SiC Powder Binder Jetting 3D Printing Technology: A Review of High-Performance SiC-Based Component Fabrication and Applications
Abstract
1. Introduction
2. Process Flow and Performance Indicators of Binder Jetting 3D Printing
2.1. Process Flow and Pre-Printing Parameter Selection for Binder Jetting of Silicon Carbide Components
2.2. Key Parameters Affecting Formation Quality
3. Quality Control of Silicon Carbide Printed Part Formation
3.1. The Impact and Control of Key Printing Parameters on Green Part Formation Quality
3.1.1. Nozzle-Clogging Issues
3.1.2. Uniform and Dense Powder Bed
- Binder–powder interaction behavior
- b.
- Powder agglomeration and spreading defects
- c.
- Fine powder spreading process
3.1.3. Elimination of the Stair-Step Effect
3.2. Densification Post-Processing Techniques
3.3. Detection and Assessment Techniques
- Surface accuracy testing of green parts
- b.
- Mechanical and thermal property testing of green parts
- c.
- Nondestructive testing of final printed components
4. Practical Applications and Case Studies
- (1)
- Lack of industry standards and regulatory guidelines: At present, there are fewer national or international standards specifically addressing BJ-fabricated ceramics, particularly SiC structural components. This results in the use of disparate testing protocols and performance evaluation criteria across different research groups and industrial entities, making cross-comparison and standardized adoption difficult. Consequently, this lack of standardization hinders the integration of BJ SiC components in high-reliability application scenarios.
- (2)
- Insufficient validation of material performance: Although the mechanical properties of BJ-formed SiC components have shown encouraging results, most data are derived from small-scale specimens. Comprehensive performance validation for large-scale or geometrically complex parts remains scarce, limiting confidence in their structural reliability.
- (3)
- Process variability and performance reproducibility: Significant fluctuations in binder distribution and post-processing steps can lead to inconsistencies in microstructure and mechanical properties. This lack of reproducibility undermines the reliability assessments required for critical load-bearing applications.
- (4)
- High cost and limited economic viability: The overall cost of BJ-produced SiC remains high due to the use of high-purity, ultrafine powders, expensive binder jetting equipment, and energy-intensive high-temperature post-processing. Additionally, long processing times and moderate yields reduce economic competitiveness. Strategies such as powder recycling, process shortening, and yield improvement are needed to enhance cost efficiency.
- (5)
- Insufficient engineering-scale validation and environmental adaptability: Current BJ SiC research is largely confined to laboratory-scale samples. There is a lack of long-term performance data under realistic service conditions, such as high-temperature oxidation, thermal shock, corrosive environments, or particle erosion, which are essential for assessing their durability and reliability in demanding operational settings.
- (6)
- Controlling process-related defects remains highly challenging. The BJ process inherently suffers from issues such as weak interlayer bonding, non-uniform powder packing density, and trade-offs between layer thickness and feature resolution. During post-processing, even slight variations in parameters such as carbon source incorporation, pyrolysis shrinkage, and silicon infiltration pathways can readily induce defects such as cracking, porosity, warping, and non-uniform silicon infiltration. These issues significantly compromise the final densification and mechanical performance of the printed SiC components.
5. Future Perspectives
5.1. Technological Development Trends
5.2. Expansion of Application Fields
5.2.1. Biomedical Field
5.2.2. New Energy and Clean Energy Technologies
5.2.3. Aerospace Field
5.3. Key Focus Areas for Research and Development
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, X.; Lu, Y.; Vogel-Heuser, B.; Wang, L. Industry 4.0 and Industry 5.0—Inception, conception and perception. J. Manuf. Syst. 2021, 61, 530–535. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, M.; Chohan, J.S. The role of additive manufacturing for biomedical applications: A critical review. J. Manuf. Process 2021, 64, 828–850. [Google Scholar] [CrossRef]
- Wawryniuk, Z.; Brancewicz-Steinmetz, E.; Sawicki, J. Revolutionizing transportation: An overview of 3D printing in aviation, automotive, and space industries. Int. J. Adv. Manuf. Technol. 2024, 134, 3083–3105. [Google Scholar] [CrossRef]
- Gardner, L.; Kyvelou, P.; Herbert, G.; Buchanan, C. Testing and initial verification of the world’s first metal 3D printed bridge. J. Constr. Steel Res. 2020, 172, 106233. [Google Scholar] [CrossRef]
- Uriondo, A.; Esperon-Miguez, M.; Perinpanayagam, S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2015, 229, 2132–2147. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Using additive manufacturing applications for design and development of food and agricultural equipments. Int. J. Mater. Prod. Technol. 2019, 58, 225–238. [Google Scholar] [CrossRef]
- Fisher, G.R.; Barnes, P. Towards a unified view of polytypism in silicon carbide. Philos. Mag. B 1990, 61, 217–236. [Google Scholar] [CrossRef]
- Davis, R.F.; Kelner, G.; Shur, M.; Palmour, J.W.; Edmond, J.A. Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide. Proc. IEEE 1991, 79, 677–701. [Google Scholar] [CrossRef]
- Powell, A.R.; Rowland, L.B. SiC materials-progress, status, and potential roadblocks. Proc. IEEE 2002, 90, 942–955. [Google Scholar] [CrossRef]
- Wu, S.; Cheng, L.; Dong, N.; Zhang, L.; Xu, Y. Flexural strength distribution of 3D SiC/SiC composite. J. Mater. Eng. Perform. 2006, 15, 712–716. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, L.; Su, K.; Zeng, Q.; Cheng, L.; Guan, K.; Li, H. Thermodynamics investigation of the gas-phase reactions in the chemical vapor deposition of silicon borides with BCl3–SiCl4–H2 precursors. Struct. Chem. 2014, 25, 1369–1384. [Google Scholar] [CrossRef]
- Cramer, C.L.; Elliott, A.M.; Lara-Curzio, E.; Flores-Betancourt, A.; Lance, M.J.; Han, L.; Blacker, J.; Trofimov, A.A.; Wang, H.; Cakmak, E.; et al. Properties of SiC-Si made via binder jet 3D printing of SiC powder, carbon addition, and silicon melt infiltration. J. Am. Ceram. Soc. 2021, 104, 5467–5478. [Google Scholar] [CrossRef]
- He, R.; Ding, G.; Zhang, K.; Li, Y.; Fang, D. Fabrication of SiC ceramic architectures using stereolithography combined with precursor infiltration and pyrolysis. Ceram. Int. 2019, 45, 14006–14014. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, L.; Wen, G.; Hou, Y. Effect of SiC whiskers on the mechanical properties of polymer-derived ceramics prepared by digital light processing and its strengthening and toughening mechanism. J. Alloys Compd. 2023, 968, 171852. [Google Scholar] [CrossRef]
- Wu, W.-J.; Zou, Y.; Li, C.-H.; Li, Y.-W.; Wang, Z.-Y.; Chang, N.; Shi, Y.-S. Effect of impregnated phenolic resin on the properties of Si–SiC ceramic matrix composites fabricated by SLS-RMI. Ceram. Int. 2023, 49, 1624–1635. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Mountakis, N.; Karapidakis, E. Box-Behnken modeling to quantify the impact of control parameters on the energy and tensile efficiency of PEEK in MEX 3D-printing. Heliyon 2023, 9, e18363. [Google Scholar] [CrossRef]
- Feng, K.; Hu, S.; Li, L.; Mao, Y.; Heng, Y.; Yuan, J.; Wu, J.; Wei, Q. Preparation of low residual silicon content Si-SiC ceramics by binder jetting additive manufacturing and liquid silicon infiltration. J. Eur. Ceram. Soc. 2023, 43, 5446–5457. [Google Scholar] [CrossRef]
- Ganeriwala, R.; Zohdi, T.I. Multiphysics Modeling and Simulation of Selective Laser Sintering Manufacturing Processes. Procedia CIRP 2014, 14, 299–304. [Google Scholar] [CrossRef]
