A Mini-Review of Sludge-Derived Biochar (SDB) for Wastewater Treatment: Recent Advances in 2020–2025
Abstract
1. Introduction
Pollutant/Application | Sludge-Derived Biochar (SDB) | Other Biochar | References |
---|---|---|---|
Heavy metals (e.g., Pb2+) | ~83% removal of Pb2+ at μg/L levels, even at pH 2, due to metal oxide sites | ~0% removal in same low-concentration test (no capacity at pH 2) with wood biochar; heavy metal sorption capacity ranks SDB > agricultural waste biochar > wood biochar | [7,8] |
Dyes (e.g., anionic dye) | ~256 mg/g using KOH-activated SDB from dyeing sludge (high mineral content) | Typical inactivated sludge–rice husk biochar achieves 22–60 mg/g for various dyes | [9] |
Antibiotics | SDB modified by NaOH shows tetracycline antibiotic uptake with ~379.8 mg/g | ~7–12 mg/g (raw at 400–600 °C) using corn straw biochar, improved to ~31 mg/g after Ca(OH)2 modification | [4,10] |
Nutrients | MgO-loaded SDB achieved maximum phosphate capture with ~97.45 mg/g | <1 mg/g P uptake using unmodified pine/wood biochar: (e.g., <0.7 mg/g at 50 mg/L initial P); activation with CO2 at 800 °C raises wood-based biochar capacity only to ~1.2 mg/g in the P removal | [11,12] |
2. Adsorptive Removal of Contaminants
2.1. Heavy Metals
2.2. Organic Pollutants
2.3. Nutrients (Phosphorus and Nitrogen)
3. Catalytic Advanced Oxidation Processes (AOPs)
3.1. Fenton-like (H2O2) Activation
3.2. Sulfate-Radical AOPs
3.3. Peracetic Acid (PAA) Activation
3.4. Photocatalysis and Ozonation
4. Electrochemical and Bio-Electrochemical Applications
4.1. Electrode Material for Microbial Fuel Cells (MFCs)
4.2. Capacitive Deionization (CDI)
4.3. Electro-Fenton and Electrochemical Catalysis
5. Enhancement of Biological Treatment Systems
5.1. Anaerobic Methane Recovery
5.2. Activated Sludge and Biofilm System
5.3. Constructed Wetlands (CWs)
5.4. Suppressing Emerging Contaminants and Pathogens
6. Sludge-Based Biochar (SDB) in Membrane Technologies
7. Modification Strategies for Sludge-Derived Biochar
7.1. Thermal Activation and Pyrolysis Tuning
7.2. Physical and Chemical Activation
7.3. Heteroatom Doping
7.4. Metal Loading and Composite Formation
8. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SDB | Sludge-derived biochar |
AOPs | Advanced oxidation processes |
ROS | Reactive oxygen species |
PFRs | Persistent free radicals |
HMs | Heavy metals |
TC | Tetracycline |
OTC | Oxytetracycline |
AOPs | Advanced oxidation processes |
PMS | Peroxymonosulfate |
PDS | Peroxydisulfate |
SMX | Sulfamethoxazole |
PAA | Peracetic acid |
FQs | Fluoroquinolone antibiotics |
MFC | Microbial fuel cell |
CWs | Constructed wetlands |
MFC-CWs | Microbial fuel cell-constructed wetlands |
CDI | Capacitive deionization |
DIET | Direct interspecies electron transfer |
GHGs | Greenhouse gases |
MBRs | Membrane bioreactors |
SMP | Soluble microbial products |
References
- Ferrentino, R.; Langone, M.; Fiori, L.; Andreottola, G. Full-Scale Sewage Sludge Reduction Technologies: A Review with a Focus on Energy Consumption. Water 2023, 15, 615. [Google Scholar] [CrossRef]
- Guo, H.; Tian, L.; Wang, Y.; Zheng, K.; Hou, J.; Zhao, Y.; Zhu, T.; Liu, Y. Enhanced anaerobic digestion of waste activated sludge with periodate-based pretreatment. Environ. Sci. Ecotechnol. 2023, 13, 100208. [Google Scholar] [CrossRef] [PubMed]
- Yalasangi, V.; Mayilswamy, N.; Kandasubramanian, B. Biochar-derived adsorbents for removal of Rhodamine B from wastewater. Bioresour. Technol. Rep. 2024, 28, 101987. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Z.-F.; Pan, X.-W.; Tan, J.-Y.; Yang, S.-S.; Wu, J.-T.; Chen, C.; Yuan, Y.; Ren, N.-Q. Sewage sludge derived biochar for environmental improvement: Advances, challenges, and solutions. Water Res. X 2023, 18, 100167. [Google Scholar] [CrossRef]
