Filipendula vulgaris Moench Extracts: Phytochemical Research and Study of Their Cytotoxic and Antitumour Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Raw Materials
2.2. Extracts Preparation
2.3. Phytochemical Research
2.3.1. Analysis of Phenolic Compounds by UPLC-MS/MS
2.3.2. Assay of Amino Acids by UPLC-MS/MS
2.3.3. Hydrodistillation and Assay of Volatile Compounds by GC-MS
2.3.4. Standardisation of the Extracts
2.4. Cytotoxic and Antitumour Activity
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plants of the World Online. Filipendula vulgaris Moench. Royal Botanic Gardens, Kew. Available online: https://powo.science.kew.org/taxon/724945-1 (accessed on 2 May 2025).
- Grodzinsky, A.M. Medicinal Plants: Encyclopedic Guide; Bazhana, M.P., Ed.; Ukrainian Encyclopedia: Kiev, Ukraine, 1990. [Google Scholar]
- Fecowicz, M.; Możdżeń, K.; Barabasz-Krasny, B.; Stachurska-Swakoń, A. Allelopathic Influence of Medicinal Plant Filipendula vulgaris Moench on Germination Process. Not. Bot. Horti Agrobot. 2020, 48, 2032–2049. [Google Scholar] [CrossRef]
- Birinci Yildirim, A.; Cimen, A.; Baba, Y.; Turker, A. Natural- and in Vitro-Grown Filipendula ulmaria (L.) Maxim: Evaluation of Pharmaceutical Potential (Antibacterial, Antioxidant and Toxicity) and Phenolic Profiles. Prospect. Pharm. Sci. 2024, 22, 1–10. [Google Scholar] [CrossRef]
- Raal, A.; Kaldmäe, H.; Kütt, K.; Jürimaa, K.; Silm, M.; Bleive, U.; Aluvee, A.; Adamson, K.; Vester, M.; Erik, M.; et al. Chemical Content and Cytotoxic Activity on Various Cancer Cell Lines of Chaga (Inonotus obliquus) Growing on Betula Pendula and Betula Pubescens. Pharmaceuticals 2024, 17, 1013. [Google Scholar] [CrossRef] [PubMed]
- Farzaneh, A.; Hadjiakhoondi, A.; Khanavi, M.; Manayi, A.; Bahram Soltani, R.; Kalkhorani, M. Filipendula ulmaria (L.) Maxim. (Meadowsweet): A Review of Traditional Uses, Phytochemistry and Pharmacology. Res. J. Pharmacogn. 2022, 9, 85–106. [Google Scholar] [CrossRef]
- Matić, S.; Katanić, J.; Stanić, S.; Mladenović, M.; Stanković, N.; Mihailović, V.; Boroja, T. In Vitro and in Vivo Assessment of the Genotoxicity and Antigenotoxicity of the Filipendula hexapetala and Filipendula ulmaria Methanol Extracts. J. Ethnopharmacol. 2015, 174, 287–292. [Google Scholar] [CrossRef]
- Smolaze, H.D.; Sokolowska-Wozniak, A. Chromatografic Analysis of Phenolic Acids in F. ulmaria (L.) Maxim. and F. vulgaris Gilib/H.D. Smolaze, //. Chem. Environ. Res. 2003, 12, 77–82. [Google Scholar]
- Katanić, J.; Mihailović, V.; Stanković, N.; Boroja, T.; Mladenović, M.; Solujić, S.; Stanković, M.S.; Vrvić, M.M. Dropwort (Filipendula hexapetala Gilib.): Potential Role as Antioxidant and Antimicrobial Agent. EXCLI J. 2015, 14, 1. [Google Scholar] [CrossRef]