- Chaudhary, R.; Fabbri, P.; Leoni, E.; Mazzanti, F.; Akbari, R.; Antonini, C. Additive manufacturing by digital light processing: A review. Prog. Addit. Manuf. 2023, 8, 331–351. [Google Scholar] [CrossRef]
- Suwanpreecha, C.; Manonukul, A. A Review on Material Extrusion Additive Manufacturing of Metal and How It Compares with Metal Injection Moulding. Metals 2022, 12, 429. [Google Scholar] [CrossRef]
- Huang, J.; Qin, Q.; Wang, J. A Review of Stereolithography: Processes and Systems. Processes 2020, 8, 1138. [Google Scholar] [CrossRef]
- Liu, T.; Yang, L.; Chen, Z.; Yang, M.; Lu, L. Effects of SiC content on the microstructure and mechanical performance of stereolithography-based SiC ceramics. J. Mater. Res. Technol. 2023, 25, 5184–5195. [Google Scholar] [CrossRef]
- Cramer, C.L.; Armstrong, H.; Flores-Betancourt, A.; Han, L.; Elliott, A.M.; Lara-Curzio, E.; Saito, T.; Nawaz, K. Processing and properties of SiC composites made via binder jet 3D printing and infiltration and pyrolysis of preceramic polymer. Int. J. Ceram. Eng. Sci. 2020, 2, 320–331. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, Y.; Zhang, L.; Song, Z.; Wen, G. Silicon carbide ceramics formed by binder jetting: A study focusing on the printing layer thickness and the PIP densification process. Ceram. Int. 2024, 50, 30894–30905. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; Wu, T.; Sun, H. Effects of carbon content on microstructure and mechanical properties of SiC ceramics fabricated by SLS/RMI composite process. Ceram. Int. 2020, 46, 22015–22023. [Google Scholar] [CrossRef]
- Lv, X.; Ye, F.; Cheng, L.; Fan, S.; Liu, Y. Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment. Ceram. Int. 2019, 45, 12609–12624. [Google Scholar] [CrossRef]
- Li, F.-F.; Ma, N.-N.; Chen, J.; Zhu, M.; Chen, W.-H.; Huang, C.-C.; Huang, Z.-R. SiC ceramic mirror fabricated by additive manufacturing with material extrusion and laser cladding. Addit. Manuf. 2022, 58, 102994. [Google Scholar] [CrossRef]
- Li, M.; Du, W.; Elwany, A.; Pei, Z.; Ma, C. Metal Binder Jetting Additive Manufacturing: A Literature Review. J. Manuf. Sci. Eng. 2020, 142, 090801. [Google Scholar] [CrossRef]
- Mirzababaei, S.; Pasebani, S. A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel. J. Manuf. Mater. Process 2019, 3, 82. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Wu, J.; Duan, S.; Wang, X.; Hong, X.; Han, X.; Li, C.; Kang, D.; Wang, Z.; et al. The Application and Challenge of Binder Jet 3D Printing Technology in Pharmaceutical Manufacturing. Pharmaceutics 2022, 14, 2589. [Google Scholar] [CrossRef]
- Feng, K.; Sun, J.; Zhao, W.; Heng, Y.; Mao, Y.; Wei, Q. An aqueous-based carbon black binder and post-treatment for enhanced binder jetting of SiC ceramics. J. Eur. Ceram. Soc. 2025, 45, 117111. [Google Scholar] [CrossRef]
- Butscher, A.; Bohner, M.; Doebelin, N.; Galea, L.; Loeffel, O.; Müller, R. Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering. Acta Biomater. 2013, 9, 5369–5378. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Reynolds, W.T. 3DP process for fine mesh structure printing. Powder Technol. 2008, 187, 11–18. [Google Scholar] [CrossRef]
- Sutton, A.; Kriewall, C.; Leu, M.-C.; Newkirk, J. Powders for Additive Manufacturing Processes: Characterization Techniques and Effects on Part Properties. In Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 8–10 August 2016; pp. 1004–1030. [Google Scholar]
- Salehi, M.; Maleksaeedi, S.; Nai, S.M.L.; Meenashisundaram, G.K.; Goh, M.H.; Gupta, M. A paradigm shift towards compositionally zero-sum binderless 3D printing of magnesium alloys via capillary-mediated bridging. Acta Mater. 2019, 165, 294–306. [Google Scholar] [CrossRef]
- Miyanaji, H.; Zhang, S.; Lassell, A.; Zandinejad, A.A.; Yang, L. Optimal Process Parameters for 3D Printing of Porcelain Structures. Procedia Manuf. 2016, 5, 870–887. [Google Scholar] [CrossRef]
- Sheydaeian, E.; Vlasea, M.; Woo, A.; Pilliar, R.; Hu, E.; Toyserkani, E. Effect of glycerol concentrations on the mechanical properties of additive manufactured porous calcium polyphosphate structures for bone substitute applications. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Hotta, M.; Shimamura, A.; Kondo, N.; Ohji, T. Powder layer manufacturing of alumina ceramics using water spray bonding. J. Ceram. Soc. Jpn. 2016, 124, 750–752. [Google Scholar] [CrossRef]
- Fu, Z.; Schlier, L.; Travitzky, N.; Greil, P. Three-dimensional printing of SiSiC lattice truss structures. Mater. Sci. Eng. A 2013, 560, 851–856. [Google Scholar] [CrossRef]
- Miyanaji, H. Binder jetting additive manufacturing process fundamentals and the resultant influences on part quality. In Electronic Theses and Dissertations; University of Louisville: Louisville, KY, USA, 2018. [Google Scholar] [CrossRef]
- Du, W.; Ren, X.; Pei, Z.; Ma, C. Ceramic Binder Jetting Additive Manufacturing: A Literature Review on Density. J. Manuf. Sci. Eng.-Trans. ASME 2020, 142, 040801. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, B.; Qu, X. Microstructure evolution and mechanical behavior of SS316L alloy fabricated by a non-toxic and low residue binder jetting process. Appl. Surf. Sci. 2023, 616, 156589. [Google Scholar] [CrossRef]
- Moon, J.; Grau, J.E.; Knezevic, V.; Cima, M.J.; Sachs, E.M. Ink-Jet Printing of Binders for Ceramic Components. J. Am. Ceram. Soc. 2002, 85, 755–762. [Google Scholar] [CrossRef]
- Feng, K.; Hu, S.; Zhao, W.; Sun, J.; Mao, Y.; Cai, D.; Wu, J.; Wei, Q. Bimodal powder optimization in SiC binder jetting for mechanical performance. Int. J. Mech. Sci. 2024, 274, 109278. [Google Scholar] [CrossRef]
- Polozov, I.; Razumov, N.; Masaylo, D.; Silin, A.; Lebedeva, Y.; Popovich, A. Fabrication of Silicon Carbide Fiber-Reinforced Silicon Carbide Matrix Composites Using Binder Jetting Additive Manufacturing from Irregularly-Shaped and Spherical Powders. Materials 2020, 13, 1766. [Google Scholar] [CrossRef] [PubMed]
- Zemtsov, A.E.; Golunov, A.V.; Golunova, A.S. Regulating rheological properties of binding medium for additive technologies using polyvinylpyrrolidone. AIP Conf. Proc. 2017, 1876, 020013. [Google Scholar] [CrossRef]
- Mostafaei, A.; Elliott, A.M.; Barnes, J.E.; Li, F.; Tan, W.; Cramer, C.L.; Nandwana, P.; Chmielus, M. Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges. Prog. Mater. Sci. 2021, 119, 100707. [Google Scholar] [CrossRef]
- Sachs, E.; Cima, M.; Williams, P.; Brancazio, D.; Cornie, J. Three Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model. J. Eng. Ind. 1992, 114, 481–488. [Google Scholar] [CrossRef]
- Ziaee, M.; Crane, N.B. Binder jetting: A review of process, materials, and methods. Addit. Manuf. 2019, 28, 781–801. [Google Scholar] [CrossRef]
- Mao, Y.; Li, J.; Li, W.; Cai, D.; Wei, Q. Binder jetting additive manufacturing of 316L stainless-steel green parts with high strength and low binder content: Binder preparation and process optimization. J. Mater. Process. Technol. 2021, 291, 117020. [Google Scholar] [CrossRef]
- Du, W.; Ma, B.; Thomas, J.; Singh, D. Concurrent reaction-bonded joining and densification of additively manufactured silicon carbide by liquid silicon infiltration. J. Eur. Ceram. Soc. 2023, 43, 2345–2353. [Google Scholar] [CrossRef]
- Huang, S.; Ye, C.; Zhao, H.; Fan, Z.; Wei, Q. Binder jetting yttria stabilised zirconia ceramic with inorganic colloid as a binder. Adv. Appl. Ceram. 2019, 118, 458–465. [Google Scholar] [CrossRef]
- Zocca, A.; Colombo, P.; Gomes, C.M.; Günster, J. Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities. J. Am. Ceram. Soc. 2015, 98, 1983–2001. [Google Scholar] [CrossRef]
- Liu, H.; Lei, T.; Ma, C.; Peng, F. Optimization of driven waveform of piezoelectric printhead for 3D sand-printing. Addit. Manuf. 2021, 37, 101627. [Google Scholar] [CrossRef]
- zh-CN. Available online: https://www.xaar.cn/ (accessed on 3 March 2025).
