Influence of Tomato Pomace on the Quality of Canned Pork Meat with Reduced Nitrogen Compounds
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Canned Pork
L = 10 (T − T0)/z
2.2. Basic Chemical Composition
2.3. Physicochemical Parameters (pH, Water Activity)
2.4. Color Attributes (CIE L* a* b*, ΔΕ)
2.5. Antioxidant Capacity and Lipid Oxidation Analysis (TBARS)
2.6. Microbiological Analysis
2.7. Identification of Microorganisms Using Mass Spectrometry
2.7.1. Preparing the MALDI-TOF Matrix Solution
2.7.2. Identification of Microorganisms
2.8. Statistical Analysis
3. Results
3.1. Chemical Composition
3.2. Physicochemical Parameters (pH, aw, CIE L*a*b*)
3.3. Antioxidant Properties and Secondary Lipid Oxidation Products
3.4. Results of Microbiological Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alahakoon, A.U.; Jayasena, D.D.; Ramachandra, S.; Jo, C.H. Alternatives to Nitrite in Processed Meat: Up to Date. Trends Food Sci. Technol. 2015, 45, 37–49. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M.; Domínguez, R.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Shpigelman, A.; Granato, D.; Franco, D. Berries Extracts as Natural Antioxidants in Meat Products: A Review. Food Res. Int. 2018, 106, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Gullón, P.; Pateiro, M.; Munekata, P.E.; Zhang, W.; Lorenzo, J.M. Tomato as Potential Source of Natural Additives for the Meat Industry: A Review. Antioxidants 2020, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.; Gullón, B.; Pateiro, M.; Tomasevic, I.; Domínguez, R.; Lorenzo, J.M. Natural Antioxidants from Seeds and Their Application in Meat Products. Antioxidants 2020, 9, 815. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Munekata, P.E.; Pateiro, M.; Maggiolino, A.; Bohrer, B.; Lorenzo, J.M. Red Beetroot: A Potential Source of Natural Additives for the Meat Industry. Appl. Sci. 2020, 10, 8340. [Google Scholar] [CrossRef]
- Shao, D.; Atungulu, G.G.; Pan, Z.; Yue, T.; Zhang, A.; Fan, Z. Characteristics of Isolation and Functionality of Protein from Tomato Pomace Produced with Different Industrial Processing Methods. Food Bioprocess Technol. 2014, 7, 532–541. [Google Scholar] [CrossRef]
- Nour, V.; Ionica, M.E.; Trandafir, I. Bread Enriched in Lycopene and Other Bioactive Compounds by Addition of Dry Tomato Waste. J. Food Sci. Technol. 2015, 52, 8260–8267. [Google Scholar] [CrossRef]
- Abbassi, N.; Ait Talhajt, S.; Fadel, S.; Ahra, M. Tomato Pomace Valorization by Oil and Bioactive Compounds Extraction: Case of Souss-Massa Region. Am. J. Innov. Res. Appl. Sci. 2021, 12, 211–216. [Google Scholar]
- Kun, Y.; Ssonko Lule, U.; Xiao-Lin, D. Lycopene: Its Properties and Relationship to Human Health. Food Rev. Int. 2006, 22, 309–333. [Google Scholar] [CrossRef]
- Perveen, R.; Suleria, H.A.R.; Anjum, F.M.; Butt, M.S.; Pasha, I.; Ahmad, S. Tomato (Solanum lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims—A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 919–929. [Google Scholar] [CrossRef]
- Büyükünal, S.K.; Sakar, F.S.; Turhan, I.; Erginba, Ç.; Sandikçi Altunatmaz, S.; Yilmaz Aksu, F.; Yilmaz Eker, F.; Kahraman, T. Presence of Salmonella spp., Listeria monocytogenes, Escherichia coli O157 and Nitrate-Nitrite Residue Levels in Turkish Traditional Fermented Meat Products (Sucuk and Pastırma). Kafkas Univ. Vet. Fak. Derg. 2016, 22, 233–236. [Google Scholar]
