An Assessment of the Impact of Gypsum Deposit Development on Changes in the Radiation Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Description and Preparation
2.3. Analytical Procedures
2.4. Area Measurements of Ambient Dose Equivalent Rate (ADER) of Gamma Radiation and Measurements of Radon Flux Density (RFD) in Soil Air
3. Results and Discussions
3.1. Water
3.2. Bottom Sediments
3.2.1. Activity Concentrations of Radionuclides in River Sediments
3.2.2. The Ratio of Radionuclide Activity, the Concentrations of Chemical Elements and the Main Parameters Characterizing Bottom Sediments
3.3. Soils, Quaternary Deposits and Gypsum
3.3.1. Activity Concentrations of Radionuclides in Soils, Overburden Deposits and Gypsum
3.3.2. Ambient Dose Equivalent Rate (ADER) of Gamma Radiation
3.3.3. Radon Flux Density (RFD) from Soil Air
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Higueras, P.L.; Sáez-Martínez, F.J.; Reyes-Bozo, L. Characterization and remediation of contamination: The influences of mining and other human activities. Environ. Sci. Pollut. Res. 2016, 23, 5997–6001. [Google Scholar] [CrossRef] [PubMed]
- Faanu, A.; Tettey-Larbi, L.; Akuo-ko, E.O.; Gyekye, P.K.; Kpeglo, D.O.; Lawluvi, H.; Kansaana, C.; Adjei-Kyereme, S.; Efa, A.O.; Tóth-Bodrogi, E.; et al. Radiological landscape of natural resources and mining: Unveiling the environmental impact of naturally occurring radioactive materials in Ghana’s mining areas. Heliyon 2024, 10, e24959. [Google Scholar] [CrossRef]
- Goryachkin, S.V.; Tushkina, T.Y.; Malkov, V.N.; Gurkalo, E.I.; Puchnina, L.V.; Semikolennykh, A.A.; Spiridonova, I.A.; Shavrina, E.V. Genesis and geochemistry of taiga sparse forests of gypsum-karst landscapes of European Russia. Bull. Russ. Acad. Sci. Geogr. Ser. 2004, 2, 100–110. Available online: https://elibrary.ru/item.asp?id=17636385 (accessed on 14 April 2025). (In Russian).
- Tuyukina, T.Y. Geochemical studies of northern taiga (gypsum) karst ecosystems and their high vulnerability to natural and anthropogenic hazards. Environ. Geol. 2009, 58, 269–274. [Google Scholar] [CrossRef]
- Goryachkin, S.V.; Spiridonova, I.A.; Sedov, S.N.; Targulian, V.O. Nothern taiga soils on hard gypsum: Morphology, properties, genesis. Eurasian Soil Sci. 2003, 36, 691–703. Available online: https://elibrary.ru/item.asp?id=17289076&ysclid=mbc15d60wq54260951 (accessed on 14 April 2025).
- Bilașco, Ș.; Trif, S.; Petrea, D.; Cocean, P.; Ioan, F.; Sanda, R.; Vescan, I. Contributions to the Morphogenesis, Inventory, and Valorization of a Unique Speleological Geomorphosite from Miresii Cave—The Large Key of Dâmbovița, the Corridor Bran—Dragoslave (Romania). Heritage 2024, 7, 5814–5838. [Google Scholar] [CrossRef]
- Karst region of Pinega, Russia. Guide to the International Conference Dedicated to the 300th Anniversary of M.V. Lomonosov’s birth “Northern Karst Systems in Our Changing Environment” September 5–10, 2011 Golubino-Pinega, Arkhangelsk region, Russia. 2011. Available online: http://arhiv.rgo-speleo.ru/rgo/conf/sevkarst2011/files/guide_book_rus_rev2.pdf (accessed on 26 April 2025).
- Malov, A.I.; Nakhod, V.A.; Druzhinin, S.V. Impact of gypsum mining on the environment in the northern taiga. Environ. Earth Sci. 2025, 84, 73. [Google Scholar] [CrossRef]
- Bezuidenhout, J.; le Roux, R. Investigating the relationships between radon and the geology of the Sterkfontein cave. J. Appl. Geophys. 2024, 230, 105522. [Google Scholar] [CrossRef]
- Ogunjo, S.; Martín-Luis, M.C.; González, M.E.M.; Pérez, M.L.; Salazar-Carballo, P.A. Nonlinear and multifractal detrended fluctuation analysis of radon time series in a volcanic touristic cave. J. Environ. Radioact. 2024, 280, 107550. [Google Scholar] [CrossRef]
- Perrier, F.; Bourges, F.; Girault, F.; Lartiges, B.; Bonnet, S.; Genty, D.; Denele, V.; Regard, V.; Régnier, Ĕ.; Bouquerel, H.; et al. Radon-222 signatures of atmospheric dynamics in the Pech Merle Painted Cave, France: Consequences form an agement and conservation. Sci. Total Environ. 2024, 949, 174648. [Google Scholar] [CrossRef]
- Miklyaev, P.S.; Petrova, T.B.; Klimshin, A.V.; Maksimovich, N.G.; Shchitov, D.V.; Sidyakin, P.A.; Krasikov, A.V.; Tsebro, D.N.; Meshcheriakova, O.Y. Comparative studies on radon seasonal variations in various undeground environments: Cases of abandoned Beshtaugorskiy uranium mine Kungur Ice Cave. J. Environ. Radioact. 2024, 272, 107346. [Google Scholar] [CrossRef] [PubMed]
- Gunn, J.; Fletcher, S.; Hyland, R. Health implications of radon in British caves. Environ. Geochem. Health 1991, 13, 149. [Google Scholar] [CrossRef]