- Katanić, J.; Pferschy-Wenzig, E.-M.; Mihailović, V.; Boroja, T.; Pan, S.-P.; Nikles, S.; Kretschmer, N.; Rosić, G.; Selaković, D.; Joksimović, J.; et al. Phytochemical Analysis and Anti-Inflammatory Effects of Filipendula vulgaris Moench Extracts. Food Chem. Toxicol. 2018, 122, 151–162. [Google Scholar] [CrossRef]
- Neamțu, A.-A.; Maghiar, T.A.; Turcuș, V.; Maghiar, P.B.; Căpraru, A.-M.; Lazar, B.-A.; Dehelean, C.-A.; Pop, O.L.; Neamțu, C.; Totolici, B.D.; et al. A Comprehensive View on the Impact of Chlorogenic Acids on Colorectal Cancer. Curr. Issues Mol. Biol. 2024, 46, 6783–6804. [Google Scholar] [CrossRef]
- Ziółkiewicz, A.; Niziński, P.; Soja, J.; Oniszczuk, T.; Combrzyński, M.; Kondracka, A.; Oniszczuk, A. Potential of Chlorogenic Acid in the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Animal Studies and Clinical Trials—A Narrative Review. Metabolites 2024, 14, 346. [Google Scholar] [CrossRef]
- Nguyen, V.; Taine, E.G.; Meng, D.; Cui, T.; Tan, W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024, 16, 924. [Google Scholar] [CrossRef]
- Pavlovic, M.; Petrovic, S.; Ristic, M.; Maksimovic, Z.; Kovacevic, N. Essential Oil of Filipendula hexapetala. Chem. Nat. Compd. 2007, 43, 228–229. [Google Scholar] [CrossRef]
- Lamaison, J.L.; Carnat, A.; Petitjean-Freytet, C. Tannin content and inhibiting activity of elastase in Rosaceae. Ann. Pharm. Fr. 1990, 48, 335–340. [Google Scholar] [PubMed]
- Sokolova, E.; Krol, T.; Adamov, G.; Minyazeva, Y.; Baleev, D.; Sidelnikov, N. Total Content and Composition of Phenolic Compounds from Filipendula Genus Plants and Their Potential Health-Promoting Properties. Molecules 2024, 29, 2013. [Google Scholar] [CrossRef] [PubMed]
- Savina, T.; Lisun, V.; Feduraev, P.; Skrypnik, L. Variation in Phenolic Compounds, Antioxidant and Antibacterial Activities of Extracts from Different Plant Organs of Meadowsweet (Filipendula ulmaria (L.) Maxim.). Molecules 2023, 28, 3512. [Google Scholar] [CrossRef]
- Jung, J.; Kim, H.; Lee, S.; Hong, M.; Hwang, D. Antioxidant and Anti-Inflammatory Activity of Filipendula glaberrima Nakai Ethanolic Extract and Its Chemical Composition. Molecules 2022, 27, 4628. [Google Scholar] [CrossRef]
- Olennikov, D.; Kashchenko, N.; Chirikova, N. Meadowsweet Teas as New Functional Beverages: Comparative Analysis of Nutrients, Phytochemicals and Biological Effects of Four Filipendula Species. Molecules 2016, 22, 16. [Google Scholar] [CrossRef]
- Zhang, X.-L. Roles of Glycans and Glycopeptides in Immune System and Immune-Related Diseases. Curr. Med. Chem. 2006, 13, 1141–1147. [Google Scholar] [CrossRef]
- Bespalov, V.G.; Alexandrov, V.A.; Semenov, A.L.; Vysochina, G.I.; Kostikova, V.A.; Baranenko, D.A. The Inhibitory Effect of Filipendula ulmaria (L.) Maxim. on Colorectal Carcinogenesis Induced in Rats by Methylnitrosourea. J. Ethnopharmacol. 2018, 227, 1–7. [Google Scholar] [CrossRef]