- HP Multi Jet Fusion 3D Printing Technology. Available online: https://www.hp.com/cn-zh/printers/3d-printers/products/multi-jet-technology.html (accessed on 16 February 2025).
- Comparison between EPSON Popular Print Heads—Welcome to Giftec. Available online: https://www.digi-giftec.com/zh/comparison-between-epson-popular-print-heads/ (accessed on 16 February 2025).
- Toshiba Industrial Machine Systems (Shanghai) Co., Ltd. Available online: https://www.tipsh.toshiba.com.cn/index.html (accessed on 16 February 2025).
- Product Information|Kyocera (China) Trading Co., Ltd. Available online: https://www.kyocera.com.cn/ (accessed on 16 February 2025).
- 3D Printing & Additive Manufacturing. Available online: http://www.voxelfab.com/ (accessed on 16 February 2025).
- Studio SystemTM|Desktop Metal. Available online: https://www.desktopmetal.com/products/studio?utm_source=chatgpt.com (accessed on 16 February 2025).
- ExOne’s Family of Sand 3D Printers. Available online: https://www.exone.com/en-US/3D-printing-systems/sand-3d-printers (accessed on 16 February 2025).
- ProJet MJP 2500 series—3D Printers|3D Systems. Available online: https://cn.3dsystems.com/3d-printers/projet-mjp-2500-series (accessed on 16 February 2025).
- Garzón, E.O.; Alves, J.L.; Neto, R.J. Post-process Influence of Infiltration on Binder Jetting Technology. In Materials Design and Applications; da Silva, L.F.M., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 233–255. ISBN 978-3-319-50784-2. [Google Scholar]
- Kumbhar, N.N.; Mulay, A.V. Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review. J. Inst. Eng. India Ser. C 2018, 99, 481–487. [Google Scholar] [CrossRef]
- Wahab Hashmi, A.; Singh Mali, H.; Meena, A. Improving the surface characteristics of additively manufactured parts: A review. Mater. Today Proc. 2023, 81, 723–738. [Google Scholar] [CrossRef]
- Zhao, K.; Su, Z.; Ye, Z.; Cao, W.; Pang, J.; Wang, X.; Wang, Z.; Xu, X.; Zhu, J. Review of the types, formation mechanisms, effects, and elimination methods of binder jetting 3D-printing defects. J. Mater. Res. Technol. 2023, 27, 5449–5469. [Google Scholar] [CrossRef]
- Miyanaji, H.; Orth, M.; Akbar, J.M.; Yang, L. Process development for green part printing using binder jetting additive manufacturing. Front. Mech. Eng. 2018, 13, 504–512. [Google Scholar] [CrossRef]
- de Gans, B.-J.; Duineveld, P.C.; Schubert, U.S. Inkjet Printing of Polymers: State of the Art and Future Developments. Adv. Mater. 2004, 16, 203–213. [Google Scholar] [CrossRef]
- Zhao, D.; Zhou, H.; Wang, Y.; Yin, J.; Huang, Y. Drop-on-demand (DOD) inkjet dynamics of printing viscoelastic conductive ink. Addit. Manuf. 2021, 48, 102451. [Google Scholar] [CrossRef]
- Henderson, D.M.; Pritchard, W.G.; Smolka, L.B. On the pinch-off of a pendant drop of viscous fluid. Phys. Fluids 1997, 9, 3188–3200. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, G.; Liu, Y.; Wang, J.; Yang, G.; Li, D. Suppression and Utilization of Satellite Droplets for Inkjet Printing: A Review. Processes 2022, 10, 932. [Google Scholar] [CrossRef]
- Dini, F.; Ghaffari, S.A.; Jafar, J.; Hamidreza, R.; Marjan, S. A review of binder jet process parameters; powder, binder, printing and sintering condition. Met. Powder Rep. 2020, 75, 95–100. [Google Scholar] [CrossRef]
- Fromm, J.E. Numerical Calculation of the Fluid Dynamics of Drop-on-Demand Jets. IBM J. Res. Dev. 1984, 28, 322–333. [Google Scholar] [CrossRef]
- Reis, N.; Derby, B. Ink Jet Deposition of Ceramic Suspensions: Modeling and Experiments of Droplet Formation. MRS Online Proc. Libr. OPL 2000, 625, 117. [Google Scholar] [CrossRef]
- Yanez-Sanchez, S.I.; Lennox, M.D.; Therriault, D.; Favis, B.D.; Tavares, J.R. Model Approach for Binder Selection in Binder Jetting. Ind. Eng. Chem. Res. 2021, 60, 15162–15173. [Google Scholar] [CrossRef]
- Oropeza, D.; Hart, A.J. A laboratory-scale binder jet additive manufacturing testbed for process exploration and material development. Int. J. Adv. Manuf. Technol. 2021, 114, 3459–3473. [Google Scholar] [CrossRef]
- Zhou, Z.; Buchanan, F.; Mitchell, C.; Dunne, N. Printability of calcium phosphate: Calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater. Sci. Eng. C 2014, 38, 1–10. [Google Scholar] [CrossRef]
- Emady, H.N.; Kayrak-Talay, D.; Litster, J.D. Modeling the granule formation mechanism from single drop impact on a powder bed. J. Colloid Interface Sci. 2013, 393, 369–376. [Google Scholar] [CrossRef]
- Range, K.; Feuillebois, F. Influence of Surface Roughness on Liquid Drop Impact. J. Colloid Interface Sci. 1998, 203, 16–30. [Google Scholar] [CrossRef]
- Agland, S.; Iveson, S.M. The impact of liquid drops on powder bed surfaces. In Chemeca 99: Chemical Engineering: Solutions in a Changing Environment; Institution of Engineers, Australia: Barton, Australia, 2020; pp. 218–224. [Google Scholar]
- Emady, H.N.; Kayrak-Talay, D.; Schwerin, W.C.; Litster, J.D. Granule formation mechanisms and morphology from single drop impact on powder beds. Powder Technol. 2011, 212, 69–79. [Google Scholar] [CrossRef]
- Nguyen, T.; Shen, W.; Hapgood, K. Drop penetration time in heterogeneous powder beds. Chem. Eng. Sci. 2009, 64, 5210–5221. [Google Scholar] [CrossRef]
- Amanov, A.; Karimbaev, R. Effect of ultrasonic nanocrystal surface modification temperature: Microstructural evolution, mechanical properties and tribological behavior of silicon carbide manufactured by additive manufacturing. Surf. Coat. Technol. 2021, 425, 127688. [Google Scholar] [CrossRef]
- Interparticle van der Waals Force in Powder Flowability and Compactibility—All Databases. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/MEDLINE:15265549 (accessed on 25 February 2024).