- Papastefanou, C.; Manolopoulou, M.; Stoulos, S.; Ioannidou, A.; Gerasopoulos, E. Radon concentrations and absorbed dose measurements in a Pleistocenic cave. J. Radioanal. Nucl. Chem. 2003, 258, 205–208. [Google Scholar] [CrossRef]
- Alvarez-Gallego, M.; Garcia-Anton, E.; Fernandez-Cortes, A.; Cuezva, S.; Sanchez-Moral, S. High radon levels in subterranean environments: Monitoring and technical criteria to ensure human safety (case of Castañar cave, Spain). J. Environ. Radioact. 2015, 145, 19–29. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, W.; Zeng, G.; Wang, Y.; Yang, H.; Wang, M.; Zhang, L.; Cai, X.; Chen, J.; Cheng, F.; et al. High 222Rn concentrations and dynamics in Shawan Cave, southwest China. J. Environ. Radioact. 2019, 199–200, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Kansaana, C.; Tettey-Larbi, L.; Faanu, A.; Sam, F.; Akrobortu, E.; Akomaning-Adofo, E.; Ampene, A.A.; Osei, R.K.; Annan, R.A.T.; Tóth-Bodrogi, E.; et al. Environmental Radiological Impact and Risk Assessment of Natural Radioactivity at the Heap Leach Facility of Tarkwa Goldmine, Ghana: Radiotoxicity and Public Exposure. Environments 2024, 11, 168. [Google Scholar] [CrossRef]
- Burger, A.S.; Lichtscheidl, I. Stable and radioactive cesium: A review about distribution in the environment, uptake and translocation in plants, plant reactions and plants’ potential for bioremediation. Sci. Total Environ. 2018, 618, 1459–1485. [Google Scholar] [CrossRef] [PubMed]
- Matishov, G.G.; Kasatkina, N.E.; Usyagina, I.S. Technogenic Radioactivity of Waters in the Central Arctic Basin and Adjacent Water Areas. Dokl. Earth Sci. 2019, 485, 288–292. [Google Scholar] [CrossRef]
- Yakovlev, E.Y.; Zykova, E.N.; Zykov, S.B.; Malkov, A.V.; Bazhenov, A.V. Heavy metals and radionuclides distribution and environmental risk assessment in soils of the Severodvinsk industrial district, NW Russia. Environ. Earth. Sci. 2020, 79, 218. [Google Scholar] [CrossRef]
- Dyck, I.V.; Vanhoudt, N.; Vives i Batlle, J.; Vargas, C.S.; Horemans, N.; Van Gompel, A.; Nauts, R.; Wijgaerts, A.; Marchal, W.; Claesen, J.; et al. Differentiation between chemo- and radiotoxicity of 137Cs and 60Co on Lemna minor. J. Environ. Radioact. 2024, 272, 107351. [Google Scholar] [CrossRef]
- Tsabaris, C.; Kousidou, G.; Androulakaki, E.G.; Patiris, D.L.; Pappa, F.K.; Marmara, D.; Krasakopoulou, E. Reconstruction of radioactivity and microplastic particles studying sedimentation/accumulation in the deep Lemnos basin, North Aegean Sea, Greece. J. Soils Sediments 2024, 24, 3938–3952. [Google Scholar] [CrossRef]
- Morais, J.; de Oliveira, R.I.; da Silva Barros, J.; Oda-Souza, M.; Carlos, F.S.; de Oliveira Camargo, F.A.; da Silva, J.D.; Morais, P.G.; Cardoso, K.M.; dos Santos Bastos, T.R.; et al. Risks of soil chemical degradation from atmospheric gypsum plumes around selected extraction and processing enterprises, Northeast Brazil. Sci. Total Environ. 2024, 946, 174494. [Google Scholar] [CrossRef] [PubMed]
- Malkov, V.N.; Gurkalo, E.I.; Monakhova, L.B.; Shavrina, E.V.; Frants, N.A. Karst and Caves of Pinezhye; EKOS: Moscow, Russia, 2001; 208p, Available online: https://rusneb.ru/catalog/002072_000044_ARONB-RU_Архангельская+ОНБ_DOLIB_26.823.122.2%282Р_К+269-725568/?ysclid=mbc1fuem1z445253465 (accessed on 14 April 2025). (In Russian)
- Shishov, L.L.; Tonkonogov, V.D.; Lebedeva, I.I.; Gerasimova, M.I. Classification and Diagnostics of Soils in Russia; Oykumena: Smolensk, Russia, 2004; 342p, Available online: https://djvu.online/file/wpDPIuWRQREIf?ysclid=mbc1kkec8z138779674 (accessed on 14 April 2025). (In Russian)
- ISO/IEC 17025-2019General Requirements for the Competence of Testing and Calibration Laboratories; Standartinform: Moscow, Russia, 2021; 34p. Available online: https://uvgsch.organizations.mchs.gov.ru/uploads/resource/2024-02-28/normativnaya-dokumentaciya_17091092051523956737.pdf (accessed on 18 April 2025). (In Russian)
- Malov, A.I.; Zykov, S.V. Study of the mobilization of uranium isotopes in a sandstone aquifer in combination with groundwater data. Water 2020, 12, 112. [Google Scholar] [CrossRef]
- Yakovlev, E.Y.; Puchkov, A.V.; Druzhinin, S.V. Evaluation of current natural and anthropogenic radionuclide activity in coastal area bottom sediments of the Barents Sea (North of the Kola Peninsula). Mar. Pollut. Bull. 2023, 189, 114809. [Google Scholar] [CrossRef] [PubMed]