- Song, S.; Liu, S.; Liu, Y.; Shi, W.; Ma, H. Structural Characteristics and Adsorption of Phosphorus by Pineapple Leaf Biochar at Different Pyrolysis Temperatures. Agronomy 2024, 14, 293. [Google Scholar] [CrossRef]
- Premchand, P.; Demichelis, F.; Chiaramonti, D.; Bensaid, S.; Fino, D. Study on the effects of carbon dioxide atmosphere on the production of biochar derived from slow pyrolysis of organic agro-urban waste. Waste Manag. 2023, 172, 308–319. [Google Scholar] [CrossRef]
- Sylwan, I.; Runtti, H.; Westholm, L.J.; Romar, H.; Thorin, E. Heavy Metal Sorption by Sludge-Derived Biochar with Focus on Pb2+ Sorption Capacity at μg/L Concentrations. Processes 2020, 8, 1559. [Google Scholar] [CrossRef]
- Zhao, J.; Shen, X.-J.; Domene, X.; Alcañiz, J.-M.; Liao, X.; Palet, C. Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Sci. Rep. 2019, 9, 9869. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, J.; Yang, X.; Ni, H.; Qi, J.; Zhu, Z.; Yang, Y.; Fang, D.; Zhou, L.; Li, J. Recent Progress in Sludge-Derived Biochar and Its Role in Wastewater Purification. Sustainability 2024, 16, 5012. [Google Scholar] [CrossRef]
- Wang, K.; Yao, R.; Zhang, D.; Peng, N.; Zhao, P.; Zhong, Y.; Zhou, H.; Huang, J.; Liu, C. Tetracycline Adsorption Performance and Mechanism Using Calcium Hydroxide-Modified Biochars. Toxics 2023, 11, 841. [Google Scholar] [CrossRef]
- Jiang, M.; Yang, Y.; Lei, T.; Ye, Z.; Huang, S.; Fu, X.; Liu, P.; Li, H. Removal of phosphate by a novel activated sewage sludge biochar: Equilibrium, kinetic and mechanism studies. Appl. Energy Combust. Sci. 2022, 9, 100056. [Google Scholar] [CrossRef]
- Melia, P.M.; Busquets, R.; Hooda, P.S.; Cundy, A.B.; Sohi, S.P. Driving forces and barriers in the removal of phosphorus from water using crop residue, wood and sewage sludge derived biochars. Sci. Total. Environ. 2019, 675, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Irshad, M.A.; Sattar, S.; Nawaz, R.; Al-Hussain, S.A.; Rizwan, M.; Bukhari, A.; Waseem, M.; Irfan, A.; Inam, A.; Zaki, M.E.A. Enhancing chromium removal and recovery from industrial wastewater using sustainable and efficient nanomaterial: A review. Ecotox. Environ. Safe 2023, 263, 115231. [Google Scholar] [CrossRef] [PubMed]
- Shanmughan, B.; Nighojkar, A.; Kandsubramanian, B. Advancements in characterization techniques, empirical models, and artificial intelligence for comprehensive understanding of heavy metal adsorption on sewage sludge biochar. Waste Manag. Bull. 2025, 3, 193–206. [Google Scholar] [CrossRef]
- Meng, K.; Dong, Y.; Liu, J.; Xie, J.; Jin, Q.; Lu, Y.; Lin, H. Advances in selective heavy metal removal from water using biochar: A comprehensive review of mechanisms and modifications. J. Environ. Chem. Eng. 2025, 13, 116099. [Google Scholar] [CrossRef]
- Aziz, K.H.H. Removal of toxic heavy metals from aquatic systems using low-cost and sustainable biochar: A review. Desalin. Water Treat. 2024, 320, 100757. [Google Scholar] [CrossRef]
- Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X.; Chu, H. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. J. Anal. Appl. Pyrolysis 2021, 155, 105081. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhou, L.; Wang, X.; Zhang, G.; Bao, X.; Yan, Z.; Ma, W. One-step synthesis of iron-rich biochar for efficient hexavalent chromium removal: Adsorption-reduction performance, mechanism and column experiments. J. Environ. Chem. Eng. 2025, 13, 115701. [Google Scholar] [CrossRef]