- Lee, S.; Kang, M.; Heo, K.; Chen, W.; Lee, C. A Palynotaxonomic Study of the Genus Filipendula (Rosaceae). J. Syst. Evol. 2009, 47, 115–122. [Google Scholar] [CrossRef]
- Imbrea, I.; Butnariu, M.; Nicolin, A.; Imbrea, F. Determining Antioxidant Capacity of Extracts of Filipendula vulgaris Moench from South-Western Romania. J. Food Agric. Environ. 2010, 8, 111–116. [Google Scholar]
- Kostrakiewicz-Gierałt, K.; Stachurska-Swakoń, A. The Influence of Habitat Conditions on the Abundance and Selected Traits of the Rare Medicinal Plant Species Filipendula vulgaris Moench. Ecol. Quest. 2017, 25, 9–18. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kruglova, M.Y. A New Quercetin Glycoside and Other Phenolic Compounds from the Genus Filipendula. Chem. Nat. Compd. 2013, 49, 610–616. [Google Scholar] [CrossRef]
- Raal, A.; Jaama, M.; Utt, M.; Püssa, T.; Žvikas, V.; Jakštas, V.; Koshovyi, O.; Nguyen, K.V.; Thi Nguyen, H. The Phytochemical Profile and Anticancer Activity of Anthemis tinctoria and Angelica sylvestris Used in Estonian Ethnomedicine. Plants 2022, 11, 994. [Google Scholar] [CrossRef]
- Sepp, J.; Koshovyi, O.; Jakstas, V.; Žvikas, V.; Botsula, I.; Kireyev, I.; Tsemenko, K.; Kukhtenko, O.; Kogermann, K.; Heinämäki, J.; et al. Phytochemical, Technological, and Pharmacological Study on the Galenic Dry Extracts Prepared from German Chamomile (Matricaria chamomilla L.) Flowers. Plants 2024, 13, 350. [Google Scholar] [CrossRef]
- Sepp, J.; Koshovyi, O.; Jakštas, V.; Žvikas, V.; Botsula, I.; Kireyev, I.; Severina, H.; Kukhtenko, O.; Põhako-Palu, K.; Kogermann, K.; et al. Phytochemical, Pharmacological, and Molecular Docking Study of Dry Extracts of Matricaria discoidea DC. with Analgesic and Soporific Activities. Biomolecules 2024, 14, 361. [Google Scholar] [CrossRef]
- Shanaida, M.; Korablova, O.; Rakhmetov, D.; Serafyn, O.; Lashch, N.; Shanaida, V. Comparative Chromatographic Analysis of Amino Acids in the Seeds of Three Nigella L. Representatives. Biomed. Chromatogr. 2025, 39, e70009. [Google Scholar] [CrossRef]
- Koshovyi, O.; Sepp, J.; Jakštas, V.; Žvikas, V.; Kireyev, I.; Karpun, Y.; Odyntsova, V.; Heinämäki, J.; Raal, A. German Chamomile (Matricaria chamomilla L.) Flower Extract, Its Amino Acid Preparations and 3D-Printed Dosage Forms: Phytochemical, Pharmacological, Technological, and Molecular Docking Study. Int. J. Mol. Sci. 2024, 25, 8292. [Google Scholar] [CrossRef]
- Uminska, K.; Gudžinskas, Z.; Ivanauskas, L.; Georgiyants, V.; Kozurak, A.; Skibytska, M.; Mykhailenko, O. Amino Acid Profiling in Wild Chamaenerion angustifolium Populations Applying Chemometric Analysis. J. Appl. Pharm. Sci. 2023, 13, 171–180. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg, France, 2022.