- Yakovlev, E.Y.; Malov, A.I.; Druzhinin, S.V.; Zykov, S.B.; Malkov, A.V.; Bedrina, D.D. Heavy metals distribution and environmental risk assessment in river sediments in the area of the Lomonosov diamond deposit (NW Russia). Environ. Sci. Pollut. Res. 2020, 27, 35392–35415. [Google Scholar] [CrossRef]
- Stöhlker, U.; Bleher, M.; Mlinarzik, R.; Harms, W.; Luff, R.; Feuerstein, C.; Prommer, B. Spectro-dosemeter-based gamma dose rate network in Germany. Appl. Radiat. Isot. 2022, 182, 110077. [Google Scholar] [CrossRef]
- Saito, K.; Petoussi-Henss, N. Ambient dose equivalent conversion coefficients for radionuclides exponentially distributed in the ground. J. Nucl. Sci. Technol. 2014, 51, 1274–1287. [Google Scholar] [CrossRef]
- Gavriliev, S.; Petrova, T.; Miklyaev, P.; Karfidova, E. Predicting radon flux density from soil surface using machine learning and GIS data. Sci. Total Environ. 2023, 903, 166348. [Google Scholar] [CrossRef]
- Ramzaev, V.; Yonehara, H.; Hille, R.; Barkovsky, A.; Mishine, A.; Sahoo, S.K.; Kurotaki, K.; Uchiyama, M. Gamma-dose rates from terrestrial and Chernobyl radionuclides inside and outside settlements in the Bryansk Region, Russia in 1996–2003. J. Environ. Radioact. 2006, 85, 205–227. [Google Scholar] [CrossRef]
- Ramzaev, V.; Bernhardsson, C.; Barkovsky, A.; Romanovich, I.; Jarneborn, J.; Mattsson, S.; Dvornik, A.; Gaponenko, S. A backpack γ-spectrometer for measurements of ambient dose equivalent rate, ∗(10), from 137Cs and from naturally occurring radiation: The importance of operator related attenuation. Radiat. Meas. 2017, 107, 14–22. [Google Scholar] [CrossRef]
- Szegvary, T.; Leuenberger, M.C.; Conen, F. Predicting terrestrial 222Rn flux using gamma dose rate as a proxy. Atmos. Chem. Phys. 2007, 7, 2789–2795. [Google Scholar] [CrossRef]
- Manohar, S.N.; Meijer, H.A.J.; Herber, M.A. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides. Atmos. Environ. 2013, 81, 399–412. [Google Scholar] [CrossRef]
- Cinelli, G.; Rincones, J.; Tondeur, F.; Dehandschutter, B.; Menneson, F. Harmonization and mapping of terrestrial gamma dose rate data in Belgium. J. Environ. Radioact. 2022, 248, 106885. [Google Scholar] [CrossRef] [PubMed]
- SanPiN 2.1.4.1074-01; Sanitary and Epidemiological Rules and Regulations “Drinking Water. Hygienic Requirements for Water Quality in Centralized Drinking Water Supply Systems. Quality Control”. Ministry of Health of the Russian Federation: Moscow, Russia, 2001; 67p. Available online: https://eng-eco.ru/upload/iblock/f62/f62518fef27847ef31fcc40c3543b2a5.pdf?ysclid=mbc1s1p1n759856902 (accessed on 14 April 2025). (In Russian)
- Lisitsyn, A.K. Hydrogeochemical model of infiltration ore-forming system. Geochem. Int. 1997, 3, 294–304. Available online: https://elibrary.ru/contents.asp?id=47587090 (accessed on 16 April 2025).
- Cherdyntsev, V.V. Isotopic composition of radioelemente in natural materials in connection with problems of geochronology. In Proceedings of the 3rd Session of the Commission on Geochronology of Geologic Formations; AN SSSR: Moscow, Russia; 1955; pp. 175–233. Available online: https://www.geokniga.org/books/32291 (accessed on 18 April 2025). (In Russian)
- Kigoshi, K. Alpha-recoil thorium-234: Dissolution into water and uranium-234/uranium-238 disequilibrium in nature. Science 1971, 173, 47–49. [Google Scholar] [CrossRef]
- Ivanovich, M.; Fröhlich, K.; Hendry, M.J. Uranium-series radio nuclides in fluids and solids, Milk River aquifer, Alberta, Canada. Appl. Geochem. 1991, 6, 405–418. [Google Scholar] [CrossRef]
- Maher, K.; DePaolo, D.J.; Christensen, J.N. U-Sr isotopic speedometer: Fluid flow and chemical weathering rates in aquifers. Geochim. Cosmochim. Acta 2006, 70, 4417–4435. [Google Scholar] [CrossRef]
- Méjean, P.; Pinti, D.L.; Larocque, M.; Ghaleb, B.; Meyzonnat, G.; Gagné, S. Processes controlling 234U and 238U isotope fractionation and helium in the groundwater of the St. Lawrence Lowlands, Quebec: The potential role of natural rock fracturing. Appl. Geochem. 2016, 66, 198–209. [Google Scholar] [CrossRef]
- Andrews, J.N.; Giles, I.S.; Kay, R.L.F.; Lee, D.J.; Osmond, J.K.; Cowart, J.B.; Fritz, P.; Barker, J.F.; Gale, J. Radioelements, radiogenic helium and age relationships for groundwaters from the granites of Stripa, Sweden. Geochim. Cosmochim. Acta. 1982, 46, 1533–1543. [Google Scholar] [CrossRef]
- Osmond, J.K.; Cowart, J.B. The theory and uses of natural uranium isotopic variations in hydrology. At. Energy Rev. 1976, 14, 621–679. Available online: https://inis.iaea.org/records/ggjed-szm80 (accessed on 18 April 2025).