- Miyanaji, H.; Rahman, K.M.; Da, M.; Williams, C.B. Effect of fine powder particles on quality of binder jetting parts. Addit. Manuf. 2020, 36, 101587. [Google Scholar] [CrossRef]
- Abdullah, E.C.; Geldart, D. The use of bulk density measurements as flowability indicators. Powder Technol. 1999, 102, 151–165. [Google Scholar] [CrossRef]
- Yu, A.B.; Hall, J.S. Packing of fine powders subjected to tapping. Powder Technol. 1994, 78, 247–256. [Google Scholar] [CrossRef]
- Zou, R.P.; Yu, A.B. Evaluation of the packing characteristics of mono-sized non-spherical particles. Powder Technol. 1996, 88, 71–79. [Google Scholar] [CrossRef]
- Giampietro, V.R.; Roth, C.; Gulas, M.; Wood, V.; Rudolf Von Rohr, P. Applying the Macroscopic Kinetic Approach to Plasma Polymerization to the Plasma Surface Modification of Micropowders: Attempt of Correlating Powder Flowability and Plasma Process Parameters. Plasma Process Polym. 2016, 13, 334–340. [Google Scholar] [CrossRef]
- Liu, B.; Wildman, R.; Tuck, C.; Ashcroft, I.; Hague, R. Investigation the Effect of Particle Size Distribution on Processing Parameters Optimisation in Selective Laser Melting Process. In 2011 International Solid Freeform Fabrication Symposium; University of Texas at Austin: Austin, TX, USA, 2011. [Google Scholar]
- Du, W.; Roa, J.; Hong, J.; Liu, Y.; Pei, Z.; Ma, C. Binder Jetting Additive Manufacturing: Effect of Particle Size Distribution on Density. J. Manuf. Sci. Eng. 2021, 143, 091002. [Google Scholar] [CrossRef]
- Du, W.; Ren, X.; Chen, Y.; Ma, C.; Radovic, M.; Pei, Z. Model Guided Mixing of Ceramic Powders with Graded Particle Sizes in Binder Jetting Additive Manufacturing. In American Society of Mechanical Engineers Digital Collection; American Society of Mechanical Engineers: New York, NY, USA, 2018. [Google Scholar]
- Du, W.; Li, M.; Pei, Z.; Ma, C. Performances of three models in predicting packing densities and optimal mixing fractions of mixtures of micropowders with different sizes. Powder Technol. 2022, 397, 117095. [Google Scholar] [CrossRef]
- Kaliyaperumal, S.; Barghi, S.; Briens, L.; Rohani, S.; Zhu, J. Fluidization of nano and sub-micron powders using mechanical vibration. Particuology 2011, 9, 279–287. [Google Scholar] [CrossRef]
- Liu, H.; Guo, Q.; Chen, S. Sound-Assisted Fluidization of SiO2 Nanoparticles with Different Surface Properties. Ind. Eng. Chem. Res. 2007, 46, 1345–1349. [Google Scholar] [CrossRef]
- Yu, Q.; Dave, R.N.; Zhu, C.; Quevedo, J.A.; Pfeffer, R. Enhanced fluidization of nanoparticles in an oscillating magnetic field. AIChE J. 2005, 51, 1971–1979. [Google Scholar] [CrossRef]
- Haeri, S. Optimisation of blade type spreaders for powder bed preparation in Additive Manufacturing using DEM simulations. Powder Technol. 2017, 321, 94–104. [Google Scholar] [CrossRef]
- Shaheen, M.Y.; Thornton, A.R.; Luding, S.; Weinhart, T. The influence of material and process parameters on powder spreading in additive manufacturing. Powder Technol. 2021, 383, 564–583. [Google Scholar] [CrossRef]
- Ziaee, M.; Hershman, R.; Mahmood, A.; Crane, N.B. Fabrication of Demineralized Bone Matrix/Polycaprolactone Composites Using Large Area Projection Sintering (LAPS). J. Manuf. Mater. Process 2019, 3, 30. [Google Scholar] [CrossRef]
- Haeri, S.; Wang, Y.; Ghita, O.; Sun, J. Discrete element simulation and experimental study of powder spreading process in additive manufacturing. Powder Technol. 2017, 306, 45–54. [Google Scholar] [CrossRef]
- Moghadasi, M.; Miao, G.; Li, M.; Pei, Z.; Ma, C. Combining powder bed compaction and nanopowders to improve density in ceramic binder jetting additive manufacturing. Ceram. Int. 2021, 47, 35348–35355. [Google Scholar] [CrossRef]
- Wang, L.; Li, E.L.; Shen, H.; Zou, R.P.; Yu, A.B.; Zhou, Z.Y. Adhesion effects on spreading of metal powders in selective laser melting. Powder Technol. 2020, 363, 602–610. [Google Scholar] [CrossRef]
- Miao, G.; Du, W.; Pei, Z.; Ma, C. A literature review on powder spreading in additive manufacturing. Addit. Manuf. 2022, 58, 103029. [Google Scholar] [CrossRef]
- Li, M.; Wei, X.; Pei, Z.; Ma, C. Binder jetting additive manufacturing: Observations of compaction-induced powder bed surface defects. Manuf. Lett. 2021, 28, 50–53. [Google Scholar] [CrossRef]
- Niino, T.; Sato, K. Effect of Powder Compaction in Plastic Laser Sintering Fabrication. In 2009 International Solid Freeform Fabrication Symposium; University of Texas at Austin: Austin, TX, USA, 2009. [Google Scholar]
- Budding, A.; Vaneker, T.H.J. New Strategies for Powder Compaction in Powder-based Rapid Prototyping Techniques. Procedia CIRP 2013, 6, 527–532. [Google Scholar] [CrossRef]
- Nan, W.; Pasha, M.; Ghadiri, M. Numerical simulation of particle flow and segregation during roller spreading process in additive manufacturing. Powder Technol. 2020, 364, 811–821. [Google Scholar] [CrossRef]
- Oropeza, D.; Penny, R.W.; Gilbert, D.; Hart, A.J. Mechanized spreading of ceramic powder layers for additive manufacturing characterized by transmission x-ray imaging: Influence of powder feedstock and spreading parameters on powder layer density. Powder Technol. 2022, 398, 117053. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, Y.; Bao, T.; Xu, Y.; Xiao, X.; Jiang, S. Discrete Element Simulation of the Effect of Roller-Spreading Parameters on Powder-Bed Density in Additive Manufacturing. Materials 2020, 13, 2285. [Google Scholar] [CrossRef] [PubMed]
- Seluga, K.J. Three Dimensional Printing by Vector Printing of Fine Metal Powders. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2001. [Google Scholar]
- Fouda, Y.M.; Bayly, A.E. A DEM study of powder spreading in additive layer manufacturing. Granul. Matter 2019, 22, 10. [Google Scholar] [CrossRef]
- Yao, D.; An, X.; Fu, H.; Zhang, H.; Yang, X.; Zou, Q.; Dong, K. Dynamic investigation on the powder spreading during selective laser melting additive manufacturing. Addit. Manuf. 2021, 37, 101707. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, T.; Li, Z.; Wei, Q.; Yan, W. Is high-speed powder spreading really unfavourable for the part quality of laser powder bed fusion additive manufacturing? Acta Mater. 2022, 231, 117901. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Y.; Liu, Y.; Wei, Q.; Shi, Y.; Yan, W. Packing quality of powder layer during counter-rolling-type powder spreading process in additive manufacturing. Int. J. Mach. Tools Manuf. 2020, 153, 103553. [Google Scholar] [CrossRef]
- Meier, C.; Weissbach, R.; Weinberg, J.; Wall, W.A.; Hart, A.J. Critical influences of particle size and adhesion on the powder layer uniformity in metal additive manufacturing. J. Mater. Process. Technol. 2019, 266, 484–501. [Google Scholar] [CrossRef]
- Hartmann, C.; Van Den Bosch, L.; Spiegel, J.; Rumschöttel, D.; Günther, D. Removal of Stair-Step Effects in Binder Jetting Additive Manufacturing Using Grayscale and Dithering-Based Droplet Distribution. Materials 2022, 15, 3798. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, Y.F. Process parameters optimization for improving surface quality and manufacturing accuracy of binder jetting additive manufacturing process. Rapid Prototyp. J. 2016, 22, 527–538. [Google Scholar] [CrossRef]