- Raal, A.; Ilina, T.; Kovalyova, A.; Koshovyi, O. Volatile Compounds in Distillates and Hexane Extracts from the Flowers of Philadelphus coronarius and Jasminum officinale. Sci. Pharm. Sci. 2024, 6, 37–46. [Google Scholar] [CrossRef]
- Hrytsyk, Y.; Koshovyi, O.; Lepiku, M.; Jakštas, V.; Žvikas, V.; Matus, T.; Melnyk, M.; Grytsyk, L.; Raal, A. Phytochemical and Pharmacological Research in Galenic Remedies of Solidago canadensis L. Herb. Phyton 2024, 93, 2303–2315. [Google Scholar] [CrossRef]
- Burda, N.Y. The Pharmacognostic Study of Filipendula ulmaria (L.) Maxim. Ph.D. Thesis, National University of Pharmacy, Kharkiv, Ukraine, 2011. [Google Scholar]
- Toiu, A.; Vlase, L.; Oniga, I.; Benedec, D.; Tămaş, M. HPLC Analysis of Salicylic Derivatives from Natural Product. Farmacia 2011, 59, 106–111. [Google Scholar]
- Kukhtenko, H.; Bevz, N.; Konechnyi, Y.; Kukhtenko, O.; Jasicka-Misiak, I. Spectrophotometric and Chromatographic Assessment of Total Polyphenol and Flavonoid Content in Rhododendron tomentosum Extracts and Their Antioxidant and Antimicrobial Activity. Molecules 2024, 29, 1095. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, G.; Krasilnikova, O.; Raal, A.; Mazen, M.; Chaika, N.; Kireyev, I.; Grytsyk, A.; Koshovyi, O. Arctostaphylos uva-ursi L. Leaves Extract and Its Modified Cysteine Preparation for the Management of Insulin Resistance: Chemical Analysis and Bioactivity. Nat. Prod. Bioprospecting 2022, 12, 30. [Google Scholar] [CrossRef]
- Council of Europe. European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes. ETS No. 123, Strasbourg, France, 1986. Official Journal of the European Communities, L 222, 24 August 1999. pp. 31–37. Available online: https://eur-lex.europa.eu/eli/convention/1999/575/oj (accessed on 13 April 2025).
- Law of Ukraine No. 3447-IV; On the Protection of Animals from Cruelty (as Amended and Supplemented). Vedomosti Verkhovna Rada of Ukraine: Kyiv, Ukraine, 2006.
- Abruscato, G.; Chiarelli, R.; Lazzara, V.; Punginelli, D.; Sugár, S.; Mauro, M.; Librizzi, M.; Di Stefano, V.; Arizza, V.; Vizzini, A.; et al. In Vitro Cytotoxic Effect of Aqueous Extracts from Leaves and Rhizomes of the Seagrass Posidonia oceanica (L.) Delile on HepG2 Liver Cancer Cells: Focus on Autophagy and Apoptosis. Biology 2023, 12, 616. [Google Scholar] [CrossRef]
- Ozaslan, M.; Didem Karagöz, I.; Kalender, M.E.; Kilic, I.H.; Sari, I.; Karagöz, A. In Vivo Antitumoral Effect of Plantago major L. Extract on Balb/C Mouse with Ehrlich Ascites Tumor. Am. J. Chin. Med. 2007, 35, 841–851. [Google Scholar] [CrossRef]
- Ozaslan, M.; Karagöz, I.; Kilic, I.; Cengiz, B.; Kalender, M.; Guldur, M.; Karagöz, A.; Zumrutdal, M. Effect of Plantago major Sap on Ehrlich Ascites Tumours in Mice. Afr. J. Biotechnol. 2009, 8, 955–959. [Google Scholar]