- Cuttell, J.C.; Lloyd, J.W.; Ivanovich, M. A study of uranium and thorium series isotopes in chalk groundwaters of Lincolnshire, UK. J. Hydrol. 1986, 86, 343–365. [Google Scholar] [CrossRef]
- Krainov, S.R.; Ryzhenko, B.N.; Shvets, V.M. Geochemistry of Groundwater. Fundamental, Applied and Environmental Aspects; CenterLitNefteGaz: Moscow, Russia, 2012; 672p, Available online: https://www.geokniga.org/books/22282?ysclid=mbc2pu4kx1709699801(In Russian). (accessed on 18 April 2025). (In Russian)
- Malov, A.I. Features of the formation of strontium pollution of drinking groundwater and associated health risks in the North-West of Russia. Water 2023, 15, 3846. [Google Scholar] [CrossRef]
- Malov, A.I. Assessment of water supply to the East European Arctic agglomeration from groundwater, taking into account their quality and health risks. Environ. Pollut. 2024, 360, 124636. [Google Scholar] [CrossRef] [PubMed]
- Mironov, Y.B.; Lebedeva, G.B.; Pugovkin, A.A. Surface uranium deposits of the humid climatic zone of the Earth. Reg. Geol. Metallogeny. 2015, 63, 68–76. Available online: https://cyberleninka.ru/article/n/poverhnostnye-uranovye-mestorozhdeniya-gumidnoy-klimaticheskoy-zony-zemli?ysclid=mbc2sh17s4139364313 (accessed on 18 April 2025). (In Russian).
- Vodyanitsky, Y.N.; Grebenkin, N.A.; Manakhov, D.V.; Sashchenko, A.V.; Tyuleneva, V.M. Positive uranium anomalies in the peatlands of humid zone: A review. Eurasian Soil Sci. 2019, 12, 1492–1501. (In Russian) [Google Scholar] [CrossRef]
- UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Sources and Effects of Ionizing Radiation; United Nations: New York, NY, USA, 2000; 659p, Available online: https://inis.iaea.org/records/8behk-d2e65 (accessed on 18 April 2025).
- Silva, L.B.; Silva, L.F.; Junior, V.B.; Orejuela, C.O.P.; Ferreira, P.R.R.; Silva, A.X. Assessment of radiological hazards from radioactivity natural of cement used in Dwellings in Rio de Janeiro, Brazil. Appl. Radiat. Isot. 2024, 207, 111266. [Google Scholar] [CrossRef]
- Mansor, M.A.; Nabil, I.M.; Ellithi, A.Y.; Abdulghany, A.R.; El Sayed, A.F. Risk assessment and natural radionuclide content in black-sand deposits of North Sinai coast, Egypt. Appl. Radiat. Isot. 2025, 217, 111601. [Google Scholar] [CrossRef]
- Malov, A.I.; Sidkina, E.S.; Cherkasova, E.V. The Influence of DOC on the Migration Forms of Elements and Their Sedimentation from River Waters at an Exploited Diamond Deposit (NW Russia). Water 2023, 15, 2160. [Google Scholar] [CrossRef]
- Shcheglov, A.I.; Tsvetnova, O.B.; Klyashtorin, A. The fate of Cs-137 in forest soils of Russian Federation Ukraine contaminated due to the Chernobyl accident. J. Geochem. Explor. 2014, 142, 75–81. [Google Scholar] [CrossRef]
- Kuzmenkova, N.V.; Ivanov, M.M.; Alexandrin, M.Y.; Grachev, A.M.; Rozhkova, A.K.; Zhizhin, K.D.; Grabenko, E.A.; Golosov, V.N. Use of natural and artificial radionuclides to determine the sedimentation rates in two North Caucasus lakes. Environ. Pollut. 2020, 262, 114269. [Google Scholar] [CrossRef]
- Puchkov, A.V.; Yakovlev, E.Y.; Druzhinina, A.S.; Druzhinin, S.V. Distribution of 137Cs specific activity in river sediments of the Barents Sea basin (Nenets Autonomous Okrug, Russian Arctic). Environ. Monit. Assess. 2024, 196, 709. [Google Scholar] [CrossRef]
- Stoulos, S.; Ioannidou, E.; Koseoglou, P.; Vagena, E.; Ioannidou, A. 137Cs in outdoor air due to Chernobyl-contaminated wood combustion for residential heating in Thessaloniki, North Greece. Atmos. Environ. 2025, 341, 120929. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the Elements in Some Major Units of the Earth’s Crust. Geol. Soc. Amer. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Meija, J.; Coplen, T.B.; Berglund, M.; Brand, W.A.; De Biévre, P.; Gröning, M.; Holden, N.E.; Irrgeher, J.; Loss, R.D.; Walczyk, T.; et al. Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 2016, 88, 293. [Google Scholar] [CrossRef]
- Kondev, F.G.; Wang, M.; Huang, W.J.; Naimi, S.; Audi, G. The NUBASE2020 evaluation of nuclear physics properties. Chin. Phys. 2021, 45, 030001. [Google Scholar] [CrossRef]
- Velichkin, V.I.; Kuzmenkova, N.V.; Kosheleva, N.E.; Miroshnikov, A.Y.; Asadulin, E.E.; Vorobyeva, T.A. Assessment of the ecological and geochemical state of soils in the northwest of the Kola Peninsula. Geoecology 2012, 1, 41–51. Available online: https://elibrary.ru/item.asp?id=17650551&ysclid=mbc2zbo1cg733060442 (accessed on 18 April 2025). (In Russian).