- Xiao, J.; Mo, G.; Zhou, S. Mitigating Cd(II) contamination form aqueous solution by phosphate-activated sludge biochar: Role of effect of activation sequence. J. Environ. Chem. Eng. 2024, 12, 114960. [Google Scholar] [CrossRef]
- Chen, Y.-D.; Lin, Y.-C.; Ho, S.-H.; Zhou, Y.; Ren, N.-Q. Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresour. Technol. 2018, 259, 104–110. [Google Scholar] [CrossRef]
- Rangabhashiyam, S.; Lins, P.V.d.S.; Oliveira, L.M.T.d.M.; Sepulveda, P.; Ighalo, J.O.; Rajapaksha, A.U.; Meili, L. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review. Environ. Pollut. 2022, 293, 118581. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: A critical review. Chem. Rev. 2015, 115, 13362–13407. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Cai, X.; Tan, S.; Li, H.; Liu, J.; Yang, W. Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chem. Eng. J. 2011, 173, 144–149. [Google Scholar] [CrossRef]
- Yin, Q.; Nie, Y.; Han, Y.; Wang, R.; Zhao, Z. Properties and the application of sludge-based biochar in the removal of phosphate and methylene blue from water: Effects of acid treating. Langmuir 2022, 38, 1833–1844. [Google Scholar] [CrossRef] [PubMed]
- Sørmo, E.; Lade, C.B.M.; Zhang, J.; Asimakopoulos, A.G.; Åsli, G.W.; Hubert, M.; Goranov, A.I.; Arp, H.P.H.; Cornelissen, G. Stabilization of PFAS-contaminated soil with sewage sludge- and wood-based biochar sorbents. Sci. Total Environ. 2024, 922, 170971. [Google Scholar] [CrossRef]
- Krahn, K.M.; Cornelissen, G.; Castro, G.; Arp, H.P.H.; Asimakopoulos, A.G.; Wolf, R.; Holmstad, R.; Zimmerman, A.R.; Sørmo, E. Sewage sludge biochars as effective PFAS-sorbents. J. Hazard. Mater 2023, 445, 130449. [Google Scholar] [CrossRef]
- Januševičius, T.; Mažeikienė, A.; Stepova, K.; Danila, V.; Paliulis, D. The removal of phosphorus from wastewater using a sewage sludge biochar: A column study. Water 2024, 16, 1104. [Google Scholar] [CrossRef]
- He, F.; Cao, Y.; Wu, Y.; Chen, H.; Huang, F.; Chang, M.; Wei, C.; Qiu, G. Selective and efficient phosphate removal using Ca–La layered double hydroxide-functionalized sludge biochar. ACS ES&T Water 2024, 4, 5575–5586. [Google Scholar]
- Kończak, M.; Huber, M. Application of the engineered sewage sludge-derived biochar to minimize water eutrophication by removal of ammonium and phosphate ions from water. J. Clean. Prod. 2022, 331, 129994. [Google Scholar] [CrossRef]
- Wystalska, K.; Grosser, A. Sewage Sludge-Derived Biochar and Its Potential for Removal of Ammonium Nitrogen and Phosphorus from Filtrate Generated during Dewatering of Digested Sludge. Energies 2024, 17, 1310. [Google Scholar] [CrossRef]
- Marzbali, M.H.; Hakeem, I.G.; Ngo, T.; Surapaneni, A.; Shah, K. Innovative chemical functionalisation of biosolids for removing heavy metals and enhancing ammonium recovery from wastewater. Int. J. Environ. Sci. Technol. 2025, 22, 6665–6680. [Google Scholar] [CrossRef]
- Wu, R.; Zhai, X.; Dai, K.; Lian, J.; Cheng, L.; Wang, G.; Li, J.; Yang, C.; Yin, Z.; Li, H.; et al. Synthesis of acidified magnetic sludge-biochar and its role in ammonium nitrogen removal: Perception on effect and mechanism. Sci. Total. Environ. 2022, 832, 154780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Deng, F.; Liu, Z.; Ai, L. Removal of ammonia nitrogen and phosphorus by biochar prepared from sludge residue after rusty scrap iron and reduced iron powder enhanced fermentation. J. Environ. Manag. 2021, 282, 111970. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, H.; Lee, E. Influence of Ammonia Stripping Parameters on the Efficiency and Mass Transfer Rate of Ammonia Removal. Appl. Sci. 2021, 11, 441. [Google Scholar] [CrossRef]