- Cragg, G.M.; Newman, D.J. Discovery and Development of Antineoplastic Agents from Natural Sources. Cancer Investig. 1999, 17, 153–163. [Google Scholar] [CrossRef]
- Donenko, F.V.; Kabieva, A.O.; Moroz, L.V. The effect of ascitic fluid on the growth of Ehrlich tumor and Lewis carcinoma. Bull. Exp. Biol. Med. 1992, 114, 191–193. [Google Scholar]
- Lee, Y. Cancer Chemopreventive Potential of Procyanidin. Toxicol. Res. 2017, 33, 273–282. [Google Scholar] [CrossRef]
- Li, Y.; Lu, X.; Tian, P.; Wang, K.; Shi, J. Procyanidin B2 Induces Apoptosis and Autophagy in Gastric Cancer Cells by Inhibiting Akt/mTOR Signaling Pathway. BMC Complement. Med. Ther. 2021, 21, 76. [Google Scholar] [CrossRef] [PubMed]
- Zughaibi, T.A.; Suhail, M.; Tarique, M.; Tabrez, S. Targeting PI3K/Akt/mTOR Pathway by Different Flavonoids: A Cancer Chemopreventive Approach. Int. J. Mol. Sci. 2021, 22, 12455. [Google Scholar] [CrossRef] [PubMed]
- Bernatoniene, J.; Kopustinskiene, D.M. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018, 23, 965. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.K.; Moad, A.I.H.; Tan, M.L. The mTOR Signalling Pathway in Cancer and the Potential mTOR Inhibitory Activities of Natural Phytochemicals. Asian Pac. J. Cancer Prev. 2014, 15, 6463–6475. [Google Scholar] [CrossRef]
- Saitoh, J.; Saya, H. Benzaldehyde Suppresses Multiple Signal Pathways in Cancer Cells by Regulating 14-3-3ζ-Mediated Protein-Protein Interactions. Cancer Res. 2016, 76, 4758. [Google Scholar] [CrossRef]
- Nikolova-Mladenova, B.; Momekov, G.; Zhivkova, Z.; Doytchinova, I. Design, Synthesis and Cytotoxic Activity of Novel Salicylaldehyde Hydrazones against Leukemia and Breast Cancer. Int. J. Mol. Sci. 2023, 24, 7352. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, H.; Liu, W.; Liu, E.; Pang, Y.; Gao, H.; He, Q.; Liao, W.; Yao, Y.; Zeng, J.; et al. Menthol: An Underestimated Anticancer Agent. Front. Pharmacol. 2023, 14, 1148790. [Google Scholar] [CrossRef]
- Kołodziej-Sobczak, D.; Sobczak, Ł.; Płaziński, W.; Sławińska-Brych, A.; Mizerska-Kowalska, M.; Hołub, K.; Zdzisińska, B.; Jaroch, K.; Bojko, B.; Łączkowski, K.Z. Design, Synthesis, Molecular Docking and Anticancer Activity Evaluation of Methyl Salicylate Based Thiazoles as PTP1B Inhibitors. Sci. Rep. 2025, 15, 4892. [Google Scholar] [CrossRef]
- Mahadevappa, R.; Kwok, H.F. Phytochemicals—A Novel and Prominent Source of Anti-Cancer Drugs Against Colorectal Cancer. Comb. Chem. High Throughput Screen. 2017, 20, 376–394. [Google Scholar] [CrossRef]
- Gladun, Y.D. Cytotoxic and Antiblastic Effect of Six-Leaf Clover on Ehrlich’s Carcinoma and Crocker’s Sarcoma. Quest. Exp. Oncol. 1968, 3, 182–186. [Google Scholar]
- Ajeigbe, K.; Enitan, S.; Omotoso, D.; Oladokun, O. Acute Effects of Aqueous Leaf Extract of Aspilia Africana C.D. Adams on Some Haematological Parameters in Rats. Afr. J. Trad. Compl. Alt. Med. 2013, 10, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Liaudanskas, M.; Žvikas, V.; Petrikaitė, V. The Potential of Dietary Antioxidants from a Series of Plant Extracts as Anticancer Agents against Melanoma, Glioblastoma, and Breast Cancer. Antioxidants 2021, 10, 1115. [Google Scholar] [CrossRef] [PubMed]
- Bashkirova, G.; Rudenko, A. Biological Role of Some Essential Macro- and Microelements (Review). Med. Ukr. 2004, 10, 59–65. [Google Scholar]
- Barashkov, H.K.; Zaitseva, L.I. Microelements and Medicine Practice. Doctor 2004, 10, 45–48. [Google Scholar]
- Selligman, P.A.; Kovar, Y.; Yelfand, E.W. Limphocyte Prolipherationis Controlled by Both Iron Availabiliry and Regulation of Iron Uptake Pathways. Pathobiology 1992, 60, 19–26. [Google Scholar] [CrossRef]
- Atanasiu, R.L.; Stea, D.; Mateescu, M.A.; Vergely, C.; Dalloz, F.; Briot, F.; Maupoil, V.; Nadeau, R.; Rochette, L. Direct Evidence of Ceruloplasmin Antioxidant Properties. Mol. Cell. Biochem. 1998, 189, 127–135. [Google Scholar] [CrossRef]
- Joshi, A.; Mandal, R. Review Article on Molecular Basis of Zinc and Copper Interactions in Cancer Physiology. Biol. Trace Elem. Res. 2024, 203, 2458–2470. [Google Scholar] [CrossRef]
- Yao, G.; Wang, Z.; Xie, R.; Zhanghuang, C.; Yan, B. Trace Element Zinc Metabolism and Its Relation to Tumors. Front. Endocrinol. 2024, 15, 1457943. [Google Scholar] [CrossRef]
- Beard, J.L. Effectiveness and Strategies of Iron Supplementation during Pregnancy. Am. J. Clin. Nutr. 2000, 71, 1288S–1294S. [Google Scholar] [CrossRef]
- Miles, C.; Collins, J.; Holbrook, J.; Patterson, K.; Bodwell, C. Iron Intake and Status of Men and Women Consuming Self-Selected Diets. Am. J. Clin. Nutr. 1984, 40, 1393–1396. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc and Immunity. Mol. Cell. Biochem. 1998, 188, 63–69. [Google Scholar] [CrossRef]
- Prohaska, Y.R. Rodent Models Demonstrate Biochemical and Behavioral Consequences of Maternal Copper Deficiency. Microelements Med. 2006, 7, 29–33. [Google Scholar]
Compound | Content of a Compound, mg/100 g | |
---|---|---|
FHE1 | FHE2 | |
Phenolics | ||
Luteolin 7 rutinoside | 1.5 ± 0.2 | 1.7 ± 0.1 |
Procyanidin B1 | 690.7 ± 52.7 | 313.1 ± 12.2 |
Procyanidin C1 | 29.6 ± 2.5 | 40.8 ± 4.5 |
(+)-Catechin | 273.2 ± 2.4 | 0 |
Chlorogenic acid | 24.7 ± 1.0 | 15.6 ± 2.0 |
Procyanidin B2 | 34.9 ± 2.8 | 0 |
3,4-Dihydroxybenzoic acid | 13.6 ± 0.7 | 0 |
Rutin | 4.7 ± 0.4 | 5.5 ± 0.9 |
Hyperoside | 3.8 ± 0.1 | 3.9 ± 0.6 |
Epicatechin gallate | 224.5 ± 13.3 | 0 |
Amino acids | ||
Alanine | 3.7 ± 0.2 | 4.4 ± 0.1 |
Arginine | 29.7 ± 1.8 | 44.4 ± 1.5 |
Aspartic acid | 3.8 ± 0.1 | 7.4 ± 0.6 |
Glutamic acid | 2.5 ± 0.1 | 3.0 ± 0.1 |
Histidine | 0.8 ± 0.03 | 0.8 ± 0.02 |
Isoleucine | 1.6 ± 0.1 | 1.5 ± 0.1 |
Leucine | 1.1 ± 0.1 | 1.1 ± 0.1 |
Lysine | 0.3 ± 0.06 | 0.5 ± 0.01 |
Methionine | 0.1 | 0.1 |
Phenylalanine | 1.2 ± 0.01 | 1.3 ± 0.05 |
Proline | 9.2 ± 0.1 | 8.1 ± 0.6 |
Serine | 1.0 ± 0.07 | 1.4 ± 0.1 |
Tyrosine | 2.3 ± 0.2 | 2.4 ± 0.2 |
Valine | 0.8 ± 0.04 | 0.7 ± 0.04 |
Content of BAS group, % | ||
Salicylic acid derivates | 0.27 ± 0.03 | 0.16 ± 0.02 |
Flavonoids | 4.76 ± 0.57 | 3.19 ± 0.42 |
Compound | RI | RI NIST23 | Content, % (n = 4) |
---|---|---|---|
Hexanal | 800 | 801 | 0.94 ± 0.027 |
Ethylbenzene | 858 | 855 | 0.10 ± 0.002 |
m-Xylene | 866 | 866 | 4.18 ± 0.133 |
Benzaldehyde | 958 | 962 | 0.58 ± 0.013 |
2-n-Pentylfuran | 991 | 993 | 0.22 ± 0.007 |
Salicylaldehyde | 1041 | 1047 | 1.44 ± 0.058 |
Heptanoic acid | 1074 | 1078 | 0.14 ± 0.004 |
Nonanal | 1104 | 1104 | 0.10 ± 0.002 |
DL-Menthol | 1173 | 1173 | 0.16 ± 0.006 |
Methyl salicylate | 1196 | 1192 | 24.20 ± 1.331 |
L-Carvone | 1244 | 1245 | 1.76 ± 0.077 |
Anethole | 1286 | 1287 | 0.68 ± 0.020 |
n-Capric acid | 1368 | 1373 | 0.40 ± 0.005 |
L-β-Bourbonene | 1387 | 1384 | 0.22 ± 0.008 |
(Z)-Jasmone | 1399 | 1394 | 0.12 ± 0.003 |
Caryophyllene | 1421 | 1419 | 0.26 ± 0.009 |
(E)-β-Farnesene | 1458 | 1457 | 0.14 ± 0.004 |
Lauric acid | 1565 | 1567 | 0.58 ± 0.001 |
L-Globulol | 1586 | 1591 | 0.46 ± 0.020 |
Viridiflorol | 1595 | 1591 | 0.50 ± 0.019 |
Acorenone | 1692 | 1685 | 0.34 ± 0.010 |
Myristic acid | 1764 | 1768 | 0.50 ± 0.018 |
Hexahydrofarnesyl acetone | 1846 | 1844 | 0.14 ± 0.004 |
Verimol K | 2048 | 2053 | 1.48 ± 0.049 |
γ-Palmitolactone | 2098 | 2105 | 0.40 ± 0.005 |
TOTAL | 98.54 |
Indicators | Norm (n = 10) | Day 7 | Day 14 | ||||
---|---|---|---|---|---|---|---|
The Control (n = 7) | Main Groups | The Control (n = 7) | Main Groups | ||||
Ia (n = 7) | IIa (n = 7) | Ia (n = 7) | IIa (n = 7) | ||||
Erythrocytes, T/l | 9.82 ± 0.07 | 7.40 ± 0.07 * | 8.95 ± 0.20 | 7.15 ± 0.16 * | 6.03 ± 0.4 * | 9.66 ± 0.16 | 6.28 ± 0.15 * |
Leukocytes, G/l | 7.40 ± 0.16 | 14.60 ± 0.57 * | 11.80 ± 0.18 * | 16.10 ± 0.25 * | 16.30 ± 0.52 * | 8.50 ± 0.20 | 16.15 ± 0.41 * |
Haemoglobin, G/l | 114.0 ± 2.37 | 105.0 ± 2.93 * | 106.0 ± 2.79 | 104.0 ± 3.83 * | 102.0 ± 2.50 * | 112.0 ± 1.68 | 101.0 ± 5.48 * |
Indicator | Norm (n = 10) | Day 7 | Day 14 | ||||
---|---|---|---|---|---|---|---|
Control (n = 7) | Main Groups | Control (n = 7) | Main Groups | ||||
Ia (n = 7) | IIa (n = 7) | Ia (n = 7) | IIa (n = 7) | ||||
Ceruloplasmin, conventional units | 16.23 ± 0.37 | 14.58 ± 0.63 * | 14.28 ± 0.52 * | 11.50 ± 0.51 * | 12.56 ± 0.46 * | 15.10 ± 0.47 | 11.28 ± 0.49 * |
Transferrin, conventional units | 0.18 ± 0.003 | 0.15 ± 0.004 * | 0.16 ± 0.006 | 0.14 ± 0.004 * | 0.14 ± 0.004 * | 0.17 ± 0.004 | 0.14 ± 0.006 * |