- Mostafaei, A.; Stevens, E.L.; Hughes, E.T.; Biery, S.D.; Hilla, C.; Chmielus, M. Powder bed binder jet printed alloy 625: Densification, microstructure and mechanical properties. Mater. Des. 2016, 108, 126–135. [Google Scholar] [CrossRef]
- Peng, L.; Jiang, W.; Yang, L.; Chen, Z.; Li, G.; Guan, F.; Fan, Z. Effect of silica sol on performance and surface precision of alumina ceramic shell prepared by binder jetting. Ceram. Int. 2022, 48, 24372–24382. [Google Scholar] [CrossRef]
- Dolenc, A.; Mäkelä, I. Slicing procedures for layered manufacturing techniques. Comput. Aided Des. 1994, 26, 119–126. [Google Scholar] [CrossRef]
- Kulkarni, P.; Dutta, D. An accurate slicing procedure for layered manufacturing. Comput. Aided Des. 1996, 28, 683–697. [Google Scholar] [CrossRef]
- Ma, W.; He, P. An adaptive slicing and selective hatching strategy for layered manufacturing. J. Mater. Process. Technol. 1999, 89–90, 191–197. [Google Scholar] [CrossRef]
- Paul, R.; Anand, S. Optimal part orientation in Rapid Manufacturing process for achieving geometric tolerances. J. Manuf. Syst. 2011, 30, 214–222. [Google Scholar] [CrossRef]
- Zhou, M.Y.; Xi, J.T.; Yan, J.Q. Adaptive direct slicing with non-uniform cusp heights for rapid prototyping. Int. J. Adv. Manuf. Technol. 2004, 23, 20–27. [Google Scholar] [CrossRef]
- Baş, H.; Yapıcı, F.; İnanç, İ. Using adaptive slicing method and variable binder amount algorithm in binder jetting. Rapid Prototyp. J. 2023, 29, 1730–1741. [Google Scholar] [CrossRef]
- Patirupanusara, P.; Suwanpreuk, W.; Rubkumintara, T.; Suwanprateeb, J. Effect of binder content on the material properties of polymethyl methacrylate fabricated by three dimensional printing technique. J. Mater. Process. Technol. 2008, 207, 40–45. [Google Scholar] [CrossRef]
- Ziaee, M.; Tridas, E.M.; Crane, N.B. Binder-Jet Printing of Fine Stainless Steel Powder with Varied Final Density. JOM 2017, 69, 592–596. [Google Scholar] [CrossRef]
- Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater. Des. 2018, 144, 98–128. [Google Scholar] [CrossRef]
- Wijshoff, H. Drop dynamics in the inkjet printing process. Curr. Opin. Colloid Interface Sci. 2018, 36, 20–27. [Google Scholar] [CrossRef]
- Pucci, J.U.; Christophe, B.R.; Sisti, J.A.; Connolly, E.S. Three-dimensional printing: Technologies, applications, and limitations in neurosurgery. Biotechnol. Adv. 2017, 35, 521–529. [Google Scholar] [CrossRef]
- Dong, Y.J.; Li, Z.M. Application and prospect of 3D printing and additive manufacturing technology in casting forming. Foundry Technol. 2018, 39, 2901–2904. [Google Scholar]
- Liu, H.; Lei, T.; Peng, F. Compensated printing and characterization of the droplet on the binder migration pattern during casting sand mold 3D printing. J. Manuf. Process 2023, 108, 114–125. [Google Scholar] [CrossRef]
- Chen, Q.; Juste, E.; Lasgorceix, M.; Petit, F.; Leriche, A. Binder jetting process with ceramic powders: Influence of powder properties and printing parameters. Open Ceram. 2022, 9, 100218. [Google Scholar] [CrossRef]
- Clegg, W.J. Role of Carbon in the Sintering of Boron-Doped Silicon Carbide. J. Am. Ceram. Soc. 2000, 83, 1039–1043. [Google Scholar] [CrossRef]
- Gubernat, A.; Stobierski, L.; Łabaj, P. Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives. J. Eur. Ceram. Soc. 2007, 27, 781–789. [Google Scholar] [CrossRef]
- Shinoda, Y.; Yoshida, M.; Akatsu, T.; Wakai, F. Effect of Amount of Boron Doping on Compression Deformation of Fine-Grained Silicon Carbide at Elevated Temperature. J. Am. Ceram. Soc. 2004, 87, 1525–1529. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B. Binder Jetting. In Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Gibson, I., Rosen, D., Stucker, B., Eds.; Springer: New York, NY, USA, 2015; pp. 205–218. ISBN 978-1-4939-2113-3. [Google Scholar]
- Ness, J.N.; Page, T.F. Microstructural evolution in reaction-bonded silicon carbide. J. Mater. Sci. 1986, 21, 1377–1397. [Google Scholar] [CrossRef]
- Roger, J.; Chollon, G. Mechanisms and kinetics during reactive infiltration of molten silicon in porous graphite. Ceram. Int. 2019, 45, 8690–8699. [Google Scholar] [CrossRef]
- Cramer, C.L.; Cakmak, E.; Unocic, K.A. Hardness Measurements and Interface Behavior of SiC-B4C-Si Multiple Phase Particulate Composites Made with Melt Infiltration and Additive Manufacturing. J. Compos. Sci. 2023, 7, 172. [Google Scholar] [CrossRef]
- Roger, J.; Guesnet, L.; Marchais, A.; Le Petitcorps, Y. SiC/Si composites elaboration by capillary infiltration of molten silicon. J. Alloys Compd. 2018, 747, 484–494. [Google Scholar] [CrossRef]
- Snead, L.L.; Nozawa, T.; Katoh, Y.; Byun, T.-S.; Kondo, S.; Petti, D.A. Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 2007, 371, 329–377. [Google Scholar] [CrossRef]
- Eckel, A.J.; Bradt, R.C. Strength Distribution of Reinforcing Fibers in a Nicalon Fiber/Chemically Vapor Infiltrated Silicon Carbide Matrix Composite. J. Am. Ceram. Soc. 1989, 72, 455–458. [Google Scholar] [CrossRef]
- Terrani, K.; Jolly, B.; Trammell, M. 3D printing of high-purity silicon carbide. J. Am. Ceram. Soc. 2020, 103, 1575–1581. [Google Scholar] [CrossRef]
- Colombo, P.; Mera, G.; Riedel, R.; Sorarù, G.D. Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. In Ceramics Science and Technology; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2013; pp. 245–320. ISBN 978-3-527-63197-1. [Google Scholar]
- Fleisher, A.; Zolotaryov, D.; Kovalevsky, A.; Muller-Kamskii, G.; Eshed, E.; Kazakin, M.; Popov, V.V. Reaction bonding of silicon carbides by Binder Jet 3D-Printing, phenolic resin binder impregnation and capillary liquid silicon infiltration. Ceram. Int. 2019, 45, 18023–18029. [Google Scholar] [CrossRef]
- Liu, L.; Li, H.; Feng, W.; Shi, X.; Wu, H.; Zhu, J. Effect of surface ablation products on the ablation resistance of C/C–SiC composites under oxyacetylene torch. Corros. Sci. 2013, 67, 60–66. [Google Scholar] [CrossRef]
- Moon, J.; Caballero, A.C.; Hozer, L.; Chiang, Y.-M.; Cima, M.J. Fabrication of functionally graded reaction infiltrated SiC–Si composite by three-dimensional printing (3DPTM) process. Mater. Sci. Eng. A 2001, 298, 110–119. [Google Scholar] [CrossRef]
- Piriou, C.; Rapaud, O.; Foucaud, S.; Charpentier, L.; Balat-Pichelin, M.; Colas, M. Sintering and oxidation behavior of HfB2-SiC composites from 0 to 30 vol% SiC between 1450 and 1800 K. Ceram. Int. 2019, 45, 1846–1856. [Google Scholar] [CrossRef]
- Aroati, S.; Cafri, M.; Dilman, H.; Dariel, M.P.; Frage, N. Preparation of reaction bonded silicon carbide (RBSC) using boron carbide as an alternative source of carbon. J. Eur. Ceram. Soc. 2011, 31, 841–845. [Google Scholar] [CrossRef]
- Liu, G.W.; Muolo, M.L.; Valenza, F.; Passerone, A. Survey on wetting of SiC by molten metals. Ceram. Int. 2010, 36, 1177–1188. [Google Scholar] [CrossRef]
- Tu, W.-C.; Lange, F.F. Liquid Precursor Infiltration Processing of Powder Compacts: I, Kinetic Studies and Microstructure Development. J. Am. Ceram. Soc. 1995, 78, 3277–3282. [Google Scholar] [CrossRef]