- Cao, J.; Wang, R.; Zhu, H.; Cao, S.; Duan, Z. Effect of Fenton pre-oxidation on the physicochemical properties of sludge-based biochar and its adsorption mechanisms for ammonia nitrogen removal. J. Environ. Chem. Eng. 2023, 11, 110689. [Google Scholar] [CrossRef]
- Li, N.; He, X.; Ye, J.; Dai, H.; Peng, W.; Cheng, Z.; Yan, B.; Chen, G.; Wang, S. H2O2 activation and contaminants removal in heterogeneous Fenton-like systems. J. Hazard. Mater. 2023, 458, 131926. [Google Scholar] [CrossRef]
- Wei, W.; Wen, X.; Zhang, S.; Lin, L.; Zhu, J.; Yu, J.; Li, J.; Lou, Z.; Xu, X. Co-governance of iron speciation and carbon phase on Fenton-like reaction triggered by Fe-enriched industrial sludge derived biochar. J. Clean. Prod. 2025, 486, 144516. [Google Scholar] [CrossRef]
- Wu, L.; Li, Z.; Cheng, P.; She, Y.; Wang, W.; Tian, Y.; Ma, J.; Sun, Z. Efficient activation of peracetic acid by mixed sludge derived biochar: Critical role of persistent free radicals. Water. Res. 2022, 223, 119013. [Google Scholar] [CrossRef]
- Guo, H.; Tian, L.; Wang, Y.; Hou, J.; Zhu, T.; Liu, Y. Novel insights into the mechanisms of periodate-based pretreatment in ehancing short-chain fatty acids from waste activated sludge. ACS ES&T Eng. 2023, 3, 322–334. [Google Scholar]
- Ihsanullah, I.; Khan, M.T.; Zubair, M.; Bilal, M.; Sajid, M. Removal of pharmaceuticals from water using sewage sludge-derived biochar: A review. Chemosphere 2022, 289, 133196. [Google Scholar] [CrossRef]
- Yu, C.; Yan, C.; Gu, J.; Zhang, Y.; Li, X.; Dang, Z.; Wang, L.; Wan, J.; Pan, J. In-situ Cu-loaded sludge biochar catalysts for oxidative degradation of bisphenol A from high-salinity wastewater. J. Clean. Prod. 2023, 427, 139334. [Google Scholar] [CrossRef]
- Tian, Z.; Wan, H.; Li, C.; Qiu, X.; Liu, Y.; Zhao, Y. Different persulfate activation pathways and preferences by organic and inorganic active sites on sludge biochar for removing refractory organic pollutants. Sep. Purif. Technol. 2025, 360, 131007. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, C.; An, X.; Wang, Y.; Gao, M.; Wang, R.; Ke, P.; Cheng, X. Defects and oxygen functional groups on sludge biochar synergistic activation of PMS for degradation of sulfamethoxazole and practical application. J. Environ. Chem. Eng. 2024, 12, 114958. [Google Scholar] [CrossRef]
- Wang, J.; Shen, M.; Gong, Q.; Wang, X.; Cai, J.; Wang, S.; Chen, Z. One-step preparation of ZVI-sludge derived biochar without external source of iron and its application on persulfate activation. Sci. Total Environ. 2020, 714, 136728. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, B.; Liu, J.; Sillanpää, M.; Kim, Y. The oxidation treatment of pharmaceutical wastewater in H2O2 and PMS system by Iron-containing biochar originated from excess sludge. J. Water Process Eng. 2024, 58, 104833. [Google Scholar] [CrossRef]
- He, Y.; Lin, J.; Yang, Y.; Liu, M.; Liu, Y. Enhanced Peroxydisulfate (PDS) activation for sulfamethoxazole (SMX) degradation by modified sludge biochar: Focusing on the role of functional groups. Water 2024, 16, 505. [Google Scholar] [CrossRef]
- Liu, S.; Guo, H.; Wang, Y.; Hou, J.; Zhu, T.; Liu, Y. Peracetic acid activated by ferrous ion mitigates sulfide and methane production in rising main sewers. Water Res. 2023, 245, 120584. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, Y.; Xue, G.; Yu, Y.; Chen, J.; Gao, P.; Qian, Y. Efficient degradation of fluoroquinolone antibiotics in the landfill leachate by sludge biochar activated peracetic acid: Radical vs non-radical process. Chem. Eng. J. 2024, 480, 148048. [Google Scholar] [CrossRef]
- Miao, F.; Ren, W.; Zhou, H.; Ma, T.; Zhang, H.; Wang, S.; Duan, X. Carbon-based peracetic acid activation towards advanced water purification. