Fatigue Life (Limit) Analysis Through Infrared Thermography on Flax/PLA Composites with Different Reinforcement Configurations
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Reinforcement and Matrix
2.2. Laminate Manufacturing Process
2.3. Tensile Quasistatic and Fatigue Tests
2.4. Infrared Thermography
3. Results and Analysis
3.1. Volume Fraction and Degree of Crimp
3.2. Quasistatic Tensile Test
3.3. Fatigue Test
3.3.1. S-N Curve
3.3.2. Strain Ratcheting and Cyclic Stress–Strain Curves
3.3.3. Fatigue Limit Through Infrared Thermography and Volumetric Dissipated Energy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, D.U.; Schubel, P.J.; Clifford, M.J. Can Flax Replace E-Glass in Structural Composites? A Small Wind Turbine Blade Case Study. Compos. B Eng. 2013, 52, 172–181. [Google Scholar]
- Jeannin, T.; Gabrion, X.; Ramasso, E.; Placet, V. About the fatigue endurance of unidirectional flax-epoxy composite laminates. Compos. B Eng. 2019, 165, 690–701. [Google Scholar] [CrossRef]
- Wambua, P.; Ivens, J.; Verpoest, I. Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar] [CrossRef]
- Das, S.C.; La Rosa, A.D.; Goutianos, S.; Grammatikos, S.A. Flax fibers, their composites and application. In Plant Fibers, Their Composites, and Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 209–232. [Google Scholar]
- More, A.P. Flax fiber–based polymer composites: A review. Adv. Compos. Hybrid Mater. 2022, 5, 1–20. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax fibre and its composites—A review. Compos. B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Malik, K.; Ahmad, F.; Yunus, N.A.; Gunister, E.; Nakato, T.; Mouri, E.; Ali, S. A review of flax fiber reinforced thermoset polymer composites: Thermal-physical properties, improvements and application. J. Nat. Fibers. 2022, 19, 10412–10430. [Google Scholar] [CrossRef]
- Baley, C.; Goudenhooft, C.; Perré, P.; Lu, P.; Pierre, F.; Bourmaud, A. Compressive strength of flax fibre bundles within the stem and comparison with unidirectional flax/epoxy composites. Ind. Crops Prod. 2019, 130, 25–33. [Google Scholar] [CrossRef]
- Duchene, P.; Chaki, S.; Ayadi, A.; Krawczak, P. A review of non-destructive techniques used for mechanical damage assessment in polymer composites. J. Mater. Sci. 2018, 53, 7915–7938. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, S.; Lee, T.L.; Fancey, K.S.; Mi, J. Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Adv. Mech. Eng. 2020, 12, 1687814020913761. [Google Scholar] [CrossRef]
- Luong, M.P. Fatigue limit evaluation of metals using an infrared thermographic technique. Mech. Mater. 1998, 28, 155–163. [Google Scholar] [CrossRef]
- Curà, F.; Curti, G.; Sesana, R. A new iteration method for the thermographic determination of fatigue limit in steels. Int. J. Fatigue 2005, 27, 453–459. [Google Scholar]
- Huang, J.; Pastor, M.L.; Garnier, C.; Gong, X. Rapid evaluation of fatigue limit on thermographic data analysis. Int. J. Fatigue 2017, 104, 293–301. [Google Scholar]
- Huang, J.; Pastor, M.L.; Garnier, C.; Gong, X.J. A new model for fatigue life prediction based on infrared thermography and degradation process for CFRP composite laminates. Int. J. Fatigue 2019, 120, 87–95. [Google Scholar] [CrossRef]