- Luo, Z.; Jiang, D.; Zhang, J.; Lin, Q.; Chen, Z.; Huang, Z. Influence of Phenolic Resin Impregnation on the Properties of Reaction-Bonded Silicon Carbide. Int. J. Appl. Ceram. Technol. 2013, 10, 519–526. [Google Scholar] [CrossRef]
- Lv, X.; Gao, L.; Cui, X.; Liu, H.; Ye, F.; Liu, H.; Cheng, L. Binder jetting additive manufacturing of hierarchical structural SiCw/SiC composites. Addit. Manuf. 2024, 93, 104434. [Google Scholar] [CrossRef]
- Zheng, C.; Lee, J.-K.; Nettleship, I. Three-dimensional characterization of the pore structures in SiC formed by binder jet 3D printing, polymer infiltration and pyrolysis (PIP). J. Eur. Ceram. Soc. 2023, 43, 4255–4262. [Google Scholar] [CrossRef]
- Nechanicky, M.A.; Chew, K.W.; Sellinger, A.; Laine, R.M. α-Silicon carbide/β-silicon carbide particulate composites via polymer infiltration and pyrolysis (PIP) processing using polymethylsilane. J. Eur. Ceram. Soc. 2000, 20, 441–451. [Google Scholar] [CrossRef]
- Luo, Z.; Zhou, X.; Yu, J.; Sun, K.; Wang, F. Mechanical properties of SiC/SiC composites fabricated by PIP process with a new precursor polymer. Ceram. Int. 2014, 40, 1939–1944. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; An, L. Control of the thermal conductivity of SiC by modifying the polymer precursor. J. Eur. Ceram. Soc. 2017, 37, 61–67. [Google Scholar] [CrossRef]
- Kotani, M.; Inoue, T.; Kohyama, A.; Okamura, K.; Katoh, Y. Consolidation of polymer-derived SiC matrix composites: Processing and microstructure. Compos. Sci. Technol. 2002, 62, 2179–2188. [Google Scholar] [CrossRef]
- Kohyama, A.; Kotani, M.; Katoh, Y.; Nakayasu, T.; Sato, M.; Yamamura, T.; Okamura, K. High-performance SiC/SiC composites by improved PIP processing with new precursor polymers. J. Nucl. Mater. 2000, 283–287, 565–569. [Google Scholar] [CrossRef]
- Nannetti, C.A.; Ortona, A.; de Pinto, D.A.; Riccardi, B. Manufacturing SiC-Fiber-Reinforced SiC Matrix Composites by Improved CVI/Slurry Infiltration/Polymer Impregnation and Pyrolysis. J. Am. Ceram. Soc. 2004, 87, 1205–1209. [Google Scholar] [CrossRef]
- Lv, X.; Ye, F.; Cheng, L.; Fan, S.; Liu, Y. Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology. J. Eur. Ceram. Soc. 2019, 39, 3380–3386. [Google Scholar] [CrossRef]
- Baux, A.; Goillot, A.; Jacques, S.; Heisel, C.; Rochais, D.; Charpentier, L.; David, P.; Piquero, T.; Chartier, T.; Chollon, G. Synthesis and properties of macroporous SiC ceramics synthesized by 3D printing and chemical vapor infiltration/deposition. J. Eur. Ceram. Soc. 2020, 40, 2834–2854. [Google Scholar] [CrossRef]
- Wang, F.; Yin, J.; Yao, D.; Xia, Y.; Zuo, K.; Xu, J.; Zeng, Y. Fabrication of porous SiC ceramics through a modified gelcasting and solid state sintering. Mater. Sci. Eng. A 2016, 654, 292–297. [Google Scholar] [CrossRef]
- Liu, M.; Yang, Y.; Wei, Y.; Li, Y.; Zhang, H.; Liu, X.; Huang, Z. Preparation of dense and high-purity SiC ceramics by pressureless solid-state-sintering. Ceram. Int. 2019, 45, 19771–19776. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, X.; Wang, H.; Yu, J. Flexural behaviors and microstructures of SiC/SiC composites fabricated by microwave sintering assisted with heat molding process. Ceram. Int. 2020, 46, 2693–2702. [Google Scholar] [CrossRef]
- Lara, A.; Ortiz, A.L.; Muñoz, A.; Domínguez-Rodríguez, A. Densification of additive-free polycrystalline β-SiC by spark-plasma sintering. Ceram. Int. 2012, 38, 45–53. [Google Scholar] [CrossRef]
- Gao, C.; Chen, J.; Huang, C.; Liao, S.; Peng, L.; Huang, Z. Pressureless solid-state sintering of SiC ceramics prepared by material extrusion 3D printing. Ceram. Int. 2025. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Hu, K.; Liu, B.; Liu, M.; Huang, Z. Stereolithography-based additive manufacturing of lightweight and high-strength Cf/SiC ceramics. Addit. Manuf. 2020, 34, 101199. [Google Scholar] [CrossRef]
- Wang, K.; Yin, J.; Chen, X.; Liu, X.; Huang, Z. Microstructure and properties of liquid phase sintered SiC ceramics fabricated via selective laser printing and precursor impregnation and pyrolysis. Ceram. Int. 2024, 50, 4315–4322. [Google Scholar] [CrossRef]
- Song, Z.; Yang, W.; Hou, Y.; Zhang, L.; Zhang, R.; Dong, Z.; Huang, X.; Guo, L.; Jiang, M.; Ma, Y. Binder jetting 3D printing preparation of SiC ceramics with low free silicon content and densification by PIP and LSI process. J. Mater. Res. Technol. 2025, 36, 5899–5910. [Google Scholar] [CrossRef]
- Evident, R.B. Measuring Surface Roughness: The Benefits of Laser Confocal Microscopy. Available online: https://www.photonics.com/Articles/Measuring_Surface_Roughness_The_Benefits_of/a58301 (accessed on 20 June 2024).
- Roughness Measurement—Optical 3D Surface Metrology. Confovis n.d. Available online: https://www.confovis.com/en/solutions/surface-metrology/roughness-measurement/ (accessed on 20 June 2024).
- Sharratt, B.M. Non-Destructive Techniques and Technologies for Qualification of Additive Manufactured Parts and Processes: A Literature Review; Contract Report DRDC-RDDC-2015-C035; Government of Canada Publications: Victoria, BC, Canada, 2015. [Google Scholar]
- Karad, A.S.; Sonawwanay, P.D.; Naik, M.; Thakur, D.G. Experimental study of effect of infill density on tensile and flexural strength of 3D printed parts. J. Eng. Appl. Sci. 2023, 70, 104. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Han, Y.; Lu, Z.; Miao, K.; Wang, Z.; Li, D. Thermally assisted extrusion-based 3D printing of continuous carbon fiber-reinforced SiC composites. Compos. Part A-Appl. Sci. Manuf. 2023, 172, 107593. [Google Scholar] [CrossRef]
- Boyes, W. Instrumentation Reference Book; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Spierings, A.B.; Herres, N.; Levy, G. Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp. J. 2011, 17, 195–202. [Google Scholar] [CrossRef]
- Deutsch, S. A Preliminary Study of the Fluid Mechanics of Liquid Penetrant Testing. J. Res. Natl. Bur. Stand. 1979, 84, 287–292. [Google Scholar] [CrossRef]
- Schröder, M.; Biedermann, C.; Vilbrandt, R. On the applicability of dye penetrant tests on vacuum components: Allowed or forbidden? Fusion Eng. Des. 2013, 88, 1947–1950. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Reinicke, T. On the Use of X-ray Computed Tomography in Assessment of 3D-Printed Components. J. Nondestruct. Eval. 2020, 39, 75. [Google Scholar] [CrossRef]
- Zikmund, T.; Šalplachta, J.; Zatočilová, A.; Břínek, A.; Pantělejev, L.; Štěpánek, R.; Koutný, D.; Paloušek, D.; Kaiser, J. Computed tomography based procedure for reproducible porosity measurement of additive manufactured samples. NDT E Int. 2019, 103, 111–118. [Google Scholar] [CrossRef]
- Lu, Q.Y.; Wong, C.H. Additive manufacturing process monitoring and control by non-destructive testing techniques: Challenges and in-process monitoring. Virtual Phys. Prototyp. 2018, 13, 39–48. [Google Scholar] [CrossRef]
- Baniukiewicz, P. Automated Defect Recognition and Identification in Digital Radiography. J. Nondestruct. Eval. 2014, 33, 327–334. [Google Scholar] [CrossRef]
- Boretti, A.; Castelletto, S. A perspective on 3D printing of silicon carbide. J. Eur. Ceram. Soc. 2024, 44, 1351–1360. [Google Scholar] [CrossRef]
- CONCR3DE—Your 3D Powderhouse|Home. Available online: https://concr3de.com/ (accessed on 17 February 2025).
