimics. Ski. Res. Technol. 2023, 29, 13354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Flexible camera calibration by viewing a plane from unknown orientation. In Proceedings of the Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 1, pp. 666–673. [Google Scholar]
- Ekman, P.; Friesen, W.V. Manual for the Facial Action Coding System; Consulting Psychologists Press: Palo Alto, CA, USA, 1978. [Google Scholar] [CrossRef]
- Barrett, L.F.; Adolphs, R.; Marsella, S.; Martinez, A.M.; Pollak, S.D. Emotional Expressions Reconsidered: Challenges to Inferring Emotion From Human Facial Movements. Psychol. Sci. Public Interest 2019, 20, 1–68. [Google Scholar] [CrossRef]
- Yoneyama, S. Computing Strain Distributions from Measured Displacements on a Three-dimensional Surface. J. Jpn. Soc. Exp. Mech. 2010, 10, 113–118. [Google Scholar]
- Wei, H.; Liu, X.; Li, L.; Li, C.; Chen, W.; Wang, S.; Wang, Z.; Ma, J. Visual indentation apparatus and finite element modelling as a method to characterize 3D mechanical properties of facial skin in vivo. Mech. Mater. 2021, 157, 103852. [Google Scholar] [CrossRef]
- Jiechen, Z.; Wei, H.; Suying, F.; Xiangsheng, C.; Hongwei, W. Classification of facial wrinkles among Chinese women. J. Biomed. Res. 2017, 31, 108–115. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, K.W.; Kim, J.S.; Gil, Y.C.; Tanvaa, T.; Shin, D.H.; Kim, H.J. Regional thickness of facial skin and superficial fat: Application to the minimally invasive procedures. Clin. Anat. 2019, 32, 1008–1018. [Google Scholar] [CrossRef]
- Limbert, G.; Kuhl, E. On skin microrelief and the emergence of expression micro-wrinkles. Soft Matter 2018, 14, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Kuwazuru, O.; Saothong, J.; Yoshikawa, N. Mechanical approach to aging and wrinkling of human facial skin based on the multistage buckling theory. Med. Eng. Phys. 2008, 30, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Hess, U.; Huppertz, D.; Mauersberger, H.; Kastendieck, T. Wrinkles are neither beautiful nor nice: The effect of facial wrinkles on person perception and interpersonal closeness. Acta Psychol. 2023, 241, 104077. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Chu, Z.; Fu, L.; Lv, Y.; Liu, X.; Fan, X.; Zhang, W. Thickness-induced gradient micro-wrinkle PDMS/MXene/rGO wearable strain sensor with high sensitivity and stretchability for human motion detection. Chem. Eng. J. 2024, 495, 153684. [Google Scholar] [CrossRef]
Layers | Young’s Modulus (MPa) | Poisson’s Ratio | Thickness (mm) |
---|---|---|---|
Epidermis | 100 × 10−3 | 0.485 | 0.1 |
Dermis | 5 × 10−3 | 0.495 | 1.0 |
Hypodermis | 3 × 10−3 | 0.495 | 0.2 |
Muscle | 800 × 10−3 | 0.48 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Chen, M.; Wang, S.; Wang, Z.; Liao, B.; Lin, Z.; He, L.; He, W. Study on the Wrinkling Mechanisms of Human Skin Based on the Digital Image Correlation and Facial Action Coding System. Appl. Sci. 2025, 15, 6803. https://doi.org/10.3390/app15126803
Wei H, Chen M, Wang S, Wang Z, Liao B, Lin Z, He L, He W. Study on the Wrinkling Mechanisms of Human Skin Based on the Digital Image Correlation and Facial Action Coding System. Applied Sciences. 2025; 15(12):6803. https://doi.org/10.3390/app15126803
Chicago/Turabian StyleWei, Huixin, Mingjian Chen, Shibin Wang, Zhiyong Wang, Baopeng Liao, Zehui Lin, Lisha He, and Wei He. 2025. "Study on the Wrinkling Mechanisms of Human Skin Based on the Digital Image Correlation and Facial Action Coding System" Applied Sciences 15, no. 12: 6803. https://doi.org/10.3390/app15126803
APA StyleWei, H., Chen, M., Wang, S., Wang, Z., Liao, B., Lin, Z., He, L., & He, W. (2025). Study on the Wrinkling Mechanisms of Human Skin Based on the Digital Image Correlation and Facial Action Coding System. Applied Sciences, 15(12), 6803. https://doi.org/10.3390/app15126803