Horizontal PGA Estimates for Varying Deep Geological Conditions—A Case Study of Banja Luka
Abstract
:1. Introduction
2. Area Surrounding the Case-Study Site—Seismicity and Geology
2.1. Seismicity of the Area Surrounding the Analyzed Location in Banja Luka
2.2. Geological Surroundings of the Analyzed Location in Banja Luka
2.3. Official PGA Estimates for Banja Luka
3. GMPEs for Horizontal PGA and Varying Deep Geology
4. PSHA Analysis for the Case Study Location in Banja Luka
5. Discussion and Conclusions
- Regardless of the type of deep geological formation, the effects of deep geology are comparable in scale to those of local soil and must not be overlooked.
- Only the combined effects of stiff soil sites and (deep) geological rock can result in median empirical PGA estimates comparable to the ones associated with the intensity of the 1969 Banja Luka earthquake (VIII °MCS).
- Real re-occurrence (return) periods of the earthquakes that are most contributing to seismic hazard vary with the so-called “return period”, Tr, which represents just a reciprocal value of N(a) (see Equations (6) and (10)); moreover, real return periods are significantly shorter than the corresponding return periods, Tr.
- PGA probabilistic hazard estimates are dominated by local seismicity and are less influenced by earthquakes at distances larger than around 100 km.
- The latest official (2018) hazard maps [14] provide PGA estimates that are comparable to our estimates of horizontal PGAs for Banja Luka.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ag | Horizontal PGA value from the official seismic hazard map |
EC8 | Eurocode 8 |
GMPEs | Ground Motion Prediction Equations |
PGA | Peak ground acceleration |
PSHA | Probabilistic Seismic Hazard Assessment |
s | Deep geology parameter |
S | Soil factor according to Eurocode 8 |
sL | Local soil parameter |
Tr | Return period |
VS | Average shear wave velocity |
References
- Bysiec, D.; Maleska, T. Influence of the mesh structure of geodesic domes on their seismic response in applied directions. Arch. Civ. Eng. 2023, 69, 65–78. [Google Scholar] [CrossRef]
- Araz, O. Effect of PGV/PGA ratio on seismic-induced vibrations of structures equipped with parallel tuned mass dampers considering SSI. Structures 2024, 68, 107188. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Yang, J.; Ruan, B.; Hou, Y. Simulation for non-uniform seismic motion based on frequency-wavenumber spectrum and its application in seismic analysis of long tunnels. Tunn. Undergr. Space Technol. 2025, 161, 106537. [Google Scholar] [CrossRef]
- Douglas, J. Earthquake ground motion estimation using strong-motion records: A review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth-Sci. Rev. 2003, 61, 43–104. [Google Scholar] [CrossRef]
- Trifunac, M.D. How to model amplification of strong earthquake motions by local soil and geologic site conditions. Earthq. Eng. Struct. Dyn. 1990, 19, 833–846. [Google Scholar] [CrossRef]
- Bulajić, B.Đ.; Bajić, S.; Stojnić, N. The effects of geological surroundings on earthquake-induced snow avalanche prone areas in the Kopaonik region. Cold Reg. Sci. Technol. 2018, 149, 29–45. [Google Scholar] [CrossRef]
- Bulajić, B.Ð.; Manić, M.I.; Lađinović, Đ. Effects of shallow and deep geology on seismic hazard estimates: A case study of pseudo-acceleration response spectra for the northwestern Balkans. Nat. Hazards 2013, 69, 573–588. [Google Scholar] [CrossRef]
- Lee, V.W. Influence of Local Soil and Geologic Site Conditions on Pseudo Relative Velocity Spectrum Amplitudes of Recorded Strong Motion Accelerations; Department of Civil Engineering, University of Southern California: Los Angeles, CA, USA, 1987. [Google Scholar]
- EN 1998-1:2004; Eurocode 8: Design of Structures for Earthquake Resistance. Part 1: General Rules, Seismic Actions and Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2004.
- Trifunac, M.D.; Brady, A.G. On the correlation of seismic intensity scales with the peaks of recorded strong ground motion. Bull. Seismol. Soc. Am. 1975, 65, 139–162. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Z.; Woolery, E.W.; Lyu, Y.; Carpenter, N.S.; Fang, Y.; Huang, S. Ground-motion site effect in the Beijing metropolitan area. Eng. Geol. 2020, 266, 105395. [Google Scholar] [CrossRef]
- Tavakoli, H.R.; Amiri, M.T.; Abdollahzade, G.; Janalizade, A. Site effect microzonation of Babol, Iran. Geomech. Eng. 2016, 11, 821–845. [Google Scholar] [CrossRef]
- Jakka, R.S.; Hussain, M.; Sharma, M.L. Effects on amplification of strong ground motion due to deep soils. Geomech. Eng. 2015, 8, 663–674. [Google Scholar] [CrossRef]
- EN 1998-1/NA:2018; Seismic Zone Maps and Reference Ground Accelerations Therein of B&H, BAS. Maps Accompanying National Annexes (NA). 2018. Available online: http://eurokodovi.ba/seizmika/ (accessed on 1 May 2025).
- Ademović, N.; Demir, V.; Cvijić-Amulić, S.; Málek, J.; Prachař, I.; Vackář, J. Compilation of the seismic hazard maps in Bosnia and Herzegovina. Soil Dyn. Earthq. Eng. 2021, 141, 106500, Erratum in Soil Dyn. Earthq. Eng. 2023, 164, 107633. https://doi.org/10.1016/j.soildyn.2022.107633. [Google Scholar] [CrossRef]
- Das, R.; Das, A. Limitations of Mw and M Scales: Compelling Evidence Advocating for the Das Magnitude Scale (Mwg)—A Critical Review and Analysis. Indian Geotech. J. 2025, in press. [Google Scholar] [CrossRef]
- Das, R.; Menesis, C.; Urrutia, D. Regression relationships for conversion of body wave and surface wave magnitudes toward Das magnitude scale, Mwg. Nat. Hazards 2023, 117, 365–380. [Google Scholar] [CrossRef]
- Das, R.; Sharma, M.L.; Wason, H.R.; Choudhury, D.; Gonzalez, G. A Seismic Moment Magnitude Scale. Bull. Seismol. Soc. Am. 2019, 109, 1542–1555. [Google Scholar] [CrossRef]
- Bulajić, B.Đ.; Lozančić, S.; Bajić, S.; Radu, D.; Işık, E.; Negovanović, M.; Hadzima-Nyarko, M. UHS estimates for vertical strong ground motion and varying deep geological site surroundings—A case study of the city of Banja Luka. 2025; submitted for publication. [Google Scholar]
- Bulajić, B.Đ.; Lozančić, S.; Bajić, S.; Radu, D.; Işık, E.; Negovanović, M.; Hadzima-Nyarko, M. Horizontal UHS predictions for varying deep geology conditions—A case study of the city of Banja Luka. Sustainability, 2025; submitted for publication. [Google Scholar]
- Bulajić, B.Đ.; Lozančić, S.; Bajić, S.; Starčev-Ćurčin, A.; Šešlija, M.; Kovačević, M.; Hadzima-Nyarko, M. PGA estimates for vertical ground motion and varying deep geology site surroundings—A case study of Banja Luka. Appl. Sci. 2025, 15, 6542. [Google Scholar] [CrossRef]
- Seed, H.B.; Murarka, R.; Lysmer, J.; Idriss, I.M. Relationships of maximum acceleration, maximum velocity, distance from source, and local site conditions for moderately strong earthquakes. Bull. Seismol. Soc. Am. 1976, 66, 1323–1342. [Google Scholar] [CrossRef]
- Seed, H.B.; Ugas, C.; Lysmer, J. Site-dependent spectra for earthquake-resistant design. Bull. Seismol. Soc. Am. 1976, 66, 221–243. [Google Scholar] [CrossRef]
- Trifunac, M.; Lee, V.; Živčić, M.; Manić, M. On the correlation of Mercalli-Cancani-Sieberg intensity scale in Yugoslavia with the peaks of recorded strong earthquake ground motion. Eur. Earthq. Eng. 1991, 5, 27–33. [Google Scholar]
- Lee, V.; Trifunac, M. Empirical scaling of Fourier amplitude spectra in former Yugoslavia. Eur. Earthq. Eng. 1993, 7, 47–61. [Google Scholar]
- Lee, V.W.; Manić, M.I. Empirical scaling of response spectra in former Yugoslavia. In Proceedings of the 10th European Conference on Earthquake Engineering, Vienna, Austria, 28 August–2 September 1994; pp. 2567–2572. [Google Scholar]
- Morales-Esteban, A.; Martínez-Álvarez, F.; Scitovski, S.; Scitovski, R. Mahalanobis clustering for the determination of incidence-magnitude seismic parameters for the Iberian Peninsula and the Republic of Croatia. Comput. Geosci. 2021, 156, 104873. [Google Scholar] [CrossRef]
- Morales-Esteban, A.; Martínez-Álvarez, F.; Scitovski, S.; Scitovski, R. A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning. Comput. Geosci. 2014, 73, 132–141. [Google Scholar] [CrossRef]
- Skoko, D.; Prelogovič, E.; Alinovič, B. Geological structure of the Earth’s crust above the Moho discontinuity in Yugoslavia. Geophys. J. Int. 1987, 89, 379–382. [Google Scholar] [CrossRef]
- Bielik, M.; Makarenko, I.; Csicsay, K.; Legostaeva, O.; Starostenko, V.; Savchenko, A.; Šimonová, B.; Dérerová, J.; Fojtíková, L.; Pašteka, R. The refined Moho depth map in the Carpathian-Pannonian region. Contrib. Geophys. Geod. 2018, 48, 179–190. [Google Scholar]
- Stojković, M.B. Seismic microzoning of the city of Banja Luka area. In Proceedings of the International conference on earthquake engineering, Banja Luka, Bosnia and Herzegovina, 26–28 October 2009; pp. 345–357. [Google Scholar]
- Trkulja, D. Earthquakes in Banja Luka. In Proceedings of the International Conference on Earthquake Engineering, Banja Luka, Bosnia and Herzegovina, 26–28 October 2009; pp. 43–57. [Google Scholar]
- Trkulja, D. Earthquakes of Banja Luka region; Institute of Construction Banja Luka—ZIBL: Banja Luka, Bosnia and Herzegovina, 2009. [Google Scholar]
- Earthquake Catalogue for All Earthquakes with Mw ≥ 3.0 in the Period Between 1900 and April 2025 for the Geographic Region Between 41° N and 47° N, and 13° E and 23° E; USGS: Reston, VA, USA, 2025.
- Arsovski, M.; Bouwkamp, J.; Cismigiu, A.; Izumi, M.; Napetvaridze, S.G.; Petrovski, J.; Sonobe, Y.; Stojković, M.; Velkov, M. The Banja Luka Earthquakes of 26 and 27 October 1969; UNESCO: Paris, France, 1970. [Google Scholar]
- EMSC-CSEM. M 5.4—CROATIA—2020-03-22 05:24:02 UTC. Available online: https://www.emsc-csem.org/Earthquake/earthquake.php?id=840695#scientific (accessed on 17 April 2025).
- Ganas, A.; Elias, P.; Valkaniotis, S.; Tsironi, V.; Karasante, I.; Briole, P. Petrinja Earthquake Moved Crust 10 Feet. Available online: https://temblor.net/earthquake-insights/petrinja-earthquake-moved-crust-10-feet-12410/ (accessed on 17 April 2025).
- Pavić, G.; Bulajić, B.; Hadzima-Nyarko, M. The Vulnerability of Buildings from the Osijek Database. Front. Built Environ. 2019, 5, 66. [Google Scholar] [CrossRef]
- Pavić, G.; Hadzima-Nyarko, M.; Bulajić, B. A Contribution to a UHS-Based Seismic Risk Assessment in Croatia—A Case Study for the City of Osijek. Sustainability 2020, 12, 1796. [Google Scholar] [CrossRef]
- Pavić, G.; Hadzima-Nyarko, M.; Bulajić, B.; Jurković, Ž. Development of Seismic Vulnerability and Exposure Models—A Case Study of Croatia. Sustainability 2020, 12, 973. [Google Scholar] [CrossRef]
- Blagojević, N.; Brzev, S.; Petrović, M.; Borozan, J.; Bulajić, B.; Marinković, M.; Hadzima-Nyarko, M.; Koković, V.; Stojadinović, B. Residential building stock in Serbia: Classification and vulnerability for seismic risk studies. Bull. Earthq. Eng. 2023, 21, 4315–4383. [Google Scholar] [CrossRef]
- Işık, E.; Hadzima-Nyarko, M.; Bilgin, H.; Ademović, N.; Büyüksaraç, A.; Harirchian, E.; Bulajić, B.; Özmen, H.B.; Aghakouchaki Hosseini, S.E. A Comparative Study of the Effects of Earthquakes in Different Countries on Target Displacement in Mid-Rise Regular RC Structures. Appl. Sci. 2022, 12, 12495. [Google Scholar] [CrossRef]
- SFRY. Temporary Technical Regulations for Construction in Seismic Areas; 39/64; Official Gazette of SFRY: Belgrade, Serbia, 1964. [Google Scholar]
- Inel, M.; Ozmen, H.B.; Bilgin, H. Re-evaluation of building damage during recent earthquakes in Turkey. Eng. Struct. 2008, 30, 412–427. [Google Scholar] [CrossRef]
- Kaplan, H.; Bilgin, H.; Yilmaz, S.; Binici, H.; Öztas, A. Structural damages of L’Aquila (Italy) earthquake. Nat. Hazards Earth Syst. Sci. 2010, 10, 499–507. [Google Scholar] [CrossRef]
- Bilgin, H.; Huta, E. Earthquake performance assessment of low and mid-rise buildings: Emphasis on URM buildings in Albania. Earthq. Struct. 2018, 14, 599–614. [Google Scholar] [CrossRef]
- Bilgin, H.; Korini, O. Seismic capacity evaluation of unreinforced masonry residential buildings in Albania. Nat. Hazards Earth Syst. Sci. 2012, 12, 3753–3764. [Google Scholar] [CrossRef]
- Işık, E.; Kutanis, M.; Bal, İ.E. Displacement of the Buildings According to Site-Specific Earthquake Spectra. Period. Polytech. Civ. Eng. 2016, 60, 37–43. [Google Scholar] [CrossRef]
- Timkó, M.; Kovács, I.; Wéber, Z. 3D P-wave velocity image beneath the Pannonian Basin using traveltime tomography. Acta Geod. Et Geophys. 2019, 54, 373–386. [Google Scholar] [CrossRef]
- Balázs, A.; Matenco, L.; Magyar, I.; Horváth, F.; Cloetingh, S. The link between tectonics and sedimentation in back-arc basins: New genetic constraints from the analysis of the Pannonian Basin. Tectonics 2016, 35, 1526–1559. [Google Scholar] [CrossRef]
- Mojičević, M.; Vilovski, S.; Tomić, B. Basic Geological Map–Banja Luka, L33-119; Federal Geological Survey: Belgrade, Serbia, 1976. [Google Scholar]
- Lee, V.W.; Manić, M.I.; Bulajić, B.Ð.; Herak, D.; Herak, M.; Trifunac, M.D. Microzonation of Banja Luka for performance-based earthquake-resistant design. Soil Dyn. Earthq. Eng. 2015, 78, 71–88. [Google Scholar] [CrossRef]
- Manić, M.I.; Bulajić, B.Ð.; Trifunac, M.D. A note on peak accelerations computed from sliding of objects during the 1969 Banja Luka earthquakes in former Yugoslavia. Soil Dyn. Earthq. Eng. 2015, 77, 164–176. [Google Scholar] [CrossRef]
- SFRY. Book of Rules on Technical Norms for Construction of High-Rise Buildings in Seismic Regions; 31/81; Official Gazette of SFRY: Belgrade, Serbia, 1981. [Google Scholar]
- SFRY. Book of Rules on Technical Norms for Construction of High-Rise Buildings in Seismic Regions; 31/81, 49/82; Official Gazette of SFRY: Belgrade, Serbia, 1982. [Google Scholar]
- SFRY. Book of Rules on Technical Norms for Construction of High-Rise Buildings in Seismic Regions; 31/81, 49/82, 29/83, 21/88, 52/90; Official Gazette of SFRY: Belgrade, Serbia, 1990. [Google Scholar]
- Bulajić, B.Đ.; Hadzima-Nyarko, M.; Pavić, G. Vertical to Horizontal UHS Ratios for Low to Medium Seismicity Regions with Deep Soil atop Deep Geological Sediments—An Example of the City of Osijek, Croatia. Appl. Sci. 2021, 11, 6782. [Google Scholar] [CrossRef]
- Bulajić, B.Đ.; Hadzima-Nyarko, M.; Pavić, G. Horizontal UHS Amplitudes for Regions with Deep Soil Atop Deep Geological Sediments—An Example of Osijek, Croatia. Appl. Sci. 2021, 11, 6296. [Google Scholar] [CrossRef]
- Bulajic, B.Đ.; Hadzima-Nyarko, M.; Pavic, G. PGA estimates for deep soils atop deep geological sediments -An example of Osijek, Croatia. Geomech. Eng. 2022, 30, 233–246. [Google Scholar] [CrossRef]
- Bulajić, B.Đ.; Pavić, G.; Hadzima-Nyarko, M. PGA vertical estimates for deep soils and deep geological sediments—A case study of Osijek (Croatia). Comput. Geosci. 2022, 158, 104985. [Google Scholar] [CrossRef]
- Lee, V.W.; Trifunac, M.D.; Bulajić, B.Đ. Seismic microzoning in Novi Sad, Serbia—A case study in a low-seismicity region that is exposed to large and distant earthquakes. J. Seismol. 2023, 27, 979–997. [Google Scholar] [CrossRef]
- Lee, V.W.; Trifunac, M.D.; Bulajić, B.Đ. Seismic hazard mapping for peak ground velocity: Microzonation of Novi Sad, Serbia—A case study in a low-seismicity region exposed to large and distant earthquakes. J. Seismol. 2024, 29, 85–105. [Google Scholar] [CrossRef]
- Lee, V.W.; Trifunac, M.D.; Bulajić, B.Đ.; Manić, M.I.; Herak, D.; Herak, M. Seismic microzoning of Belgrade. Soil Dyn. Earthq. Eng. 2017, 97, 395–412. [Google Scholar] [CrossRef]
- Lee, V.W.; Trifunac, M.D.; Bulajić, B.D.; Manić, M.I.; Herak, D.; Herak, M.; Dimov, G. Seismic microzoning in Skopje, Macedonia. Soil Dyn. Earthq. Eng. 2017, 98, 166–182. [Google Scholar] [CrossRef]
- Lee, V.W.; Trifunac, M.D.; Bulajić, B.Đ.; Manić, M.I.; Herak, D.; Herak, M.; Dimov, G.; Gičev, V. Seismic microzoning of Štip in Macedonia. Soil Dyn. Earthq. Eng. 2017, 98, 54–66. [Google Scholar] [CrossRef]
- Lee, V.; Trifunac, M.; Herak, M.; Živčič, M.; Herak, D. MLSM computed from strong motion accelerograms recorded in Yugoslavia. Earthq. Eng. Struct. Dyn. 1990, 19, 1167–1179. [Google Scholar] [CrossRef]
- Jordanovski, L.R.; Lee, V.W.; Manić, M.I.; Olumčeva, T.; Sinadnovski, C.; Todorovska, M.I.; Trifunac, M.D. Strong Earthquake Ground Motion Data in EQINFOS: Yugoslavia. Part I; Department of Civil Engineering, University of Southern California: Los Angeles, CA, USA, 1987. [Google Scholar]
- Datta, T.K. Seismic Analysis of Structures; John Wiley & Sons (Asia) Pte Ltd.: Singapore, 2010; p. 464. [Google Scholar]
- Herak, M. Conversion between the local magnitude (ML) and the moment magnitude (Mw) for earthquakes in the Croatian Earthquake Catalogue. Geofizika 2020, 37, 197–211. [Google Scholar] [CrossRef]
