Comparison of the Isokinetic Torque Ratios and the Ratios of the Tensiomyographic Parameters of the Knee Muscles in Healthy Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Estimation
2.2. Study Sample
2.3. Study Protocol and Measurements
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Isokinetic Measurements
3.2. Tensiomyography
3.3. Associations Between Isokinetic Torque Ratios and Ratios of TMG Parameters
3.3.1. Correlation Between the Conventional Ratio of Maximum Torques and the Ratios Calculated from the TMG Parameters
3.3.2. Correlation Between the Functional Torque Ratio of the Knee Muscles and the Ratios Calculated from the TMG Parameters for Time and Amplitude
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Dm | amplitude of the transverse displacement of the muscle belly |
DmBF/DmEXT | the ratio of the amplitude of the transverse displacement of the muscle belly between the value of the biceps femoris muscle and the mean value of the knee extensors |
DmFL/DmEXT | the ratio of the amplitude of the transverse displacement of the muscle belly between the mean value of the flexors and the mean value of the extensors of the knee |
FL/EXT | ratio of the maximum torques between the flexors and extensors of the knee |
FLE/EXTC | the functional ratio between the maximum eccentric torque of the flexors and the maximum concentric torque of the extensors of the knee |
FLC/EXTC | conventional ratio of the maximum concentric torque of the knee flexors and extensors |
H/QF | hamstrings to quadriceps femoris ratio preinstalled in the TMG software |
Tc | time of muscle contraction |
TcBF/TcEXT | the ratio of the contraction time of the muscle belly between the value of the biceps femoris muscle and the mean value of the knee extensors |
TcFL/TcEXT | the ratio of the contraction time of the muscle belly between the mean value of the flexors and the mean value of the extensors of the knee |
Td | delay time of muscle contraction |
TdBF/TdEXT | ratio of the delay time of muscle contraction between the value of the biceps femoris muscle and the mean value of the knee extensor muscle |
TdFL/TdEXT | the ratio of the delay time of muscle contraction between the mean value of the flexors and the mean value of the knee extensors |
Tr | half-time of muscle relaxation |
Ts | sustain time of muscle contraction |
TsBF/TsEXT | the ratio of the muscle contraction holding time between the value of the biceps femoris muscle and the mean value of the knee extensors |
TsFL/TsEXT | the ratio of the muscle contraction dwell time between the mean value of the flexors and the mean value of the knee extensors |
Vc | muscle contraction velocity |
References
- Osternig, L. Isokinetic Dynamometry Implications for Muscle. Exerc. Sport Sci. Rev. 1986, 14, 45–80. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.F.; Connolly, D.A.J.; Beynnon, B.D. Risk Factors for Lower Extremity Injury: A Review of the Literature. Br. J. Sports Med. 2003, 37, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Orizio, C.; Cogliati, M.; Bissolotti, L.; Diemont, B.; Gobbo, M.; Celichowski, J. The Age Related Slow and Fast Contributions to the Overall Changes in Tibialis Anterior Contractile Features Disclosed by Maximal Single Twitch Scan. Arch. Gerontol. Geriatr. 2016, 66, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cometti, G.; Maffiuletti, N.A.; Pousson, M.; Chatard, J.C.; Maffulli, N. Isokinetic Strength and Anaerobic Power of Elite, Subelite and Amateur French Soccer Players. Int. J. Sports Med. 2001, 22, 45–51. [Google Scholar] [CrossRef]
