Metabolic Profiling of Conyza sumatrensis (Retz.) E. Walker from Lugazi, Uganda
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Collection, Identification, and Drying
2.2. Extraction of the Powdered Leaf Samples
2.3. Antimicrobial Testing with Agar Diffusion and Microdilution Assays
2.4. HPLC-UV Fingerprints of Ethanolic and Aqueous Extracts
2.5. GC-MS Headspace Analysis
2.6. TLC Analysis
2.7. LC-MS/MS Instrument Setting
2.8. Construction of a Feature-Based Molecular Network
Import MS-data, Import spectral library, Project metadata import, Mass detection (MS1), Mass detection (MS2), ADAP chromatogram builder, Local minimum feature resolver, 13C isotope filter, Isotopic peaks finder, Join aligner, Peak finder (multithreaded), Feature list row filter, Feature list blank subtraction, Duplicate peak filter, Correlation grouping (metaCorrelate), Spectral library search, Ion identity networking.
2.9. MS2LDA Analysis
2.10. Visualization
3. Results and Discussion
3.1. The Extraction of C. sumatrensis Plants with Water and Ethanol Results in Similar Dry Weights
3.2. TLC-UV/Vis Analysis Suggests the Presence of Steroids and Other Terpenes in the Plant Extracts
3.3. HPLC-UV Fingerprinting Suggests Similarity of Aqueous and Ethanol Extracts
3.4. GC-MS Allows for Comprehensive Annotation of Volatile Compounds in Dried Leaf Samples
3.5. LC-MS/MS Phytochemical Profile of Ethanolic and Aqueous Extracts
3.6. Compound Prediction with In Silico Techniques and Database Matches
3.7. Pharmacological Investigations (Antimicrobial Activity)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aiyelaagbe, O.O.; Oguntoye, S.O.; Hamid, A.A.; Ogundare, A.M.; Ojo, D.B.; Ajao, A.; Owolabi, N.O. GC-MS Analysis, Antimicrobial and Antioxidant Activities of Extracts of the Aerial Parts of Conyza sumatrensis. J. Appl. Sci. Environ. Sci. 2016, 20, 103. [Google Scholar] [CrossRef]
- Tugume, P.; Kakudidi, E.K.; Buyinza, M.; Namaalwa, J.; Kamatenesi, M.; Mucunguzi, P.; Kalema, J. Ethnobotanical Survey of Medicinal Plant Species Used by Communities around Mabira Central Forest Reserve, Uganda. J. Ethnobiol. Ethnomed. 2016, 12, 5. [Google Scholar] [CrossRef]
- Thébaud, C.; Abbott, R.J. Characterization of Invasive Conyza Species (Asteraceae) in Europe: Quantitative Trait and Isozyme Analysis. Am. J. Bot. 1995, 82, 360–368. [Google Scholar] [CrossRef]
- Jack, I.R.; Okorosaye-Orubite, K. Phytochemical Analysis and Antimicrobial Activity of the Extract of Leaves of Fleabane (Conyza sumatrensis). J. Appl. Sci. Environ. Sci. 2008, 12, 63–65. [Google Scholar] [CrossRef]
- Qureshi, R.; Raana, S. Conyza sumatrensis (Retz.) E. H. Walker: A New Record from Pakistan. Plant Biosyst. 2014, 148, 1035–1039. [Google Scholar] [CrossRef]
- de Pinho, C.F.; Lourenço Leal, J.F.; dos Santos Souza, A.; de Oliveira, G.F.P.B.; de Oliveira, C.; Langaro, A.C.; Lopes Machado, A.F.; Christoffoleti, P.J.; Saes Zobiole, L.H. First Evidence of Multiple Resistance of Sumatran Fleabane (Conyza sumatrensis (Retz.) E. Walker) to Five- Mode-of-Action Herbicides. Aust. J. Crop Sci. 2019, 13, 1688–1697. [Google Scholar] [CrossRef]