- Scordilis, E.M. Empirical Global Relations Converting MS and mb to Moment Magnitude. J. Seismol. 2006, 10, 225–236. [Google Scholar] [CrossRef]
- Ambraseys, N.; Douglas, J.; Margaris, B.; Sigbjörnsson, R.; Berge-Thierry, C.; Suhadolc, P.; Costa, G.; Smit, P. Dissemination of European strong-motion data. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Ambraseys, N.; Douglas, J.; Margaris, B.; Sigbjörnsson, R.; Smit, P.; Suhadolc, P. Internet site for European strong motion data. In Proceedings of the 12th European Conference on Earthquake Engineering, London, UK, 9–13 September 2002. [Google Scholar]
- Bilgin, H.; Hysenlliu, M. Comparison of near and far-fault ground motion effects on low and mid-rise masonry buildings. J. Build. Eng. 2020, 30, 101248. [Google Scholar] [CrossRef]
- Sönmezer, Y.; Celiker, M. Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect. Geomech. Eng. 2020, 20, 131–146. [Google Scholar]
- Javadi, A.A.; Rezania, M. Applications of artificial intelligence and data mining techniques in soil modeling. Geomech. Eng. 2009, 1, 53–74. [Google Scholar] [CrossRef]
- Onturk, K.; Bol, E.; Ozocak, A.; Edil, T.B. Effect of grain size on the shear strength of unsaturated silty soils. Geomech. Eng. 2020, 23, 301–311. [Google Scholar]
- Saffarian Mohammad, A.; Bagheripour Mohammad, H. Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part II: Nonlinear HFTD and numerical examples. Geomech. Eng. 2014, 6, 531–544. [Google Scholar] [CrossRef]
- Saffarian Mohammad, A.; Bagheripour Mohammad, H. Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part Ι: Basic formulation and linear HFTD. Geomech. Eng. 2014, 6, 517–530. [Google Scholar] [CrossRef]
- Sahin, A. Dynamic simulation models for seismic behavior of soil systems—Part II: Solution algorithm and numerical applications. Geomech. Eng. 2015, 9, 169–193. [Google Scholar] [CrossRef]
- Sahin, A. Dynamic simulation models for seismic behavior of soil systems—Part I: Block diagrams. Geomech. Eng. 2015, 9, 145–167. [Google Scholar] [CrossRef]
- Sonmezer Yetis, B.; Bas, S.; Isik Nihat, S.; Akbas Sami, O. Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale. Geomech. Eng. 2018, 16, 435–448. [Google Scholar] [CrossRef]
- Aziz, M.; Ahmed, T. Spatial interpolation of geotechnical data: A case study for Multan City, Pakistan. Geomech. Eng. 2017, 13, 475–488. [Google Scholar] [CrossRef]
- Giardini, D.; Woessner, J.; Danciu, L.; Crowley, H.; Cotton, F.; Grünthal, G.; Pinho, R.; Valensise, L.; Consortium, S. European Seismic Hazard Map for Peak Ground Acceleration, 10% Exceedance Probabilities in 50 years. Swiss Seismol. Serv. 2013. [Google Scholar]
- Woessner, J.; Laurentiu, D.; Giardini, D.; Crowley, H.; Cotton, F.; Grünthal, G.; Valensise, G.; Arvidsson, R.; Basili, R.; Demircioglu, M.B.; et al. The 2013 European Seismic Hazard Model: Key components and results. Bull. Earthq. Eng. 2015, 13, 3553–3596. [Google Scholar] [CrossRef]
- Pagani, M.; Garcia-Pelaez, J.; Gee, R.; Johnson, K.; Poggi, V.; Styron, R.; Weatherill, G.; Simionato, M.; Viganò, D.; Danciu, L.; et al. Global Earthquake Model (GEM) Seismic Hazard Map (Version 2018.1–December 2018); GEM Foundation: Pavia, Italy, 2018. [Google Scholar]
- Cornell, C.A. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 1968, 58, 1583–1606. [Google Scholar] [CrossRef]
- McGuire, R.K. FORTRAN Computer Program for Seismic Risk Analysis; Series number 76-67; US Geological Survey: Reston, VA, USA, 1976. [Google Scholar]
- Chioccarelli, E.; Cito, P.; Iervolino, I.; Giorgio, M. REASSESS V2.0: Software for single- and multi-site probabilistic seismic hazard analysis. Bull. Earthq. Eng. 2019, 17, 1769–1793. [Google Scholar] [CrossRef]
- Amaro-Mellado, J.L.; Melgar-García, L.; Rubio-Escudero, C.; Gutiérrez-Avilés, D. Generating a seismogenic source zone model for the Pyrenees: A GIS-assisted triclustering approach. Comput. Geosci. 2021, 150, 104736. [Google Scholar] [CrossRef]
- Amaro-Mellado, J.L.; Morales-Esteban, A.; Asencio-Cortés, G.; Martínez-Álvarez, F. Comparing seismic parameters for different source zone models in the Iberian Peninsula. Tectonophysics 2017, 717, 449–472. [Google Scholar] [CrossRef]
- Amaro-Mellado, J.L.; Tien Bui, D. GIS-Based Mapping of Seismic Parameters for the Pyrenees. ISPRS Int. J. Geo-Inf. 2020, 9, 452. [Google Scholar] [CrossRef]
- Stucchi, M.; Rovida, A.; Gomez Capera, A.A.; Alexandre, P.; Camelbeeck, T.; Demircioglu, M.B.; Gasperini, P.; Kouskouna, V.; Musson, R.M.W.; Radulian, M.; et al. The SHARE European Earthquake Catalogue (SHEEC) 1000–1899. J. Seismol. 2013, 17, 523–544. [Google Scholar] [CrossRef]
- Grünthal, G.; Wahlström, R.; Stromeyer, D. The SHARE European Earthquake Catalogue (SHEEC) for the time period 1900–2006 and its comparison to the European-Mediterranean Earthquake Catalogue (EMEC). J. Seismol. 2013, 17, 1339–1344. [Google Scholar] [CrossRef]
- Grünthal, G.; Wahlström, R. The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J. Seismol. 2012, 16, 535–570. [Google Scholar] [CrossRef]
- Lee, V.W.; Trifunac, M.D.; Bulajić, B.; Manić, M. A preliminary empirical model for frequency-dependent attenuation of Fourier amplitude spectra In Serbia from the Vrancea earthquakes. Soil Dyn. Earthq. Eng. 2016, 83, 167–179. [Google Scholar] [CrossRef]
- Lee, V.W.; Trifunac, M.D.; Bulajić, B.Đ.; Manić, M.I. Preliminary empirical scaling of pseudo relative velocity spectra in Serbia from the Vrancea earthquakes. Soil Dyn. Earthq. Eng. 2016, 86, 41–54. [Google Scholar] [CrossRef]
- Ang, A.H.; Tang, W.H. Probability Concepts in Engineering Planning: Emphasis on Applications to Civil and Environmental Engineering; John Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Bazzurro, P.; Allin Cornell, C. Disaggregation of seismic hazard. Bull. Seismol. Soc. Am. 1999, 89, 501–520. [Google Scholar] [CrossRef]
- McGuire, R.K. Probabilistic seismic hazard analysis and design earthquakes: Closing the loop. Bull. Seismol. Soc. Am. 1995, 85, 1275–1284. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 1944, 34, 185–188. [Google Scholar] [CrossRef]
Eurocode 8 [9] Ground Types | Type 1 Spectrum: “Most Contributing” Earthquakes with MS > 5.5 | Type 2 Spectrum: “Most Contributing” Earthquakes with MS ≤ 5.5 |
---|---|---|
Ground type A, VS,30 > 800 m/s “Rock, at the surface up to 5 m of weaker material.” | ag | ag |
Ground type B, VS,30 = 360–800 m/s “At least several tens of meters thick deposits. Very dense sand, gravel, or very stiff clay.” | ag × 1.2 | ag × 1.35 |
Ground type C, VS,30 = 180–360 m/s “Deep deposits, several tens of meters up to hundreds of meters thick. Dense or medium dense sand, gravel, or stiff clay.” | ag × 1.15 | ag × 1.5 |