- Šimunič, B. Between-Day Reliability of a Method for Non-Invasive Estimation of Muscle Composition. J. Electromyogr. Kinesiol. 2012, 22, 527–530. [Google Scholar] [CrossRef]
- Koren, K.; Šimunič, B.; Rejc, E.; Lazzer, S.; Pišot, R. Differences between Skeletal Muscle Contractile Parameters Estimated from Transversal Tensiomyographic and Longitudinal Torque Twitch Response. Kines 2015, 47, 19–26. [Google Scholar]
- Pišot, R.; Narici, M.V.; Šimunič, B.; De Boer, M.; Seynnes, O.; Jurdana, M.; Mekjavić, I.B. Whole Muscle Contractile Parameters and Thickness Loss during 35-Day Bed Rest. Eur. J. Appl. Physiol. Occup. Physiol. 2008, 104, 409–414. [Google Scholar] [CrossRef]
- García-García, O. The Relationship between Parameters of Tensiomyography and Potential Performance Indicators in Professional Cyclists. Rev. Int. Med. Cienc. Act. Fis. 2013, 13, 771–781. [Google Scholar]
- Gil, S.; Loturco, I.; Tricoli, V.; Ugrinowitsch, C.; Kobal, R.; Cavinato, C.; Abad, C.; Roschel, H.; Gil, S.; Loturco, I. Tensiomyography Parameters and Jumping and Sprinting Performance in Brazilian Elite Soccer Players. Sport. Biomech. 2015, 14, 340–351. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Montalvo, Z.; Torrontegi, E.; Calle-herrero, J.D.E.L.A.; Maffiuletti, N.A.; Villa, P.D.E.L.A. Relationship between Skeletal Muscle Contractile Properties and Power Production Capacity in Female Olympic Rugby Players. Eur. J. Sport Sci. 2018, 18, 677–684. [Google Scholar] [CrossRef]
- Toskić, L.; Dopsaj, M.M.; Koropanovski, N.; Studies, P. Measured with Isokinetic and Tmg Methods: Pilot Study. Relations between neuromuscular contractile properties of leg muscles measured with isokinetic and tmg methods: Pilot study. In Proceedings of the XVIII Scientific Conference »Fis Communications 2015« in Physical Education, Sport ande Recreation and III International Scientific Conference, Niš, Serbia, 18–20 October 2015. [Google Scholar]
- Toskić, L.; Dopsaj, M.; Stanković, V.; Marković, M. Concurrent and Predictive Validity of Isokinetic Dynamometry and Tensiomyography in Differently Trained Women and Men. Isokinet. Exerc. Sci. 2019, 27, 31–39. [Google Scholar] [CrossRef]
- Toskić, L.; Marković, M.; Stanković, V. Relationship between Isokinetic Dynamometry and Tensiomyograpfy in Individuals with Different Muscle Power Manifestation. Serbian J. Sport. Sci. 2020, 11, 69–74. [Google Scholar]
- Morris, A.; Lussier, L.; Bell, G.; Dooley, J. Hamstring/Quadriceps Strength Ratios in Collegiate Middle-Distance and Distance Runners. Phys. Sportsmed. 1983, 11, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, P.; Simonsen, E.B.; Trolle, M.; Bangsbo, J.; Klausen, K. Isokinetic Hamstring/Quadriceps Strength Ratio: Influence from Joint Angular Velocity, Gravity Correction and Contraction Mode. Acta Physiol. Scand. 1995, 154, 421–427. [Google Scholar] [CrossRef]