- ExOne. Available online: https://www.exone.com/ (accessed on 17 February 2025).
- Saint-Gobain. Available online: https://www.saint-gobain.com/fr (accessed on 17 February 2025).
- Boretti, A.; Castelletto, S. High-temperature molten-salt thermal energy storage and advanced-Ultra-supercritical power cycles. J. Energy Storage 2021, 42, 103143. [Google Scholar] [CrossRef]
- Smarte Lösungen aus Graphit & Faserverbundwerkstoffen|SGL Carbon. Available online: https://www.sglcarbon.com/ (accessed on 3 March 2025).
- Farsoon Technologies_Your Industrial AM Partner. Available online: https://www.farsoon.com/ (accessed on 17 February 2025).
- Guo, Z.; An, L.; Khuje, S.; Chivate, A.; Li, J.; Wu, Y.; Hu, Y.; Armstrong, J.; Ren, S.; Zhou, C. 3D-printed electrically conductive silicon carbide. Addit. Manuf. 2022, 59, 103109. [Google Scholar] [CrossRef]
- Hashmi, A.W.; Mali, H.S.; Meena, A.; Ahmad, S.; Tian, Y. A novel eco-friendly abrasive media based abrasive flow machining of 3D printed PLA parts using IGWO and ANN. RAPID Prototyp. J. 2023, 29, 2019–2038. [Google Scholar] [CrossRef]
- Antonio, E.L.S.; Anik, A.M.; Kuksenok, O.; Luzinov, I. Enhancement of Polypropylene 3D-Printed Structures via the Addition of SiC Whiskers and Microwave Irradiation. ACS Appl. Mater. Interfaces 2023, 15, 40042–40053. [Google Scholar] [CrossRef]
- Song, D.; Chen, X.; Wang, M.; Wu, Z.; Xiao, X. 3D-printed flexible sensors for food monitoring. Chem. Eng. J. 2023, 474, 146011. [Google Scholar] [CrossRef]
- Shahbazi, M.; Jäger, H.; Ettelaie, R.; Mohammadi, A.; Asghartabar Kashi, P. Multimaterial 3D printing of self-assembling smart thermo-responsive polymers into 4D printed objects: A review. Addit. Manuf. 2023, 71, 103598. [Google Scholar] [CrossRef]
- Chen, L.; Wu, R.; Xu, G.; Cui, Y.; Fan, M.; Wang, X.; Zeng, T.; Cheng, S. Preparation and mechanical performance of 3D printed Cf/SiC laminated ceramics. Ceram. Int. 2024, 50, 30560–30569. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, B.; Zhang, M.; Wen, Y.; Qu, X. Indirect 3D printed ceramic: A literature review. J. Cent. South Univ. 2021, 28, 983–1002. [Google Scholar] [CrossRef]
- He, L.; Kong, D.; Xu, C.; Lei, C.; Li, W.; Zhao, Y. 3D Printing of Polymer Precursor Derived High Performance Ceramics. Prog. Chem. 2021, 32, 1978–1989. [Google Scholar] [CrossRef]
- Gao, X.; Chen, J.; Chen, X.; Wang, W.; Li, Z.; He, R. How to Improve the Curing Ability during the Vat Photopolymerization 3D Printing of Non-Oxide Ceramics: A Review. Materials 2024, 17, 2626. [Google Scholar] [CrossRef] [PubMed]
- Joseph, T.M.; Kallingal, A.; Suresh, A.M.; Mahapatra, D.K.; Hasanin, M.S.; Haponiuk, J.; Thomas, S. 3D printing of polylactic acid: Recent advances and opportunities. Int. J. Adv. Manuf. Technol. 2023, 125, 1015–1035. [Google Scholar] [CrossRef]
- Chen, A.; Su, J.; Li, Y.; Zhang, H.; Shi, Y.; Yan, C.; Lu, J. 3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineering. Int. J. Extreme Manuf. 2023, 5, 032007. [Google Scholar] [CrossRef]
- Skorda, S.; Bardakas, A.; Segkos, A.; Chouchoumi, N.; Hourdakis, E.; Vekinis, G.; Tsamis, C. Influence of SiC Doping on the Mechanical, Electrical, and Optical Properties of 3D-Printed PLA. J. Compos. Sci. 2024, 8, 79. [Google Scholar] [CrossRef]
- Ravichandran, D.; Dmochowska, A.; Sundaravadivelan, B.; Thippanna, V.; de Castro, E.M.; Patil, D.; Ramanathan, A.; Zhu, Y.; Asadi, A.; Peixinho, J.; et al. 3D Printing Carbon-Carbon Composites with Multilayered Architecture for Enhanced Multifunctional Properties. ChemRxiv 2024. [Google Scholar] [CrossRef]
- Zou, B.; Jiang, Y.; Tian, G. Design and verification of a silicon carbide special-shaped mirror set based on 3D printing. In Proceedings of the Sixth Conference on Frontiers in Optical Imaging and Technology: Novel Technologies in Optical Systems, Nanjing, China, 22–24 October 2023; SPIE: St Bellingham, WA, USA, 2024; Volume 13153, pp. 87–99. [Google Scholar]
- She, Y.; Tang, J.; Wang, C.; Wang, Z.; Huang, Z.; Yang, Y. Preparation of high-density green body based on binder jetting 3D printing using spheroidized SiC powder. Ceram. Int. 2024, 50, 32412–32419. [Google Scholar] [CrossRef]
Additive Manufacturing Method | Binding Mechanism | Forming Method | The Current State of SiC Component Manufacturing | Ref. |
---|---|---|---|---|
SLA | Photopolymerization (liquid resin is cured by light) | Layer-by-layer curing of resin | High resolution, suitable for small-scale, high-precision parts. Low density of green parts due to the low solid loading and the opacity of SiC powders to light. | [22,23] |
DLP | Photopolymerization (liquid resin is cured by light using digital micromirror devices) | Layer-by-layer curing of resin using a digital projector | Higher resolution and suitable for large-sized parts. The limitations of the binder material result in poor mechanical strength and high-temperature resistance of SiC components. | [14,24] |
SLS | Fusion (powder is fused using a laser beam) | Layer-by-layer sintering of powder | Capable of producing high-density and mechanically strong parts. Large thermal stresses may cause deformation of SiC components. | [25,26] |
MEX | Fusion (material is extruded and fused layer by layer) | Material is extruded and fused layer by layer using a nozzle | Relatively cost-effective, especially suitable for large-scale production. The precision of small and complex geometric SiC components is relatively low. | [24,27] |
Types of Binders | Representative Binders | Advantages | Disadvantages | Applicable Printing Scenarios |
---|---|---|---|---|
In-liquid binder | Water-based binders (such as polyvinyl alcohol [42], polyacrylic acid [43], water-based polymer binders [44], and amine-based polymer binders [45]). Solvent-based binders (such as polyvinyl pyrrolidone [46]). | Improve printing accuracy and sintering density [47]; suitable for a wider range of powder materials [40]. | Easily clog the nozzle [48]. | High-precision, high-density sintering [47]; complex geometric structures; no additional powder pretreatment required [49]. |
Dry premixed binder | Polymer binders (such as phenolic resin [50] and phenolic polymer binders [51]). Inorganic material-based (such as inorganic colloids [52], etc.). | Lower equipment maintenance costs; improve printing stability [48]. | Additional powder processing steps; the uniformity of the binder is difficult to ensure [41]. | Filtration materials, high-porosity structures [53]; sand casting, ceramic molds [47]; low-cost, large-scale production. |
Company | Model | Number of Nozzles (Units) | Nozzle Size (μm) | Resolution (dpi) | Maximum Frequency (kHz) | Advantage | Disadvantage | Ref. |
---|---|---|---|---|---|---|---|---|
Xaar (Cambridge, UK) | Xaar 2002 | 2000 | 20 | 720 | 36 | High precision, high reliability, suitable for BJ 3D printing. | Higher cost. | [55] |
HP (Palo Alto, CA, USA) | HP Multi Jet Fusion | 42,240 | 20 | 1200 | - | High nozzle density, fast speed, and high print quality. | Complex equipment with high maintenance costs. | [56] |
Epson (Suwa, Japan) | PrecisionCore | 33,500 | 20 | 1440 | Variable | High precision and high reliability. | Higher price. | [57] |
Toshiba (Tokyo, Japan) | Toshiba TEC CF3 | 636 | 22 | 300 | 30 | High stability, suitable for various applications. | Lower resolution. | [58] |
Kyocera (Kyoto, Japan) | SG1024 | 1024 | 20 | 400 | 20 | High reliability, suitable for high-speed printing. | Fewer nozzles, medium resolution. | [59] |
Company | Equipment | Characteristics of SiC Component Formation | Applicable Fields | Ref. |
---|---|---|---|---|
Voxelab (Jinhua, China) | Voxelab V1 | High-resolution printheads print SiC green bodies with high-precision microporous structures and, combined with LSI, achieve high-precision printing of SiC components. | Small-batch production and SiC components with specific precision requirements (such as in the medical and electronics fields). | [60] |