Ground type D, VS,30 < 180 m/s “Deposits. Loose-to-medium cohesionless soil, or predominantly soft-to-firm cohesive soil.” | ag × 1.35 | ag × 1.8 |
Ground type E “Alluvium layer at the surface, between 5 and 20 m thick, above stiffer material. VS,30 < 360 m/s.” | ag × 1.4 | ag × 1.6 |
Map | I [°MCS] | PGA |
---|---|---|
1950 | VII | 0.081–0.102 g |
1982 | VIII | 0.159–0.199 g |
1990—50 years | VII | 0.081–0.102 g |
1990—100 years | VIII | 0.159–0.199 g |
1990—200 years | IX | 0.309–0.388 g |
1990—500 years | IX | 0.309–0.388 g |
1990—1000 years | IX | 0.309–0.388 g |
1990—10,000 years | IX | 0.309–0.388 g |
2018—95 years | VI–VII | 0.080 g |
2018—475 years | VIII | 0.170 g |
Local Soil Parameters | Local Soil Categorical Variables | Deep Geology Parameters | Deep Geology Categorical Variables |
---|---|---|---|
“Rock” soil sites: sL = 0 | SL1 = SL2 = 0 | Geological rock: s = 2 | SG1 = SG2 = 0 |
Stiff soil sites: sL = 1 | SL1 = 1 and SL2 = 0 | Intermediate (or complex) sites: s = 1 | SG1 = 1 and SG2 = 0 |
Deep soil sites: sL = 2 | SL1 = 0 and SL2 = 1 | (Deep geological) sediments: s = 0 | SG1 = 0 and SG2 = 1 |
P(pga) | p(pga) [%] in t = 10 years | p(pga) [%] in t = 50 years | [years] |
---|---|---|---|
0.020000 | 18.29 | 63.58 | 50.00 |
0.010481 | 10.00 | 40.95 | 95.41 |
0.010000 | 9.56 | 39.50 | 100 |
0.005000 | 4.89 | 22.17 | 200.00 |
0.002105 | 2.09 | 10.00 | 475.06 |
0.002000 | 1.98 | 9.52 | 500 |
0.001025 | 1.02 | 5.00 | 975.29 |
0.001000 | 1.00 | 4.88 | 1000.00 |
0.000404 | 0.40 | 2.00 | 2475.42 |
0.000100 | 0.10 | 0.50 | 10,000.00 |
Stiff Soil sL = 1/ “Rock” Soil sL = 0 | “Rock” Soil sL = 0/ Stiff Soil sL = 1 | Deep Soil sL = 2/ “Rock” Soil sL = 0 | “Rock” Soil sL = 0/ Deep Soil sL = 2 | Intermed. Sites: s = 1/ Geological Rock: s = 2 | Geological Rock: s = 2/ Intermed. Sites, s = 1 | Deep Geol. Sediments: s = 0/ Geological Rock: s = 2 | Geological Rock: s = 2/ Deep Geol. Sediments: s = 0 | |
---|---|---|---|---|---|---|---|---|
GMPE | 10c4 | 1/10c4 | 10c5 | 1/10c5 | 10c6 | 1/10c6 | 10c7 | 1/10c7 |
Equation (3) | 1.50 | 0.66 | 0.80 | 1.25 | 0.71 | 1.40 | 0.78 | 1.28 |
Equation (4), R < 30 km | 1.34 | 0.75 | 0.80 | 1.25 | 0.60 | 1.67 | 0.81 | 1.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulajić, B.; Lozančić, S.; Bajić, S.; Starčev-Ćurčin, A.; Šešlija, M.; Kovačević, M.; Hadzima-Nyarko, M. Horizontal PGA Estimates for Varying Deep Geological Conditions—A Case Study of Banja Luka. Appl. Sci. 2025, 15, 6712. https://doi.org/10.3390/app15126712
Bulajić B, Lozančić S, Bajić S, Starčev-Ćurčin A, Šešlija M, Kovačević M, Hadzima-Nyarko M. Horizontal PGA Estimates for Varying Deep Geological Conditions—A Case Study of Banja Luka. Applied Sciences. 2025; 15(12):6712. https://doi.org/10.3390/app15126712
Chicago/Turabian StyleBulajić, Borko, Silva Lozančić, Senka Bajić, Anka Starčev-Ćurčin, Miloš Šešlija, Miljan Kovačević, and Marijana Hadzima-Nyarko. 2025. "Horizontal PGA Estimates for Varying Deep Geological Conditions—A Case Study of Banja Luka" Applied Sciences 15, no. 12: 6712. https://doi.org/10.3390/app15126712
APA StyleBulajić, B., Lozančić, S., Bajić, S., Starčev-Ćurčin, A., Šešlija, M., Kovačević, M., & Hadzima-Nyarko, M. (2025). Horizontal PGA Estimates for Varying Deep Geological Conditions—A Case Study of Banja Luka. Applied Sciences, 15(12), 6712. https://doi.org/10.3390/app15126712