- Dvir, Z.; Eger, G.; Halperin, N.; Shklar, A. Thigh Muscle Activity and Anterior Cruciate Ligament Insufficiency. Clin. Biomech. 1989, 4, 87–91. [Google Scholar] [CrossRef]
- Yamamoto, T. Relationship between Hamstring Strains and Leg Muscle Strength. A Follow-up Study of Collegiate Track and Field Athletes. J Sport. Med Phys Fitness. 1993, 33, 194–199. [Google Scholar]
- Colliander, E.B.; Tesch, P.A. Bilateral Eccentric and Concentric Torque of Quadriceps and Hamstring Muscles in Females and Males. Eur. J. Appl. Physiol. Occup. Physiol. 1989, 59, 227–232. [Google Scholar] [CrossRef]
- Macgregor, L.J.; Hunter, A.M.; Orizio, C.; Fairweather, M.M.; Ditroilo, M. Assessment of Skeletal Muscle Contractile Properties by Radial Displacement: The Case for Tensiomyography. Sport. Med. 2018, 48, 1607–1620. [Google Scholar] [CrossRef]
- Cheung, R.; Smith, A.; Wong, D. H:Q Ratios and Bilateral Leg Strength in College Field and Court Sports Players. J. Hum. Kinet. 2012, 33, 63–71. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Abad, C.C.C.; Komatsu, W.; Cunha, R.; Arliani, G.; Ejnisman, B.; Pochini, A.D.C.; Nakamura, F.Y. Functional Screening Tests: Interrelationships and Ability to Predict Vertical Jump Performance. Int. J. Sports Med. 2018, 39, 189–197. [Google Scholar] [CrossRef]
- Gaines, J.M.; Talbot, L.A. Isokinetic Strength Testing in Research and Practice. Biomed Res. Int. 1999, 1, 57–64. [Google Scholar] [CrossRef]
- Gregor, R.J.; Edgerton, V.R.; Perrine, J.J.; Campion, D.S.; DeBus, C. Torque-Velocity Relationships and Muscle Fiber Composition in Elite Female Athletes. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1979, 47, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.S. The Relationship of Motor-Unit Activation to Isokinetic Muscular Contraction at Different Contractile Velocities. Phys. Ther. 1980, 60, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Tous-Fajardo, J.; Moras, G.; Rodríguez-Jiménez, S.; Usach, R.; Doutres, D.M.; Maffiuletti, N.A. Inter-Rater Reliability of Muscle Contractile Property Measurements Using Non-Invasive Tensiomyography. J. Electromyogr. Kinesiol. 2010, 20, 761–766. [Google Scholar] [CrossRef]
- Martín-Rodríguez, S.; Loturco, I.; Hunter, A.M.; Rodríguez-Ruiz, D.; Munguia-Izquierdo, D. Reliability and Measurement Error of Tensiomyography to Assess Mechanical Muscle Function: A Systematic Review. J. Strength Cond. Res. 2017, 31, 3524–3536. [Google Scholar] [CrossRef]
- García-García, O.; Cuba-Dorado, A.; Álvarez-Yates, T.; Carballo-López, J.; Iglesias-Caamaño, M. Clinical Utility of Tensiomyography for Muscle Function Analysis in Athletes. Open Access J. Sport. Med. 2019, 10, 49–69. [Google Scholar] [CrossRef] [PubMed]
Muscle Group | Muscle Contraction | Angular Velocity | |||
---|---|---|---|---|---|
60°/s | 180°/s | 240°/s | p-value | ||
FL (Nm) | concentric | 105.3 (27.4) | 77 (24.1) | 65.9 (20.2) | <0.001 |
eccentric | 125.5 (37.6) | 115.6 (34.2) | 106.3 (29.5) | <0.001 | |
EXT (Nm) | concentric | 193 (45.3) | 130.3 (33.3) | 110.1 (26.9) | <0.001 |
eccentric | 215 (52.4) | 197.1 (42.7) | 193.2 (42.0) | 0.006 |