- Hospital, X.F.; Hierro, E.; Stringer, S.; Fernández, M. A Study on the Toxigenesis by Clostridium botulinum in Nitrate- and Nitrite-Reduced Dry Fermented Sausages. Int. J. Food Microbiol. 2016, 218, 66–70. [Google Scholar] [CrossRef]
- Wójciak, K.M.; Kęska, P.; Okoń, A.; Solska, E.; Libera, J.; Dolatowski, Z.J. The Influence of Acid Whey on the Antioxidant Peptides Generated to Reduce Oxidation and Improve Colour Stability in Uncured Roast Beef. J. Sci. Food Agric. 2018, 98, 3728–3734. [Google Scholar] [CrossRef]
- Wójciak, K.M.; Karwowska, M.; Dolatowski, Z.J. Use of Acid Whey and Mustard Seed to Replace Nitrites during Cooked Sausage Production. Meat Sci. 2014, 96, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Ferysiuk, K.; Wójciak, K.M. The Possibility of Reduction of Synthetic Preservative E 250 in Canned Pork. Foods 2020, 9, 1869. [Google Scholar] [CrossRef]
- Ferysiuk, K.; Wójciak, K.M.; Trzaskowska, M. Fortification of Low-Nitrite Canned Pork with Willow Herb (Epilobium angustifolium L.). Int. J. Food Sci. Technol. 2022, 57, 4194–4210. [Google Scholar] [CrossRef]
- Singh, M.; Novoa Rama, E.; Kataria, J.; Leone, C.; Thippareddi, H. Emerging Meat Processing Technologies for Microbiological Safety of Meat and Meat Products. Meat Muscle Biol. 2020, 4, 1–18. [Google Scholar] [CrossRef]
- Gaze, J.E. Microbiological aspects of thermally processed foods. J. Appl. Microbiol. 2005, 98, 1381–1386. [Google Scholar] [CrossRef]
- Eneji, C.A. The Effect of heat treatment on the chemical composition of canned meat. Glob. J. Pure Appl. Sci. 2001, 7, 49–56. [Google Scholar] [CrossRef]
- Olvera-Aguirre, G.; Piñeiro-Vázquez, Á.T.; Sanginés-García, J.R.; Sánchez Zárate, A.; Ochoa-Flores, A.A.; Segura-Campos, M.R.; Vargas-Bello-Pérez, E.; Chay-Canul, A.J. Using plant-based compounds as preservatives for meat products: A review. Heliyon 2023, 9, e17071. [Google Scholar] [CrossRef]
- Regulation (EC) No 1333/2008 of the European Parliament of the Council of 16 December 2008 on Food Additives. Off. J. Eur. Union 2008, L354, 16–33.
- Adewale, O.; Jumoke, I.; Ifeoluwa, A. Influence of Drying Temperature and Storage Period on the Quality of Cherry and Plum Tomato Powder. Food Sci. Nutr. 2018, 6, 1146–1153. [Google Scholar] [CrossRef]
- Commission Internationale de L’Eclairage (CIE). Recommendations on Uniform Colour Spaces, Colour-Difference Equations, Psychometric Colour Terms; CIE: Paris, France, 1978. [Google Scholar]
- AMSA. Meat Color Measurements Guidelines; American Meat Science Association: Savoy, IL, USA, 2012. [Google Scholar]
- Mokrzycki, W.S.; Tatol, M. Color Difference ∆E—A Survey. In Proceedings of the Machine Graphic & Vision, Warsaw, Poland, 8 October 2012. [Google Scholar]
- Jung, S.; Choe, J.; Kim, B.; Yun, H.; Kruk, Z.A.; Jo, C. Effect of Dietary Mixture of Gallic Acid and Linoleic Acid on Antioxidative Potential and Quality of Breast Meat from Broilers. Meat Sci. 2010, 86, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Ferysiuk, K.; Wójciak, K.M.; Materska, M.; Chilczuk, B.; Pabich, M. Modification of Lipid Oxidation and Antioxidant Capacity in Canned Refrigerated Pork with a Nitrite Content Reduced by Half and Addition of Sweet Pepper Extract. LWT-Food Sci. Technol. 2020, 118, 108738. [Google Scholar] [CrossRef]
- Erel, O. A Novel Automated Direct Measurement Method for Total Antioxidant Capacity Using a New Generation, More Stable ABTS Radical Cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Pikul, J.; Leszczynski, D.E.; Kummerow, F.A. Evaluation of Three Modified TBA Methods for Measuring Lipid Oxidation in Chicken Meat. J. Agric. Food Chem. 1989, 37, 1309–1313. [Google Scholar] [CrossRef]