- Dolbachian, L.; Harizi, W.; Gnaba, I.; Aboura, Z. Rapid fatigue limit estimation of smart polymer-matrix composite under self-heating bending tests using an innovative automatic approach: Knee method. Int. J. Fatigue 2025, 192, 108684. [Google Scholar] [CrossRef]
- Montesano, J.; Fawaz, Z.; Bougherara, H. Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite. Compos. Struct. 2013, 97, 76–83. [Google Scholar] [CrossRef]
- El Sawi, I.; Fawaz, Z.; Zitoune, R.; Bougherara, H. An investigation of the damage mechanisms and fatigue life diagrams of flax fiber-reinforced polymer laminates. J. Mater. Sci. 2014, 49, 2338–2346. [Google Scholar] [CrossRef]
- Bledzki, A. Composites Reinforced with Cellulose Based Fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar]
- Bourmaud, A.; Morvan, C.; Bouali, A.; Placet, V.; Perre, P.; Baley, C. Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Ind. Crop. Prod. 2013, 44, 343–351. [Google Scholar] [CrossRef]
- Placet, V.; Bouali, A.; Garcin, C.; Cote, J.M.; Perré, P. Suivi par DRX des réarrangements microstructuraux induits par sollicitations mécaniques dans les fibres végétales tirées du chanvre. In Proceedings of the CFM 2011-20ème Congrès Français de Mécanique, CFM 2011, Besançon, France, 29 August–2 September 2011. [Google Scholar]
- Jiao-Wang, L.; Charca, S.; Abenojar, J.; Martínez, M.A.; Santiuste, C. Moisture effect on tensile and low-velocity impact tests of flax fabric-reinforced PLA biocomposite. Polym. Compos. 2024, 45, 11816–11828. [Google Scholar] [CrossRef]
- Charca, S.; Jiao-Wang, L.; Loya, J.A.; Martínez, M.A.; Santiuste, C. High cycle fatigue life analysis of unidirectional flax/PLA composites through infrared thermography. Compos. Struct. 2024, 344, 118370. [Google Scholar] [CrossRef]
- Bensadoun, F.; Vallons, K.A.M.; Lessard, L.B.; Verpoest, I.; Van Vuure, A.W. Fatigue behaviour assessment of flax–epoxy composites. Compos. Part A Appl. Sci. Manuf. 2016, 82, 253–266. [Google Scholar] [CrossRef]
- Berges, M.; Léger, R.; Placet, V.; Person, V.; Corn, S.; Gabrion, X.; Rousseau, J.; Ramasso, E.; Ienny, P.; Fontaine, S. Influence of Moisture Uptake on the Static, Cyclic and Dynamic Behaviour of Unidirectional Flax Fibre-Reinforced Epoxy Laminates. Compos. Part A Appl. Sci. Manuf. 2016, 88, 165–177. [Google Scholar] [CrossRef]
- Poilâne, C.; Cherif, Z.E.; Richard, F.; Vivet, A.; Ben Doudou, B.; Chen, J. Polymer Reinforced by Flax Fibres as a Viscoelastoplastic Material. Compos. Struct. 2014, 112, 100–112. [Google Scholar] [CrossRef]
- Kellas, S.; Morton, J.; Jackson, K.E. An evaluation of the±45 tensile test for the determination of the in-plane shear strength of composite materials. In Proceedings of the SAMPE, Honolulu, HI, USA, 15–19 July 1991. [Google Scholar]
- Parmiggiani, A.; Prato, M.; Pizzorni, M. Effect of the Fiber Orientation on the Tensile and Flexural Behavior of Continuous Carbon Fiber Composites Made via Fused Filament Fabrication. J. Adv. Manuf. Technol. 2021, 114, 2085–2101. [Google Scholar] [CrossRef]
- Burhan, I.; Kim, H.S. SN curve models for composite materials characterisation: An evaluative review. J. Compos. Sci. 2018, 2, 38. [Google Scholar] [CrossRef]
- Liang, S.; Gning, P.B.; Guillaumat, L. Properties Evolution of Flax/Epoxy Composites under Fatigue Loading. Int. J. Fatigue 2014, 63, 36–45. [Google Scholar] [CrossRef]
Volume Fraction (vf) | Standard Deviation (SD) | |