- Kamdem Boniface, P.; Singh, M.; Kumar Maurya, A.; Pal, A. Acute and Sub-Chronic Toxicity of HPLC Fingerprinted Extract of Conyza sumatrensis (Retz.) E.H. Walker in Rodents. J. Ethnopharmacol. 2013, 149, 833–837. [Google Scholar] [CrossRef]
- Thierry Kumwimba Lenge, R.; Baysande Wa Lwengo, A.; Mbayo Kitambala, M.; Ngoy Kihuya, E.; Lumbu Simbi, J.-B. Anthelmintic Activity Assessment of Melanthera albinervia, Conyza sumatrensis and Cyperacium nathera Used in Kalemie (DR Congo) Against the Goat Gastrointestinal Parasites. Am. J. Pharmacol. Phytother. 2016, 1, 31–37. [Google Scholar] [CrossRef]
- Tabuti, J.R.S. Herbal Medicines Used in the Treatment of Malaria in Budiope County, Uganda. J. Ethnopharmacol. 2008, 116, 33–42. [Google Scholar] [CrossRef]
- Mabrouk, S.; Salah, K.B.H.; Elaissi, A.; Jlaiel, L.; Jannet, H.B.; Aouni, M.; Harzallah-Skhiri, F. Chemical Composition and Antimicrobial and Allelopathic Activity of Tunisian Conyza sumatrensis (Retz.) E. Walker Essential Oils. Chem. Biodivers. 2013, 10, 209–223. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Heuckeroth, S.; Damiani, T.; Smirnov, A.; Mokshyna, O.; Brungs, C.; Korf, A.; Smith, J.D.; Stincone, P.; Dreolin, N.; Nothias, L.F.; et al. Reproducible Mass Spectrometry Data Processing and Compound Annotation in MZmine 3. Nat. Protoc. 2024, 19, 2597–2641. [Google Scholar] [CrossRef] [PubMed]
- Nothias, L.F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; et al. Feature-Based Molecular Networking in the GNPS Analysis Environment. Nat. Methods 2020, 17, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Chambers, M.; Maclean, B.; Burke, R.; Amodei, D.; Luderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [Google Scholar] [CrossRef]
- Schmid, R.; Heuckeroth, S.; Korf, A.; Smirnov, A.; Myers, O.; Dyrlund, T.S.; Bushuiev, R.; Murray, K.J.; Hoffmann, N.; Lu, M.; et al. Integrative Analysis of Multimodal Mass Spectrometry Data in MZmine 3. Nat. Biotechnol. 2023, 41, 447–449. [Google Scholar] [CrossRef]
- Mohimani, H.; Gurevich, A.; Shlemov, A.; Mikheenko, A.; Korobeynikov, A.; Cao, L.; Shcherbin, E.; Nothias, L.F.; Dorrestein, P.C.; Pevzner, P.A. Dereplication of Microbial Metabolites through Database Search of Mass Spectra. Nat. Commun. 2018, 9, 4035. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef]
- Dührkop, K.; Nothias, L.F.; Fleischauer, M.; Reher, R.; Ludwig, M.; Hoffmann, M.A.; Petras, D.; Gerwick, W.H.; Rousu, J.; Dorrestein, P.C.; et al. Systematic Classification of Unknown Metabolites Using High-Resolution Fragmentation Mass Spectra. Nat. Biotechnol. 2021, 39, 462–471. [Google Scholar] [CrossRef]
- Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; et al. ClassyFire: Automated Chemical Classification with a Comprehensive, Computable Taxonomy. J. Cheminform. 2016, 8, 61. [Google Scholar] [CrossRef]