- Wójciak, K.M.; Kęska, P.; Kačániová, M.; Čmiková, N.; Solska, E.; Ogórek, A. Evaluation of Quality of Nitrite-Free Fermented Roe Deer (Capreolus capreolus) Sausage with Addition of Ascorbic Acid and Reduced NaCl. Foods 2024, 13, 3823. [Google Scholar] [CrossRef]
- Estévez, M. Critical Overview of the Use of Plant Antioxidants in the Meat Industry: Opportunities, Innovative Applications, and Future Perspectives. Meat Sci. 2021, 181, 108610. [Google Scholar] [CrossRef]
- Yagci, S.; Caliskan, R.; Gunes, Z.S.; Capanoglu, E.; Tomas, M. Impact of Tomato Pomace Powder Added to Extruded Snacks on the In Vitro Gastrointestinal Behaviour and Stability of Bioactive Compounds. Food Chem. 2022, 368, 130847. [Google Scholar] [CrossRef]
- Chabi, I.B.; Zannou, O.; Emmanuelle, S.C.A.; Dedehou, B.; Ayegnon, P.; Oloudé, B.; Odouaro, O.; Maqsood, S.; Galanakis, C.H.M.; Kayodè, P. Tomato Pomace as a Source of Valuable Functional Ingredients for Improving Physicochemical and Sensory Properties and Extending the Shelf Life of Foods: A Review. Heliyon 2024, 10, 25261. [Google Scholar] [CrossRef]
- Skwarek, P.; Karwowska, M. Fatty Acids Profile and Antioxidant Properties of Raw Fermented Sausages with the Addition of Tomato Pomace. Biomolecules 2022, 12, 1695. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.M.; García, M.L.; Selgas, M.D. Dry Fermented Sausages Enriched with Lycopene from Tomato Peel. Meat Sci. 2008, 80, 167–172. [Google Scholar] [CrossRef]
- Ghafouri-Oskuei, H.; Javadi, A.; Reza Saeidi Asl, M.; Azadmard-Damirchi, S.; Armin, M. Quality Properties of Sausage Incorporated with Flaxseed and Tomato Powders. Meat Sci. 2020, 161, 107957. [Google Scholar] [CrossRef]
- García, M.L.; Calvo, M.M.; Selgas, M.D. Beef Hamburgers Enriched in Lycopene Using Dry Tomato Peel as an Ingredient. Meat Sci. 2009, 83, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S.; Jin, S.K.; Yang, M.R.; Chu, G.M.; Park, J.H.; Rashid, R.H.I.; Kim, Y.Y.; Kang, S.N. Efficacy of Tomato Powder as Antioxidant in Cooked Pork Patties. Asian-Australas. J. Anim. Sci. 2013, 26, 1339–1346. [Google Scholar] [CrossRef]
- Østerlie, M.; Lerfall, J. Lycopene from Tomato Products Added Minced Meat: Effect on Storage Quality and Colour. Int. Food Res. 2005, 38, 925–929. [Google Scholar] [CrossRef]
- Kowalska, H.; Czajkowska, K.; Cichowska, J.; Lenart, A. What’s New in Biopotential of Fruit and Vegetable By-Products Applied in the Food Processing Industry. Trends Food Sci. Technol. 2017, 67, 150–159. [Google Scholar] [CrossRef]
- Serpen, A.; Gökmen, V.; Fogliano, V. Total Antioxidant Capacities of Raw and Cooked Meats. Meat Sci. 2012, 90, 60–65. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of Antioxidant Activity. J. Funct. Foods. 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Arnao, M.B. Some Methodological Problems in the Determination of Antioxidant Activity Using Chromogen Radicals: A Practical Case. Trends Food Sci. Technol. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Riazi, F.; Zeynali, F.; Hoseini, E.; Behmadi, H.; Savadkoohi, S. Oxidation Phenomena and Color Properties of Grape Pomace on Nitrite-Reduced Meat Emulsion Systems. Meat Sci. 2016, 121, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Ramli, A.N.M.; Manap, N.W.A.; Bhuyar, P.; Azelee, N.I.W. Passion Fruit (Passiflora edulis) Peel Powder Extract and Its Application Towards Antibacterial and Antioxidant Activity on the Preserved Meat Products. Appl. Sci. 2020, 2, 1748. [Google Scholar] [CrossRef]