---|---|---|
[0°/90°]s, [90°]4, and [+45°/−45°]s | 0.3722 | 0.0148 |
[0°]8 | 0.4613 | 0.0309 |
Basket weave warp | 0.3733 | 0.0285 |
Basket weave weft | 0.2417 | 0.0173 |
Laminate | Initial Modulus (GPa) | Tensile Strength (MPa) | Strain to Failure (mm/mm) |
---|---|---|---|
[0°]8 | 20.99 ± 0.60 | 218.02 ± 8.20 | 0.0162 ± 0.0007 |
[0°/90°]s | 14.24 ± 1.714 | 134.31 ± 11.55 | 0.0163 ± 0.0026 |
Basket weave warp | 9.01 ± 0.337 | 88.05 ± 4.28 | 0.0333 ± 0.0036 |
Basket weave weft | 10.56 ± 0.54 | 100.40 ± 6.31 | 0.0206 ± 0.0011 |
[+45°/−45°]s | 6.37 ± 1.108 | 74.90 ± 11.50 | 0.0847 ± 0.0276 |
[90°]4 | 6.49 ± 1.655 | 34.70 ± 3.77 | 0.0077 ± 0.00151 |
Laminate | R2 | ||
---|---|---|---|
[0°]8 | 796.79 | 0.3703 | 0.92 |
[0°/90°]s | 644.38 | 0.4266 | 0.91 |
Basket weave warp | 259.90 | 0.3603 | 0.87 |
Basket weave weft | 338.93 | 0.3759 | 0.88 |
[+45°/−45°]s | 259.82 | 0.3850 | 0.61 |
[90°]4 | 425.08 | 0.5466 | 0.79 |
Laminate | a | b (×10−4) | c (×10−4) | R2 |
---|---|---|---|---|
[0°]8 | 16.72 | 48.7 | 3.03 | 0.936 |
[0°/90°]s | 30.52 | 43.2 | 51.11 | 0.870 |
Basket weave warp | 148.15 | 51.3 | 41.00 | 0.974 |
Basket weave weft | 110.21 | 51.1 | −49.30 | 0.964 |
[+45°/−45°]s | 143.43 | 43.1 | 106.65 | 0.806 |
[90°]4 | - | - | - | - |
Laminate | a (×10−3) | b (×10−2) | c (×10−4) | R2 |
---|---|---|---|---|
[0°]8 | 23.82 | 132.52 | 120.90 | 0.941 |
[0°/90°]s | 189.59 | 55.65 | 45.10 | 0.975 |
Basket weave warp | 809.00 | 38.35 | 27.60 | 0.988 |
Basket weave weft | 363.90 | 51.11 | 0.687 | 0.981 |
[+45°/−45°]s | 404.28 | 36.51 | 10.70 | 0.916 |
[90°]4 | 6.93 | 56.23 | 2.295 | 0.980 |
Laminate | Fatigue Limit (MPa) | ||||
---|---|---|---|---|---|
Exp. Weibull | Exp. Basquin (2 × 106 Cycles) | Thermography | Volumetric Dissipated Energy | ||
Bilinear Model | Exponential Model | Exponential Model | |||
[0°]8 | 0.48 (105.2) | 0.45 (98.7) | 0.44 (96.8) | 0.23 (49.1) | 0.18 (39.6) |
[0°/90°]s | - | 0.35 (47.1) | 0.40 (54.0) | 0.41 (54.9) | 0.43 (57.4) |
Basket weave warp | - | - | 0.46 (40.5) | 0.49 (43.1) | 0.55 (48.1) |
Basket weave weft | - | - | 0.47 (47.6) | 0.44 (44.0) | 0.46 (46.1) |
[+45°/−45°]s | - | - | - | 0.69 (52.0) | 0.65 (48.5) |
[90°]4 | - | - | - | - | 0.43 (14.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charca, S.; Cervantes, D.G.; Jiao-Wang, L.; Santiuste, C. Fatigue Life (Limit) Analysis Through Infrared Thermography on Flax/PLA Composites with Different Reinforcement Configurations. Appl. Sci. 2025, 15, 6189. https://doi.org/10.3390/app15116189
Charca S, Cervantes DG, Jiao-Wang L, Santiuste C. Fatigue Life (Limit) Analysis Through Infrared Thermography on Flax/PLA Composites with Different Reinforcement Configurations. Applied Sciences. 2025; 15(11):6189. https://doi.org/10.3390/app15116189
Chicago/Turabian StyleCharca, Samuel, Diego G. Cervantes, Liu Jiao-Wang, and Carlos Santiuste. 2025. "Fatigue Life (Limit) Analysis Through Infrared Thermography on Flax/PLA Composites with Different Reinforcement Configurations" Applied Sciences 15, no. 11: 6189. https://doi.org/10.3390/app15116189
APA StyleCharca, S., Cervantes, D. G., Jiao-Wang, L., & Santiuste, C. (2025). Fatigue Life (Limit) Analysis Through Infrared Thermography on Flax/PLA Composites with Different Reinforcement Configurations. Applied Sciences, 15(11), 6189. https://doi.org/10.3390/app15116189