- DePaolo, D.J.; Maher, K.; Christensen, J.N.; McManus, J. Sediment transport time measured with U-series isotopes: Results from ODP North Atlantic drift site 984. Earth Planet. Sci. Lett. 2006, 248, 394–410. [Google Scholar] [CrossRef]
- Shoeib, M.Y.; Thabayneh, K.M. Assessment of natural radiation exposure and radon exhalation rate in various samples of Egyptian building materials. J. Radiat. Res. Appl. Sci. 2014, 7, 174–181. [Google Scholar] [CrossRef]
- Shabaan, D.H.; EL-Araby, E.H.; Yajzey, R.; Azazi, A.; Alzhrani, S. Evaluation of the radiation emission of radon gas from various building materials. J. Radiat. Res. Appl. Sci. 2025, 18, 101194. [Google Scholar] [CrossRef]
- SanPiN 2.6.1.2523-09; Sanitary Rules and Regulations “Radiation Safety Standards NRB-99/2009”. Federal Center for Hygiene and Epidemiology of Rospotrebnadzor: Moscow, Russia, 2009; 84p. Available online: https://spb-institute.ru/upload/iblock/270/270770159d23e4b414abc8cf07cbc52f.pdf?ysclid=mbc31c7xoe757234724 (accessed on 18 April 2025). (In Russian)
- Yasumiishi, M.; Masoudi, P.; Nishimura, T.; Ochi, K.; Ye, X.; Aldstadt, J.; Komissarov, M. Assessment of ambient dose equivalent rate distribution patterns in a forested-rugged terrain using field-measured and modeled dose equivalent rates. Radiat. Meas. 2023, 168, 106978. [Google Scholar] [CrossRef]
- Elghawi, U.; Elammari, M. Assessment of occupational external radiation exposure of workers in the Southwest of Libya using portable NaI detector. Appl. Radiat. Isot. 2024, 206, 111246. [Google Scholar] [CrossRef] [PubMed]
- SP 2.6.1.2612-10; Main Sanitary Rules Ensure Radiation Safety (OSPORB-99/2010). Sanitary Rules and Regulations. Ministry of Justice of Russia: Moscow, Russia, 2010; 77p. Available online: https://stroychik.ru/wp-content/uploads/2020/04/osporb_cp2-6-1-2612-10.pdf?ysclid=mbc33x83w2433133054 (accessed on 18 April 2025). (In Russian)
- Miklyaev, P.S.; Petrova, T.B.; Shchitov, D.V.; Sidyakin, P.A.; Murzabekov, M.A.; Tsebro, D.H.; Marennyy, A.M.; Nefedov, N.A.; Gavriliev, S.G. Radon transport in permeable geological environments. Sci. Total Environ. 2022, 852, 158382. [Google Scholar] [CrossRef] [PubMed]
- GOST 28423-85; Soils. Methods for Determination of Specific Electric Conductivity, pH and Solid Residue of Water Extract. Standartinform: Moscow, Russia, 2011; 6p. (In Russian)
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- GОSТ 28268–89; Soils, Methods of Determination of Moisture, Maximum Hygroscopic Moisture and Moisture of steady Plant Fading. Standartinform: Moscow, Russia, 1989; 7p. (In Russian)
- GOST 26213-91; Soils. Methods for Determination of Organic Matter. Standards Publishing House: Moscow, Russia, 1992; 8p. (In Russian)
- GOST 27784; Soils. Method for Determination of Ash Content in Peat and Peat-Containing Soil Horizons. Standards Publishing House: Moscow, Russia, 1988; 7p. (In Russian)
ID | Water Point | N | E | 238U (mBq L−1) | 234U (mBq L−1) | 235U (mBq L−1) | 234U/238U (Bq Bq−1) | U (µg L−1) |
---|---|---|---|---|---|---|---|---|
W-1 | Pozera River 1 a | 64.089 | 42.635 | 3.04 ± 0.46 | 3.14 ± 0.47 | <0.38 | 1.03 ± 0.15 | 0.25 ± 0.04 |
W-2 | Pozera River 2 | 64.106 | 42.626 | 10.5 ± 1.6 | 17.2 ± 2.6 | 1.14 ± 0.56 | 1.63 ± 0.24 | 0.85 ± 0.13 |
W-3 | Lake Sennoe | 64.110 | 42.591 | 0.96 ± 0.14 | 1.37 ± 0.20 | <0.27 | 1.43 ± 0.21 | 0.08 ± 0.01 |
W-4 | Chuga River 2 | 64.125 | 42.688 | 22.1 ± 3.3 | 33.0 ± 5.0 | 0.81 ± 0.55 | 1.50 ± 0.22 | 1.78 ± 0.27 |
W-5 | Lake 5 | 64.126 | 42.673 | 0.18 ± 0.02 | 0.24 ± 0.03 | <0.01 | 1.33 ± 0.19 | 0.02 ± 0.00 |
W-6 | Lake 6 | 64.130 | 42.674 | 9.38 ± 1.40 | 10.0 ± 1.5 | 0.4 ± 0.21 | 1.07 ± 0.16 | 0.76 ± 0.11 |
W-7 | Lake 7 | 64.135 | 42.659 | 5.11 ± 0.76 | 5.78 ± 0.86 | <0.12 | 1.13 ± 0.16 | 0.41 ± 0.06 |
W-8 | Chuga River 1 | 64.112 | 42.689 | 8.51 ± 1.27 | 11.8 ± 1.8 | 0.78 ± 0.42 | 1.38 ± 0.20 | 0.69 ± 0.10 |
W-9 | Spring | 64.112 | 42.689 | 16.7 ± 2.51 | 18.6 ± 2.8 | 1.34 ± 0.49 | 1.12 ± 0.16 | 1.35 ± 0.20 |
W-10 | Karasevoe Lake | 64.108 | 42.661 | 9.83 ± 1.47 | 13.0 ± 1.9 | 1.34 ± 0.91 | 1.32 ± 0.19 | 0.79 ± 0.12 |
W-11 | Quarry | 64.112 | 42.654 | 91 ± 14 | 111 ± 17 | 4.53 ± 1.35 | 1.22 ± 0.18 | 7.34 ± 1.10 |
W-11-1 | Quarry | 64.112 | 42.654 | 68 ± 10 | 103 ± 13 | 1.92 ± 0.89 | 1.51 ± 0.22 | 5.52 ± 0.82 |
W-11-2 | Quarry | 64.112 | 42.654 | 65.7 ± 9.9 | 88 ± 12 | 1.29 ± 0.69 | 1.34 ± 0.20 | 5.30 ± 0.80 |
W-12 | Settling tank | 64.108 | 42.645 | 24.3 ± 3.6 | 29.4 ± 4.4 | 0.52 ± 0.22 | 1.21 ± 0.18 | 1.96 ± 0.29 |
W-13 | Pozera River 4 | 64.129 | 42.628 | 18.0 ± 2.7 | 21.3 ± 3.2 | <0.38 | 1.18 ± 0.17 | 1.45 ± 0.22 |
W-14 | Pozera River 3 | 64.116 | 42.632 | 5.77 ± 0.86 | 10.1 ± 1.5 | 1.14 ± 0.56 | 1.75 ± 0.26 | 0.47 ± 0.07 |
Mean b | 16.1 ± 2.4 | 20.4 ± 3.1 | 1.01 ± 0.45 | 1.31 ± 0.19 | 1.30 ± 0.19 |
ID | 137Cs | 226Ra | 232Th | 40K | 238U | 234U | 234U/238U |
---|---|---|---|---|---|---|---|
(Bq kg−1) | (Bq Bq−1) | ||||||
BS-1 | 4.50 ± 0.88 | 20.9 ± 2.7 | 13.2 ± 2.3 | 373 ± 43 | 9.93 ± 1.49 | 11.1 ± 1.6 | 1.11 ± 0.17 |
BS-2 | 3.52 ± 0.62 | 16.6 ± 2.2 | 11.3 ± 1.9 | 350 ± 38 | 7.52 ± 1.13 | 6.51 ± 0.97 | 0.87 ± 0.13 |
BS-3 | 6.24 ± 1.25 | 11.2 ± 2.1 | 3.33 ± 0.51 | 338 ± 39 | 3.13 ± 0.47 | 2.97 ± 0.44 | 0.95 ± 0.14 |
BS-4 | 1.61 ± 0.57 | 10.8 ± 1.4 | 4.67 ± 1.15 | 251 ± 26 | 3.87 ± 0.58 | 4.28 ± 0.64 | 1.11 ± 0.17 |
BS-5 | 6.12 ± 1.12 | 17.5 ± 2.2 | 19.9 ± 2.3 | 407 ± 42 | 17.6 ± 2.64 | 17.5 ± 2.6 | 0.99 ± 0.15 |
BS-6 | 20.8 ± 3.0 | 23.5 ± 3.6 | 11.9 ± 2.0 | 302 ± 41 | 73 ± 11 | 89.5 ± 13.4 | 1.22 ± 0.18 |
BS-7 | 10.2 ± 2.1 | 13.3 ± 2.5 | 8.67 ± 1.71 | 208 ± 31 | 62.6 ± 9.4 | 54.8 ± 8.2 | 0.87 ± 0.13 |
BS-8 | 1.33 ± 0.30 | 20.6 ± 2.8 | 12.1 ± 2.2 | 380 ± 38 | 4.38 ± 0.66 | 3.63 ± 0.54 | 0.83 ± 0.12 |
BS-10 | 10.3 ± 2.5 | 27.0 ± 4.1 | 5.12 ± 0.92 | 199 ± 28 | 12.5 ± 1.9 | 9.24 ± 1.38 | 0.74 ± 0.11 |
BS-13 | 1.52 ± 0.51 | 18.1 ± 2.5 | 5.93 ± 1.74 | 396 ± 46 | 5.68 ± 0.85 | 5.07 ± 0.76 | 0.89 ± 0.13 |
Mean | 6.61 ± 1.29 | 18.0 ± 2.6 | 9.61 ± 1.68 | 320 ± 37 | 20.0 ± 3.0 | 20.5 ± 3.1 | 0.96 ± 0.14 |
ID | Particle size distribution, % | LOI (%) | CO32− (%) | OM (%) | pH | Eh, (mv) | SS (mg g−1) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
>500 µ | 500 µ | 250 µ | 100 µ | <45 µ | |||||||
BS-1 | 4.70 | 16.3 | 46.5 | 21.4 | 11.1 | 0.46 | 0.63 | 6.47 | 5.90 | 118 | 0.86 |
BS-2 | 6.48 | 16.5 | 57.9 | 13.6 | 5.52 | 0.39 | 0.53 | 5.37 | 6.63 | 83 | 0.65 |
BS-3 | 28.2 | 44.6 | 22.6 | 4.04 | 0.56 | 0.10 | 0.14 | 0.39 | 5.92 | 127 | 0.16 |
BS-4 | 42.5 | 46.5 | 7.80 | 2.29 | 0.91 | 0.83 | 1.13 | 0.74 | 6.58 | 96 | 0.39 |
BS-5 | 14.4 | 21.3 | 37.7 | 15.6 | 11.0 | 0.96 | 1.31 | 6.05 | 6.19 | 85 | 1.14 |
BS-6 | 64.9 | 15.8 | 10.9 | 4.90 | 3.50 | 1.77 | 2.41 | 45.6 | 6.65 | 67 | 3.30 |
BS-7 | 11.5 | 24.1 | 30.8 | 17.8 | 15.8 | 1.18 | 1.61 | 44.5 | 5.95 | 116 | 3.52 |
BS-8 | 10.3 | 36.5 | 46.6 | 5.00 | 1.60 | 0.97 | 1.32 | 3.72 | 6.97 | 73 | 0.92 |
BS-10 | 20.2 | 14.5 | 33.9 | 24.2 | 7.20 | 0.33 | 0.45 | 38.2 | 5.54 | 132 | 0.63 |
BS-13 | 7.00 | 34.0 | 43.6 | 11.0 | 4.40 | 0.44 | 0.60 | 5.83 | 6.50 | 63 | 0.79 |
Mean | 21.0 | 27.0 | 33.8 | 12.0 | 6.20 | 0.70 | 1.00 | 15.7 | 6.30 | 96 | 1.20 |
226Ra | 232Th | 40K | 238U | 234U | 100 e | 45 e | <45 e | CO32− | OM c | SS d | Na | K | Ca | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
137Cs | 0.42 | 0.10 | −0.42 | 0.86 a | 0.89 a | −0.48 | −0.18 | 0.19 | 0.61 | 0.85a | 0.73 b | 0.56 | 0.62 | 0.77 a | |
226Ra | 0.27 | −0.02 | 0.17 | 0.22 | 0.24 | 0.47 | 0.11 | 0.16 | 0.45 | 0.14 | 0.21 | 0.06 | 0.32 | ||
232Th | 0.52 | 0.20 | 0.22 | 0.37 | 0.23 | 0.44 | 0.43 | −0.04 | 0.26 | 0.34 | 0.48 | 0.18 | |||
40K | −0.40 | −0.32 | 0.50 | −0.21 | −0.18 | −0.13 | −0.68 b | −0.34 | −0.16 | −0.19 | −0.30 | ||||
238U | 0.98 a | −0.41 | −0.04 | 0.41 | 0.81 a | 0.85 a | 0.98 a | 0.82 a | 0.91 a | 0.88 a | |||||
234U | −0.45 | −0.06 | 0.28 | 0.84 a | 0.80 a | 0.93 a | 0.81 a | 0.87 a | 0.91 a | ||||||
Mg | Sr | Fe | Mn | Zn | Cu | Cr | Pb | Ni | Mo | Cd | Co | Ti | V | ||
137Cs | 0.34 | −0.01 | 0.33 | −0.43 | 0.55 | 0.92 a | 0.74 b | 0.95 a | 0.72 b | 0.49 | 0.61 | 0.09 | 0.94 a | 0.80 a | |
226Ra | 0.24 | 0.19 | 0.05 | 0.24 | 0.17 | 0.36 | 0.19 | 0.54 | 0.21 | −0.30 | 0.22 | 0.05 | 0.27 | 0.29 | |
232Th | 0.42 | 0.21 | 0.5 | 0.24 | 0.38 | 0.18 | 0.37 | 0.15 | 0.43 | 0.08 | 0.43 | 0.58 | 0.19 | 0.42 | |
40K | −0.05 | 0.10 | −0.06 | 0.51 | −0.28 | −0.30 | −0.32 | −0.48 | −0.31 | −0.54 | −0.24 | 0.27 | −0.39 | −0.27 | |
238U | 0.54 | 0.18 | 0.67 b | −0.21 | 0.82 a | 0.91 a | 0.96 a | 0.90 a | 0.94 a | 0.71 b | 0.88 a | 0.32 | 0.96 a | 0.95 a | |
234U | 0.58 | 0.20 | 0.60 | −0.17 | 0.75 b | 0.97 a | 0.91 a | 0.90 a | 0.89 a | 0.65 b | 0.84 a | 0.28 | 0.95 a | 0.94 a |
ID | 137Cs | 226Ra | 232Th | 40K | 238U | 234U | 234U/238U |
---|---|---|---|---|---|---|---|
(Bq kg−1) | (Bq Bq−1) | ||||||
S-1 | 39.4 ± 5.8 | 26.1 ± 3.8 | 14.4 ± 2.4 | 216 ± 33 | 2.49 ± 0.36 | 1.74 ± 0.27 | 0.70 ± 0.11 |
S-2 | 45.3 ± 6.8 | 39.9 ± 5.8 | 22.3 ± 3.4 | 256 ± 39 | 3.58 ± 0.57 | 3.79 ± 0.56 | 1.06 ± 0.16 |
S-3 | 9.14 ± 2.07 | 12.5 ± 1.9 | 12.6 ± 2.0 | 118 ± 18 | 6.29 ± 0.91 | 6.71 ± 1.02 | 1.07 ± 0.15 |
S-4 | 30.9 ± 4.5 | 39.5 ± 5.8 | 29.0 ± 4.4 | 196 ± 30 | 4.33 ± 0.62 | 4.41 ± 0.64 | 1.02 ± 0.15 |
S-5 | 48.2 ± 7.3 | 12.1 ± 2.0 | 11.4 ± 1.8 | 187 ± 28 | 1.47 ± 0.28 | 1.32 ± 0.20 | 0.90 ± 0.14 |
S-6 | 24.5 ± 3.9 | 29.2 ± 4.3 | 27.1 ± 4.2 | 111 ± 17 | 9.39 ± 1.43 | 9.98 ± 1.51 | 1.06 ± 0.15 |
S-7 | 23.3 ± 3.6 | 37.9 ± 5.7 | 23.3 ± 3.5 | 251 ± 38 | 1.22 ± 0.19 | 1.19 ± 0.18 | 0.98 ± 0.15 |
S-8 | 31.3 ± 4.8 | 18.7 ± 2.8 | 22.1 ± 3.3 | 262 ± 40 | 10.2 ± 1.5 | 9.49 ± 1.41 | 0.93 ± 0.15 |
S-10 | 28.8 ± 4.8 | 12.5 ± 2.0 | 8.16 ± 2.5 | 127 ± 20 | 2.42 ± 0.38 | 2.30 ± 0.31 | 0.95 ± 0.15 |
S-11 | 33.1 ± 4.8 | 26.2 ± 4.0 | 21.4 ± 3.3 | 496 ± 73 | 10.9 ± 1.5 | 10.1 ± 1.5 | 0.93 ± 0.15 |