Desktop Metal (Burlington, VT, USA) | Desktop Metal Studio System | Designed to print green bodies with a microporous structure, enabling a fast and efficient sintering process. The combination of multiple printheads and a highly automated system offers significant advantages in fast production and high efficiency. | Industry applications requiring efficient large-scale production (such as in the manufacturing of lightweight automotive parts). | [61] |
ExOne (North Huntingdon, PA, USA) | ExOne S-Max | By printing green bodies with up to 50% porosity, it facilitates infiltration with liquid silicon, resulting in SiC components with high density, high strength, and high heat resistance. | High-performance ceramic components (such as gas turbine parts, aircraft engine components, etc.) and industrial components with complex geometries. | [62] |
3D Systems (Rock Hill, SC, USA) | ProJet MJP 2500 | Utilizes high-speed, high-resolution printheads to rapidly print SiC green bodies with high-precision microporous structures and, combined with LSI, enables rapid prototyping of high-quality components. | Manufacturing of components with high-quality requirements (such as shaft supports, aerospace engines). | [63] |
Process Name | Process Principle | Advantages | Disadvantages | Theoretical Densification Rate | Ref. |
---|---|---|---|---|---|
LSI | The porous SiC-C preform is immersed in molten silicon, and the liquid silicon infiltrates into the pores through capillary action, reacting with carbon to form SiC that fills the pores, thereby achieving densification. | High densification efficiency, simple process, suitable for large-scale production. | Residual silicon is difficult to completely remove. | Approximately 95% | [139,140,141,142,143] |
CVI | The gaseous precursor enters the reaction chamber and decomposes within the pores of the porous SiC preform, depositing SiC through multiple infiltration and deposition cycles to gradually fill the pores and achieve densification. | Capable of producing high-purity SiC; minimal risk of material deformation. | The process exhibits extended cycle duration, necessitates complex equipment with elevated capital and maintenance expenditures, and demonstrates suboptimal vapor-phase infiltration efficiency. | Approximately 90–92% | [144,145] |
PIP | The preform is immersed in a silicon-based polymer precursor, and, under an inert atmosphere at appropriate temperatures, the polymer undergoes pyrolysis to generate SiC that fills the pores. Multiple impregnation and pyrolysis cycles are required until the desired density is achieved. | Low pyrolysis temperature; enables production of high-purity SiC components; relatively simple process. | The process has a long cycle time, and polymer shrinkage during pyrolysis poses a risk of material cracking. | Approximately 85–95% | [23,45,146] |
Precursor Polymer for the SiC Matrix | Description of the Precursor | The Prepared Ceramic Material | Number of PIP Cycles | Densification Effect | Ref. |
---|---|---|---|---|---|
Hyperbranched polymer (mPMS) | Modified by adding 12 wt% crosslinking agent to polymethylsilane (PMS) | α-SiC/β-SiC | 10 | The material density is 2.5 ± 0.05 g/cm3, reaching 90 ± 2% of the theoretical density. | [157] |
Liquid polycarbosilane with active Si–H and 3CHaCH2 groups (LPVCS) | Prepared by using 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane (V4) as the curing agent and liquid polycarbosilane as the starting material | SiC fiber-reinforced SiC matrix composites (SiC/SiC) | 10 | The material density is 2.16 g/cm3, with a porosity of 6.7%. | [158] |
Polycarbosilane (PCS) modified with divinylbenzene (DVB) | Modify the conventional polycarbosilane (PCS) precursor with 20% of divinylbenzene (DVB) | SiC ceramic | - | The material exhibits a density of 2.20 g/cm3, with a porosity of 14%. | [159] |
Polyvinylsilane (PVS) | Liquid thermosetting organo-silicic compound | SiC fiber-reinforced SiC matrix composites (SiC/SiC) | 1 | The material shows a relative density of 70%, corresponding to approximately 30% porosity. | [160] |
Blend of polycarbosilane (PCS) and polymethylsilane (PMS) | Based on the above, combined with oxide fillers (BMAS/ZrSiO4 fillers) | SiC fiber-reinforced SiC matrix composites (SiC/SiC) | - | Near-stoichiometric SiC matrix (C/Si ≈ 1:1) achieved, with improved high-temperature strength (380 MPa at 1673 K). Densification data not reported. | [161] |
Allylhydridopolycarbosilane (AHPCS) | The molecular structure contains allyl groups (–CH2–CH=CH2) and hydride groups (–Si–H) | SiC fiber-reinforced SiC matrix composite | - | The porosity is approximately 10%, with enhanced thermal diffusivity but reduced strength. | [162] |
Testing Methods | Testing Principle | Testing Parameters | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|
Scanning Electron Microscopy | The surface of the sample is scanned by an electron beam, and secondary electron signals are collected and converted into high-resolution images. | Surface morphology and defect characteristics (micron/nanometer scale) | Nanometer-scale resolution enables analysis of microscopic defect origins | The equipment is expensive, operationally complex, and time-consuming for inspection, with limitations to surface examination only. | [179] |
Liquid Penetrant Testing | The dye penetrates surface defects through capillary action, and color distribution is observed after development. | Surface-breaking defects (cracks, pores) | Cost-effective, operationally simple, and suitable for simple structural components | Highly susceptible to surface roughness effects, requiring pretreatment; limited to surface defect detection only. | [180,181] |
Computed Tomography | X-rays penetrate the sample, and the internal structure is visualized through three-dimensional reconstruction. | Internal defects (porosity, crack distribution, density) | High resolution (micron-scale) enabling three-dimensional visualization of internal defects | The equipment exhibits high costs, slow inspection speed, and limitations for large-sized components. | [182,183] |
Ultrasonic Testing | High-frequency acoustic waves propagate through the material, and internal defects are analyzed by reflected signals. | Internal defects (cracks, delamination), thickness measurement | Capable of inspecting thick components with relatively low cost and high portability | Requires surface planarization treatment and presents difficulties in inspecting components with complex geometries. | [180] |
Thermal Imaging Technology | The surface temperature field is captured by an infrared camera after thermal excitation, and anomalies caused by thermal conductivity differences are analyzed. | Internal defects (porosity, delamination), thermal properties | Rapid large-area inspection suitable for online monitoring | Relatively low accuracy (millimeter-scale) with incapability for quantitative defect size analysis. | [184,185] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Xiao, F.; Gao, Y. SiC Powder Binder Jetting 3D Printing Technology: A Review of High-Performance SiC-Based Component Fabrication and Applications. Appl. Sci. 2025, 15, 6488. https://doi.org/10.3390/app15126488
Liu H, Xiao F, Gao Y. SiC Powder Binder Jetting 3D Printing Technology: A Review of High-Performance SiC-Based Component Fabrication and Applications. Applied Sciences. 2025; 15(12):6488. https://doi.org/10.3390/app15126488
Chicago/Turabian StyleLiu, Hong, Feng Xiao, and Yang Gao. 2025. "SiC Powder Binder Jetting 3D Printing Technology: A Review of High-Performance SiC-Based Component Fabrication and Applications" Applied Sciences 15, no. 12: 6488. https://doi.org/10.3390/app15126488
APA StyleLiu, H., Xiao, F., & Gao, Y. (2025). SiC Powder Binder Jetting 3D Printing Technology: A Review of High-Performance SiC-Based Component Fabrication and Applications. Applied Sciences, 15(12), 6488. https://doi.org/10.3390/app15126488