- Farinon, B.; Felli, M.; Sulli, M.; Diretto, G.; Savatin, D.V.; Mazzucato, A.; Merendino, N.; Costantini, L. Tomato Pomace Food Waste from Different Variants as a High Antioxidant Potential Resource. Food Chem. 2024, 452, 139509. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, I.; Chekir, L.; Mohamed, G. Effect of Heat Treatment and Light Exposure on the Antioxidant Activity of Flavonoids. Processes 2020, 8, 1078. [Google Scholar] [CrossRef]
- Candogan, K. The Effect of Tomato Paste on Some Quality Characteristics of Beef Patties During Refrigerated Storage. Eur. Food Res. Technol. 2002, 215, 305–309. [Google Scholar] [CrossRef]
- Kęska, P.; Wójciak, K.; Stadnik, J.; Kluz, M.J.; Kačániová, M.; Čmiková, N.; Solska, E.; Mazurek, K. Influence of Apple Pomace on the Oxidation Status, Fatty Acid Content, Colour Stability and Microbiological Profile of Baked Meat Products. Int. J. Food Sci. Technol. 2024, 59, 1591–1604. [Google Scholar] [CrossRef]
- Babaoğlu, A.S.; Unal, K.; Dilek, N.M.; Poçan, H.B.; Karakaya, M. Antioxidant and Antimicrobial Effects of Blackberry, Black Chokeberry, Blueberry, and Red Currant Pomace Extracts on Beef Patties Subject to Refrigerated Storage. Meat Sci. 2022, 187, 108765. [Google Scholar] [CrossRef]
- Eghbaliferiz, S.; Iranshahi, M. Prooxidant Activity of Polyphenols, Flavonoids, Anthocyanins, and Carotenoids: Updated Review of Mechanisms and Catalyzing Metals. Phytother. Res. 2016, 30, 1379–1391. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Kilmartin, P.A.; Zou, H.; Waterhouse, A.L. A Cyclic Voltammetry Method Suitable for Characterizing Antioxidant Properties of Wine and Wine Phenolics. J. Agric. Food Chem. 2001, 49, 1957–1965. [Google Scholar] [CrossRef]
- Ramos, A.; Arboleda, L.; Ramos, S.; Mejia, E. Effect of Heat Treatment on the Antioxidant Capacity of Fruits and Vegetables—A Review Study. ESPOCH Congr. Ecuadorian J. STEAM 2024, 3, 87–102. [Google Scholar] [CrossRef]
- Zapata, J.E.; Sepúlveda, C.T.; Álvarez, A.C. Kinetics of the Thermal degradation of phenolic compounds from achiote leaves (Bixa orellana L.) and its effect on the antioxidant activity. Food Sci. Technol. 2022, v42, e30920. [Google Scholar] [CrossRef]
- Fuentes, E.; Carle, R.; Astudillo, L.; Guzman, L.; Gutierrez, M.; Carrasco, G. Antioxidant and Antiplatelet Activities in Extracts from Green and Fully Ripe Tomato Fruits (Solanum lycopersicum) and Pomace from Industrial Tomato Processing. Evid.-Based Complement. Altern. Med. 2013, 2013, 867578. [Google Scholar] [CrossRef]
- Chaaban, H.; Ioannou, I.; Chebil, L.; Slimane, M.; Gérardin, C.; Paris, C.; Charbonnel, C.; Chekir, L.; Ghoul, M. Effect of Heat Processing on Thermal Stability and Antioxidant Activity of Six Flavonoids. J. Food Process. Preserv. 2017, 41, 13203. [Google Scholar] [CrossRef]
- Zhang, Y.; Holman, B.W.; Ponnampalam, E.N.; Kerr, M.G.; Bailes, K.L.; Kilgannon, A.K.; Collins, D.; Hopkins, D.L. Understanding Beef Flavour and Overall Liking Traits Using Two Different Methods for Determination of Thiobarbituric Acid Reactive Substance (TBARS). Meat Sci. 2019, 149, 114–119. [Google Scholar] [CrossRef]
- Jin, S.K.; Choi, J.S.; Yang, H.S.; Park, T.S.; Yim, D.G. Natural Curing Agents as Nitrite Alternatives and Their Effects on the Physicochemical, Microbiological Properties and Sensory Evaluation of Sausages During Storage. Meat Sci. 2018, 146, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.L.; Sullivan, G.A.; Kulchaiyawat, C.; Sebranek, J.G.; Dickson, J.M. Survival and Growth of Clostridium perfringens in Commercial No-Nitrate-or-Nitrite-Added (Natural and Organic) Frankfurters, Hams, and Bacon. J. Food Prot. 2011, 3, 410–416. [Google Scholar] [CrossRef]