- Kim, H.W.; Wang, M.; Leber, C.A.; Nothias, L.F.; Reher, R.; Kang, K.B.; Van Der Hooft, J.J.J.; Dorrestein, P.C.; Gerwick, W.H.; Cottrell, G.W. NPClassifier: A Deep Neural Network-Based Structural Classification Tool for Natural Products. J. Nat. Prod. 2021, 84, 2795–2807. [Google Scholar] [CrossRef] [PubMed]
- Wandy, J.; Zhu, Y.; Van Der Hooft, J.J.J.; Daly, R.; Barrett, M.P.; Rogers, S. Ms2lda.Org: Web-Based Topic Modelling for Substructure Discovery in Mass Spectrometry. Bioinformatics 2018, 34, 317–318. [Google Scholar] [CrossRef] [PubMed]
- Senguttuvan, J.; Subramaniam, P. HPTLC Fingerprints of Various Secondary Metabolites in the Traditional Medicinal Herb Hypochaeris radicata L. J. Bot. 2016, 2016, 5429625. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Kustrin, E.; Gegechkori, V.; Morton, D.W. High-Performance Thin-Layer Chromatography Hyphenated with Microchemical and Biochemical Derivatizations in Bioactivity Profiling of Marine Species. Mar. Drugs 2019, 17, 148. [Google Scholar] [CrossRef]
- Tholl, D. Terpene Synthases and the Regulation, Diversity and Biological Roles of Terpene Metabolism. Curr. Opin. Plant Biol. 2006, 9, 297–304. [Google Scholar] [CrossRef]
- Wang, K.; Senthil-Kumar, M.; Ryu, C.M.; Kang, L.; Mysore, K.S. Phytosterols Play a Key Role in Plant Innate Immunity against Bacterial Pathogens by Regulating Nutrient Efflux into the Apoplast. Plant Physiol. 2012, 158, 1789–1802. [Google Scholar] [CrossRef]
- Boncan, D.A.T.; Tsang, S.S.K.; Li, C.; Lee, I.H.T.; Lam, H.M.; Chan, T.F.; Hui, J.H.L. Terpenes and Terpenoids in Plants: Interactions with Environment and Insects. Int. J. Mol. Sci. 2020, 21, 7382. [Google Scholar] [CrossRef]
- Lockwood, G.B. Techniques for Gas Chromatography of Volatile Terpenoids from a Range of Matrices. J. Chromatogr. A 2001, 936, 23–31. [Google Scholar] [CrossRef]
- McCune, B.; Perera, W.H.; Yu, X.; McPhail, K. Visualizing Usnic Acid with Anisaldehyde Reagent. Lichenologist 2024, 56, 193–200. [Google Scholar] [CrossRef]
- Paduch, R.; Kandefer-Szerszeń, M.; Trytek, M.; Fiedurek, J. Terpenes: Substances Useful in Human Healthcare. Arch. Immunol. Ther. Exp. 2007, 55, 315–327. [Google Scholar] [CrossRef]
- Hac-Wydro, K.; Wydro, P.; Jagoda, A.; Kapusta, J. The Study on the Interaction between Phytosterols and Phospholipids in Model Membranes. Chem. Phys. Lipids 2007, 150, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Eshawu, A.B.; Ghalsasi, V.V. Metabolomics of Natural Samples: A Tutorial Review on the Latest Technologies. J. Sep. Sci. 2024, 47, 2300588. [Google Scholar] [CrossRef]
- Urdampilleta, J.D.; Amat, A.G.; Bidau, C.J.; Koslobsky, N.K. Biosystematic and Chemosystematic Studies in Five South American Species of Conyza (Asteraceae). Bol. Soc. Argent. Bot. 2005, 40, 101–107. [Google Scholar]
- Urzúa, A.M.; Sotes, G.J. Essential Oil Composition of Aristolochia chilensis a Host of Battus polydamas. J. Chil. Chem. Soc. 2008, 53, 1372–1374. [Google Scholar] [CrossRef]
- Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. β-Caryophyllene and β-Caryophyllene Oxide—Natural Compounds of Anticancer and Analgesic Properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef]
- Bahi, A.; Al Mansouri, S.; Al Memari, E.; Al Ameri, M.; Nurulain, S.M.; Ojha, S. β-Caryophyllene, a CB2 Receptor Agonist Produces Multiple Behavioral Changes Relevant to Anxiety and Depression in Mice. Physiol. Behav. 2014, 135, 119–124. [Google Scholar] [CrossRef]
- Vieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of Innovation in Health and Disease. Chem. Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef]
- Gonzalez-Rivera, M.L.; Barragan-Galvez, J.C.; Gasca-Martínez, D.; Hidalgo-Figueroa, S.; Isiordia-Espinoza, M.; Alonso-Castro, A.J. In Vivo Neuropharmacological Effects of Neophytadiene. Molecules 2023, 28, 3457. [Google Scholar] [CrossRef]
- Dührkop, K.; Shen, H.; Meusel, M.; Rousu, J.; Böcker, S. Searching Molecular Structure Databases with Tandem Mass Spectra Using CSI:FingerID. Proc. Natl. Acad. Sci. USA 2015, 112, 12580–12585. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Ramprasath, V.R.; Jones, P.J.H. Anticancer Effects of Phytosterols. Eur. J. Clin. Nutr. 2009, 63, 813–820. [Google Scholar] [CrossRef]
- Pollak, J. Reduction of Blood Cholesterol in Man. Circulation 1953, 7, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Bagni, N.; Tassoni, A. Biosynthesis, Oxidation and Conjugation of Aliphatic Polyamines in Higher Plants. J. Amino Acids 2001, 20, 301–317. [Google Scholar] [CrossRef] [PubMed]
- De La Rosa, V.R. Poly(2-Oxazoline)s as Materials for Biomedical Applications. J. Mater. Sci. Mater. Med. 2014, 25, 1211–1225. [Google Scholar] [CrossRef] [PubMed]
- Hrdlička, L.; Šrámková, P.; Prousek, J.; Kronek, J. Environmental Toxicity Study of Poly (2-Oxazoline)s. Chem. Pap. 2018, 72, 1543–1547. [Google Scholar] [CrossRef]
- Rychter, P.; Christova, D.; Lewicka, K.; Rogacz, D. Ecotoxicological Impact of Selected Polyethylenimines toward Their Potential Application as Nitrogen Fertilizers with Prolonged Activity. Chemosphere 2019, 226, 800–808. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 1, 162750. [Google Scholar] [CrossRef]
- Dong, X.; Li, X.; Ruan, X.; Kong, L.; Wang, N.; Gao, W.; Wang, R.; Sun, Y.; Jin, M. A Deep Insight into the Structure-Solubility Relationship and Molecular Interaction Mechanism of Diverse Flavonoids in Molecular Solvents, Ionic Liquids, and Molecular Solvent/Ionic Liquid Mixtures. J. Mol. Liq. 2023, 385, 122359. [Google Scholar] [CrossRef]
- Zhang, B.; He, X.L.; Ding, Y.; Du, G.H. Gaultherin, a Natural Salicylate Derivative from Gaultheria yunnanensis: Towards a Better Non-Steroidal Anti-Inflammatory Drug. Eur. J. Pharmacol. 2006, 530, 166–171. [Google Scholar] [CrossRef]
- Melkina, O.E.; Plyuta, V.A.; Khmel, I.A.; Zavilgelsky, G.B. The Mode of Action of Cyclic Monoterpenes (−)-Limonene and (+)-α-Pinene on Bacterial Cells. Biomolecules 2021, 11, 806. [Google Scholar] [CrossRef]