S-12 | 32.7 ± 5.0 | 33.5 ± 5.1 | 31.2 ± 4.7 | 352 ± 51 | 10.5 ± 1.5 | 10.4 ± 1.5 | 1.00 ± 0.15 |
S-13 | 34.4 ± 5.4 | 37.3 ± 5.7 | 23.1 ± 3.5 | 166 ± 25 | 6.63 ± 0.97 | 5.86 ± 0.86 | 0.88 ± 0.13 |
S-14 | 36.8 ± 5.6 | 18.1 ± 3.0 | 26.2 ± 3.9 | 223 ± 34 | 6.89 ± 0.96 | 8.47 ± 1.24 | 1.23 ± 0.18 |
S-15 | 35.1 ± 5.3 | 31.0 ± 4.6 | 21.5 ± 3.2 | 346 ± 52 | 8.02 ± 1.23 | 5.56 ± 0.83 | 0.69 ± 0.10 |
Mean | 32.4 ± 5.0 | 26.8 ± 4.0 | 21.0 ± 3.3 | 236 ± 36 | 6.02 ± 0.88 | 5.81 ± 0.85 | 0.96 ± 0.14 |
SC-1 | nd 1 | 24.6 ± 3.8 | 13.6 ± 3.0 | 318 ± 62 | 10.9 ± 1.6 | 8.37 ± 1.26 | 0.77 ± 0.12 |
SC-2 | nd | 18.8 ± 2.6 | 20.5 ± 3.8 | 379 ± 72 | 12.2 ± 1.8 | 8.81 ± 1.32 | 0.72 ± 0.11 |
SC-3 | nd | 18.8 ± 2.6 | 16.1 ± 3.4 | 367 ± 70 | 12.3 ± 1.8 | 8.79 ± 1.32 | 0.72 ± 0.11 |
Mean | nd | 20.7 ± 3.0 | 16.7 ± 3.4 | 355 ± 68 | 11.8 ± 1.8 | 8.66 ± 1.30 | 0.74 ± 0.11 |
G-1 | nd | 4.02 ± 1.12 | nd | nd | 2.78 ± 0.42 | 1.98 ± 0.30 | 0.71 ± 0.11 |
G-2 | nd | 2.81 ± 0.94 | nd | nd | 0.99 ± 0.15 | 1.14 ± 0.17 | 1.15 ± 0.17 |
G-3 | nd | 4.24 ± 1.18 | nd | nd | 2.11 ± 0.32 | 1.44 ± 0.22 | 0.94 ± 0.14 |
Mean | nd | 3.69 ± 1.08 | nd | nd | 1.96 ± 0.29 | 1.52 ± 0.23 | 0.93 ± 0.14 |
ID | Location | Height m.a.s.l. | RFD | Lithological Composition | ||
---|---|---|---|---|---|---|
N | E | Natural Conditions | Quarry Area | |||
R-1 | 64.10660 | 42.64184 | 71.2 | 100 ± 30 | Soil and loam | |
R-2 | 64.10746 | 42.64268 | 71.5 | 181 ± 54 | Soil and loam | |
R-3 | 64.10852 | 42.64508 | 75.0 | 89 ± 26 | Soil, loam and sand | |
R-4 | 64.11017 | 42.64747 | 75.0 | 20 ± 6 | A mixture of sandy–clayey deposits of Quaternary age with fragments of gypsum rocks in waste rock dumps | |
R-5 | 64.11200 | 42.64834 | 69.2 | 25 ± 5 | ||
R-6 | 64.11373 | 42.64879 | 71.3 | 22 ± 6 | ||
R-7 | 64.11549 | 42.64790 | 59.8 | 20 ± 6 | ||
R-8 | 64.11712 | 42.64643 | 61.6 | 27 ± 8 | ||
R-9 | 64.11895 | 42.64646 | 53.7 | 61 ± 18 | ||
R-10 | 64.12066 | 42.64514 | 62.5 | 18 ± 5 | Gypsum, sand and loam | |
R-11 | 64.12237 | 42.64329 | 54.3 | 6 ± 1 | Gypsum and loam | |
R-12 | 64.12383 | 42.64226 | 63.3 | 10 ± 3 | Gypsum and сlay | |
R-13 | 64.12585 | 42.64069 | 67.5 | 159 ± 47 | Soil and clay | |
R-14 | 64.12752 | 42.64116 | 65.7 | 92 ± 28 | Soil, loam and sand |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malov, A.I.; Nakhod, V.A.; Druzhinin, S.V.; Zykova, E.N. An Assessment of the Impact of Gypsum Deposit Development on Changes in the Radiation Environment. Appl. Sci. 2025, 15, 6639. https://doi.org/10.3390/app15126639
Malov AI, Nakhod VA, Druzhinin SV, Zykova EN. An Assessment of the Impact of Gypsum Deposit Development on Changes in the Radiation Environment. Applied Sciences. 2025; 15(12):6639. https://doi.org/10.3390/app15126639
Chicago/Turabian StyleMalov, Alexander I., Vitaliy A. Nakhod, Sergey V. Druzhinin, and Elena N. Zykova. 2025. "An Assessment of the Impact of Gypsum Deposit Development on Changes in the Radiation Environment" Applied Sciences 15, no. 12: 6639. https://doi.org/10.3390/app15126639
APA StyleMalov, A. I., Nakhod, V. A., Druzhinin, S. V., & Zykova, E. N. (2025). An Assessment of the Impact of Gypsum Deposit Development on Changes in the Radiation Environment. Applied Sciences, 15(12), 6639. https://doi.org/10.3390/app15126639