Catalase, mg H2O2/mL | 4.45 ± 0.15 | 3.45 ± 0.10 * | 4.08 ± 0.15 | 3.58 ± 0.11 * | 3.48 ± 0.15 * | 4.28 ± 0.14 | 3.28 ± 0.4 * |
Microelement | Norm (n = 10) | Day 7 | Day 14 | ||||
---|---|---|---|---|---|---|---|
Control (n = 7) | Ia main (n = 7) | IIa Main, (n = 7) | Control (n = 7) | Ia Main (n = 7) | IIa Main, (n = 7) | ||
Fe, mg/kg | 55.38 ± 1.01 | 45.10 ± 0.88 * | 46.50 ± 1.35 * | 39.25 ± 0.88 * | 41.20 ± 0.77 * | 52.14 ± 0.66 | 36.10 ± 1.00 * |
Cu, mg/kg | 4.54 ± 0.08 | 3.92 ± 0.04 * | 4.10 ± 0.13 * | 3.85 ± 0.01 * | 3.60 ± 0.08 * | 4.18 ± 0.09 | 3.65 ± 0.008 * |
Zn, mg/kg | 11.99 ± 0.38 | 8.58 ± 0.31 * | 10.25 ± 0.56 * | 8.08 ± 0.24 * | 7.62 ± 0.53 * | 10.32 ± 0.28 * | 7.80 ± 0.26 * |
Co, µg/kg | 167.7 ± 4.62 | 131.45 ± 2.02 * | 144.8 ± 3.54 * | 144.9 ± 2.43 * | 130.2 ± 1.75 * | 160.10 ± 2.08 | 151.4 ± 4.86 * |
Ascitic Fluid Volume, mL | |||||||
---|---|---|---|---|---|---|---|
Control Group | Ia Main | IIa Main | |||||
Day 7 | Day 14 | Day 7 | Day 14 | Day 7 | Day 14 | ||
M | 6.9 ± 2.8 | 11.1 ± 0.53 | 2.6 ± 0.15 | 3.8 ± 0.20 | 4.2 ± 0.22 | 7.7 ± 0.20 | |
n | 7 | 7 | 7 | 7 | 7 | 7 | |
p | p < 0.001 | p < 0.001 | p < 0.05 | p < 0.05 | |||
Life Expectancy | |||||||
Investigational Drug | Number of Animals | Observation Results | |||||
Complete Absence of Tumour | Animals Died | Lifespan | Cured | ||||
Days | % | ||||||
– | 10 | – | 10 | 14.2 ± 0.84 | 100 | – | |
FHE1 extract | 10 | – | 10 | 28.0 ± 1.00 | 197.2 | – | |
FHE2 extract | 10 | – | 10 | 20.1 ± 0.92 | 141.5 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Struk, O.; Klymenko, Y.; Koshovyi, O.; Grytsyk, A.; Starchenko, G.; Jakštas, V.; Žvikas, V.; Raal, A. Filipendula vulgaris Moench Extracts: Phytochemical Research and Study of Their Cytotoxic and Antitumour Activity. Appl. Sci. 2025, 15, 6749. https://doi.org/10.3390/app15126749
Struk O, Klymenko Y, Koshovyi O, Grytsyk A, Starchenko G, Jakštas V, Žvikas V, Raal A. Filipendula vulgaris Moench Extracts: Phytochemical Research and Study of Their Cytotoxic and Antitumour Activity. Applied Sciences. 2025; 15(12):6749. https://doi.org/10.3390/app15126749
Chicago/Turabian StyleStruk, Oksana, Yurii Klymenko, Oleh Koshovyi, Andriy Grytsyk, Galyna Starchenko, Valdas Jakštas, Vaidotas Žvikas, and Ain Raal. 2025. "Filipendula vulgaris Moench Extracts: Phytochemical Research and Study of Their Cytotoxic and Antitumour Activity" Applied Sciences 15, no. 12: 6749. https://doi.org/10.3390/app15126749
APA StyleStruk, O., Klymenko, Y., Koshovyi, O., Grytsyk, A., Starchenko, G., Jakštas, V., Žvikas, V., & Raal, A. (2025). Filipendula vulgaris Moench Extracts: Phytochemical Research and Study of Their Cytotoxic and Antitumour Activity. Applied Sciences, 15(12), 6749. https://doi.org/10.3390/app15126749