Ethanolic Extracts | Aqueous Extracts | |
---|---|---|
Monoterpenes | + | - |
Triterpenes | + | + |
Steroids | + | + |
Compound Class | Compound Name | Peak Area [%] * | Retention Time [min] | RI |
---|---|---|---|---|
Monoterpenes | D-Limonene | 7.59 | 13.16 | 1034 |
α-Pinene | 2.35 | 10.09 | 931 | |
p-Cymene | 1.33 | 13.01 | 1029 | |
β-Pinene | 0.81 | 11.51 | 979 | |
γ-Terpinene | 0.58 | 14.09 | 1065 | |
Camphene | 0.14 | 10.61 | 948 | |
Sesquiterpenes | Aristolene | 13.03 | 24.56 | 1414 |
β-Caryophyllene | 5.54 | 25.56 | 1448 | |
α-Humulene | 5.44 | 25.45 | 1444 | |
α-Copaene | 3.40 | 23.40 | 1376 | |
β-Bergamotene | 2.25 | 25.31 | 1439 | |
β-Selinene | 1.72 | 26.15 | 1467 | |
α-Selinene | 1.32 | 26.29 | 1472 | |
γ-Muurolene | 1.10 | 25.85 | 1457 | |
Salvial-4(14)-en-1-one | 0.87 | 27.80 | 1523 | |
β-Cubebene | 0.85 | 24.82 | 1423 | |
β-Bourbonene | 0.78 | 23.62 | 1383 | |
δ-Cadinene | 0.77 | 26.65 | 1484 | |
cis-Calamenene | 0.60 | 26.70 | 1486 | |
β-Copaene | 0.55 | 25.99 | 1462 | |
Diterpene | Neophytadiene | 12.94 | 30.23 | 1604 |
Hydrocarbons | Norpinane | 1.67 | 23.74 | 1387 |
2,4-Dimethyl-1-decene | 0.86 | 14.66 | 1084 | |
3,3-Dimethyl-octane | 0.63 | 12.48 | 1011 | |
2,5,5-Trimethyl-heptane | 0.52 | 12.61 | 1015 | |
2,4-Dimethyl-1-heptene | 0.44 | 7.239 | 836 | |
5-Ethyl-2-methyl-octane | 0.43 | 13.99 | 1061 | |
4,6-Dimethyl-dodecane | 0.43 | 19.60 | 1249 | |
3,8-Dimethyl-undecane | 0.43 | 19.80 | 1255 | |
Dodecane | 0.42 | 18.46 | 1211 | |
Heptadecane | 0.41 | 20.58 | 1281 | |
3,7-Dimethyl-undecane | 0.35 | 15.41 | 1109 | |
5-Methyl-undecane | 0.30 | 14.17 | 1067 | |
2,6,7-Trimethyl-decane | 0.25 | 18.82 | 1223 | |
Dotriacontane | 0.25 | 26.06 | 1464 | |
Hexadecane | 0.24 | 21.88 | 1325 | |
3,7-Dimethyl-decane | 0.17 | 19.36 | 1241 | |
Lactone | (2,6,6-Trimethyl-2-hydroxycyclohexylidene)acetic acid lactone | 1.72 | 26.80 | 1489 |
Carboxylic acid | Acetic acid | 1.59 | 2.56 | 680 |
Fatty acid ester | Phytyl palmitate | 0.30 | 30.59 | 1616 |
Aldehydes | Hexanal | 6.78 | 6.11 | 798 |
Pentanal | 1.43 | 3.87 | 723 | |
Alcohols | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | 1.25 | 30.43 | 1610 |
1-Penten-3-ol | 0.79 | 3.66 | 716 | |
1-Octen-3-ol | 0.41 | 11.61 | 982 |
Cluster | Name | Database | GNPS Library URL |
---|---|---|---|
1 | Lithocholic acid-C12:1 | ECG-ACYL-ESTERS-C4-C24-LIBRARY | SpectrumID=CCMSLIB00010012466 https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00010012466 (accessed on 19 March 2025) |
Lithocholic acid-C20:3 | ECG-ACYL-ESTERS-C4-C24-LIBRARY | SpectrumID=CCMSLIB00010012642 https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00010012642 (accessed on 19 March 2025) | |
Cholic acid-C16:0 | ECG-ACYL-ESTERS-C4-C24-LIBRARY | SpectrumID=CCMSLIB00010012382 https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00010012382 (accessed on 19 March 2025) | |
2 | 10S-Hydroxypheophorbide a | GNPS-LIBRARY | SpectrumID=CCMSLIB00010128701 http://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00010128701 (accessed on 19 March 2025) |
Phaeophorbide a | GNPS-LIBRARY | SpectrumID=CCMSLIB00010128702 https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00010128702 (accessed on 19 March 2025) | |
3 | 3,5-Dicaffeoylquinic acid | GNPS-NIH-NATURALPRODUCTSLIBRARY_ROUND2_POSITIVE | SpectrumID=CCMSLIB00000847510 http://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000847510 (accessed on 19 March 2025) |
Cynarin | BMDMS-NP | SpectrumID=CCMSLIB00006366878 https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00006366878 (accessed on 19 March 2025) | |
Loganoside + caffeic acid (Compound NP-013263) | GNPS-NIH-NATURALPRODUCTSLIBRARY_ROUND2_POSITIVE | SpectrumID=CCMSLIB00000854335 http://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000854335 (accessed on 19 March 2025) | |
4 | No library hit | ||
5 | Flavone base + 3O, O-HexA-HexA | MASSBANK | SpectrumID=CCMSLIB00005741225 https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00005741225 (accessed on 19 March 2025) |
6 | Luteolin 3′,4′-diglucoside | GNPS-NIH-NATURALPRODUCTSLIBRARY_ROUND2_POSITIVE | SpectrumID=CCMSLIB00000847749 http://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000847749 (accessed on 19 March 2025) |
7 | Gaultherin | GNPS-NIH-NATURALPRODUCTSLIBRARY_ROUND2_POSITIVE | SpectrumID=CCMSLIB00000855202 https://gnps.ucsd.edu/ProteoSAFe/gnpslibraryspectrum.jsp?SpectrumID=CCMSLIB00000855202 (accessed on 19 March 2025) |
Positive Control | Ethanolic Extracts | Aqueous Extracts | |||
---|---|---|---|---|---|
⌀ IZ | ⌀ IZ | MIC | ⌀ IZ | MIC | |
E. coli | 20 mm (gent) | 7 mm | 0.313 mg/mL | - | - |
B. subtilis | 14 mm (ery) | 9 mm | >2.5 mg/mL | - | - |
P. fluorescens | 17 mm (gent) | 9 mm | 0.078 mg/mL | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seel, C.; Kahwa, I.; Ikiriza, H.; Koller, H.S.; Fitzner, H.; Billig, S.; Wiesner, C.; Kaysser, L. Metabolic Profiling of Conyza sumatrensis (Retz.) E. Walker from Lugazi, Uganda. Appl. Sci. 2025, 15, 5580. https://doi.org/10.3390/app15105580
Seel C, Kahwa I, Ikiriza H, Koller HS, Fitzner H, Billig S, Wiesner C, Kaysser L. Metabolic Profiling of Conyza sumatrensis (Retz.) E. Walker from Lugazi, Uganda. Applied Sciences. 2025; 15(10):5580. https://doi.org/10.3390/app15105580
Chicago/Turabian StyleSeel, Christina, Ivan Kahwa, Hilda Ikiriza, Hannah Sofie Koller, Helene Fitzner, Susan Billig, Claudia Wiesner, and Leonard Kaysser. 2025. "Metabolic Profiling of Conyza sumatrensis (Retz.) E. Walker from Lugazi, Uganda" Applied Sciences 15, no. 10: 5580. https://doi.org/10.3390/app15105580
APA StyleSeel, C., Kahwa, I., Ikiriza, H., Koller, H. S., Fitzner, H., Billig, S., Wiesner, C., & Kaysser, L. (2025). Metabolic Profiling of Conyza sumatrensis (Retz.) E. Walker from Lugazi, Uganda. Applied Sciences, 15(10), 5580. https://doi.org/10.3390/app15105580