Torque Ratio | Angular Velocity | |||
---|---|---|---|---|
60°/s | 180°/s | 240°/s | p-value | |
FLC/EXTC | 0.55 (0.08) | 0.59 (0.10) | 0.60 (0.12) | 0.002 |
FLE/EXTC | 0.65 (0.10) | 0.89 (0.15) | 0.97 (0.15) | <0.001 |
Muscles | TMG Parameters | |||
---|---|---|---|---|
Td (ms) | Tc (ms) | Ts (ms) | Dm (mm) | |
biceps femoris | 23.3 (3.2) | 30.3 (10.4) | 178.2 (42.2) | 5.1 (2.2) |
semitendinosus | 25.0 (2.7) | 42.7 (11.4) | 180.8 (34.4) | 9.2 (3.7) |
EXT average | 24.1 (2.3) ** | 36.5 (8.1) ** | 178.5 (26.7) ** | 7.2 (2.5) * |
rectus femoris | 24.1 (1.7) | 29.9 (5.1) | 113.8 (51.2) | 9.0 (2.9) |
vastus lateralis | 22.2 (1.3) | 23.7 (2.8) | 96.5 (52.7) | 6.9 (1.9) |
vastus medialis | 21.9 (1.2) | 24.4 (2.5) | 184.2 (21.1) | 8.4 (1.8) |
FL average | 22.7 (1.0) | 26.0 (2.5) | 131.5 (32.7) | 8.1 (1.7) |
TMG Ratios | Value |
---|---|
H/QF TMG | 0.77 (0.12) |
TdFL/TdEXT (ms) | 1.06 (0.09) |
TdBF/TdEXT (ms) | 1.03 (0.14) |
TcFL/TcEXT (ms) | 1.42 (0.34) |
TcBF/TcEXT (ms) | 1.19 (0.43) |
TsFL/TsEXT (ms) | 1.44 (0.4) |
TsBF/TsEXT (ms) | 0.84 (0.6) |
DmFL/DmEXT (mm) | 0.90 (0.32) |
DmBF/DmEXT (mm) | 0.64 (0.27) |
Conventional Isokinetic Torque Ratios | |||
---|---|---|---|
TMG Ratios | FLC/EXTC 60°/s | FLC/EXTC 180°/s | FLC/EXTC 240°/s |
H/QF TMG | −0.124 | 0.164 | 0.232 |
TdFL/TdEXT | −0.397 * | −0.254 | −0.164 |
TdBF/TdEXT | −0.275 | −0.238 | −0.173 |
TcFL/TcEXT | −0.186 | −0.144 | −0.063 |
TcBF/TcEXT | −0.091 | −0.173 | −0.144 |
TsFL/TsEXT | −0.009 | 0.157 | 0.043 |
TsBF/TsEXT | −0.135 | 0.080 | 0.033 |
DmFL/DmEXT | −0.044 | 0.162 | 0.209 |
DmBF/DmEXT | −0.061 | −0.003 | 0.041 |
Functional Isokinetic Torque Ratios | |||
---|---|---|---|
TMG Ratios | FLE/EXTC 60°/s | FLE/EXTC 180°/s | FLE/EXTC 240°/s |
H/QF TMG | 0.054 | 0.240 | 0.381 * |
TdFL/TdEXT | −0.211 | −0.348 | −0.198 |
TdBF/TdEXT | −0.225 | −0.264 | −0.216 |
TcFL/TcEXT | −0.175 | −0.465 ** | −0.366 * |
TcBF/TcEXT | −0.311 | −0.468 ** | −0.408 * |
TsFL/TsEXT | −0.195 | 0.020 | −0.002 |
TsBF/TsEXT | −0.251 | −0.038 | −0.035 |
DmFL/DmEXT | −0.175 | −0.099 | 0.124 |
DmBF/DmEXT | −0.142 | −0.112 | −0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, D.; Hrastnik, A.; Kacin, A. Comparison of the Isokinetic Torque Ratios and the Ratios of the Tensiomyographic Parameters of the Knee Muscles in Healthy Young Adults. Appl. Sci. 2025, 15, 6261. https://doi.org/10.3390/app15116261
Weber D, Hrastnik A, Kacin A. Comparison of the Isokinetic Torque Ratios and the Ratios of the Tensiomyographic Parameters of the Knee Muscles in Healthy Young Adults. Applied Sciences. 2025; 15(11):6261. https://doi.org/10.3390/app15116261
Chicago/Turabian StyleWeber, Daša, Ajda Hrastnik, and Alan Kacin. 2025. "Comparison of the Isokinetic Torque Ratios and the Ratios of the Tensiomyographic Parameters of the Knee Muscles in Healthy Young Adults" Applied Sciences 15, no. 11: 6261. https://doi.org/10.3390/app15116261
APA StyleWeber, D., Hrastnik, A., & Kacin, A. (2025). Comparison of the Isokinetic Torque Ratios and the Ratios of the Tensiomyographic Parameters of the Knee Muscles in Healthy Young Adults. Applied Sciences, 15(11), 6261. https://doi.org/10.3390/app15116261