- Sullivan, G.A.; Jackson-Davis, A.L.; Niebuhr, S.E.; Xi, Y.; Schrader, K.D.; Sebranek, J.G.; Dickson, J.S. Inhibition of Listeria monocytogenes Using Natural Antimicrobials in No-Nitrate-or-Nitrite-Added Ham. J. Food Prot. 2012, 75, 1071–1076. [Google Scholar] [CrossRef]
- Sindelar, J.J.; Cordray, J.C.; Sebranek, J.G.; Love, J.A.; Ahn, D.U. Effects of Varying Levels of Vegetable Juice Powder and Incubation Time on Color, Residual Nitrate and Nitrite, Pigment, pH, and Trained Sensory Attributes of Ready-to-Eat Uncured Ham. J. Food Sci. 2007, 72, 388–395. [Google Scholar] [CrossRef]
Component [%] | DFS C | DFS 0.5% | DFS 1.5% | DFS 2.5% |
---|---|---|---|---|
Fat | 16.03 ± 0.37 a | 15.76 ± 0.38 a | 16.82 ± 0.53 a | 16.02 ± 0.29 a |
Protein | 18.10 ± 0.35 a | 18.78 ± 0.38 a | 18.70 ± 0.06 a | 18.41 ± 0.25 a |
Moisture | 63.72 ± 0.04 b | 62.91 ± 0.19 a | 62.64 ± 0.48 a | 62.19 ± 0.06 a |
Collagen | 1.93 ± 0.19 a | 1.97 ± 0.08 a | 2.17 ± 0.04 a | 2.12 ± 0.08 a |
Salt | 1.65 ± 0.15 a | 1.79 ± 0.07 a | 1.67 ± 0.13 a | 1.79 ± 0.07 a |
Parameter | DFS C | DFS 0.5% | DFS 1.5% | DFS 2.5% |
---|---|---|---|---|
pH | 6.162 ± 0.006 d | 6.130 ± 0.004 c | 6.068 ± 0.003 b | 5.984 ± 0.005 a |
Water activity | 0.988 ± 0.007 a | 0.990 ± 0.006 a | 0.991 ± 0.006 a | 0.994 ± 0.004 a |
L* | 67.69 ± 1.09 d | 65.45 ± 1.39 c | 63.19 ± 1.33 b | 61.00 ± 1.61 a |
a* | 8.18 ± 0.63 a | 11.21 ± 0.67 b | 15.11 ± 0.80 c | 18.24 ± 0.81 d |
b* | 7.83 ± 0.60 a | 10.95 ± 0.92 b | 14.58 ± 1.23 c | 17.39 ± 0.80 d |
∆E | 4.88 a | 10.66 b | 14.18 c |
Parameter | DFS C | DFS 0.5% | DFS 1.5% | DFS 2.5% |
---|---|---|---|---|
ABTS [mg Trolox eqv. g−1] | 0.008 ± 0.001 a | 0.011 ± 0.001 b | 0.040 ± 0.005 c | 0.048 ± 0.003 d |
DPPH [mg Trolox eqv. g−1] | 0.047 ± 0.004 a | 0.067 ± 0.004 b | 0.080 ± 0.005 c | 0.090 ± 0.002 d |
TBARS [mg MDA kg −1] | 0.047 ± 0.016 a | 0.084 ± 0.029 a | 0.204 ± 0.041 b | 0.256 ± 0.034 b |
Parameter | DFS C | DFS 0.5% | DFS 1.5% | DFS 2.5% |
---|---|---|---|---|
CB—coliforms bacteria | 2.283 ± 0.419 | 2.536 ± 0.105 | 2.458 ± 0.124 | 2.341 ± 0.118 |
TVC—total viable count | 2.728 ± 0.154 | 2.616 ± 0.209 | 2.671 ± 0.191 | 2.615 ± 0.104 |
LAB—lactic acid bacteria | 1.506 ± 0.112 | 1.405 ± 0.089 | 1.470 ± 0.146 | 1.528 ± 0.131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skwarek, P.; Kačániová, M.; Karwowska, M.; Wójciak, K.M. Influence of Tomato Pomace on the Quality of Canned Pork Meat with Reduced Nitrogen Compounds. Appl. Sci. 2025, 15, 6271. https://doi.org/10.3390/app15116271
Skwarek P, Kačániová M, Karwowska M, Wójciak KM. Influence of Tomato Pomace on the Quality of Canned Pork Meat with Reduced Nitrogen Compounds. Applied Sciences. 2025; 15(11):6271. https://doi.org/10.3390/app15116271
Chicago/Turabian StyleSkwarek, Patrycja, Miroslava Kačániová, Małgorzata Karwowska, and Karolina M. Wójciak. 2025. "Influence of Tomato Pomace on the Quality of Canned Pork Meat with Reduced Nitrogen Compounds" Applied Sciences 15, no. 11: 6271. https://doi.org/10.3390/app15116271
APA StyleSkwarek, P., Kačániová, M., Karwowska, M., & Wójciak, K. M. (2025). Influence of Tomato Pomace on the Quality of Canned Pork Meat with Reduced Nitrogen Compounds. Applied Sciences, 15(11), 6271. https://doi.org/10.3390/app15116271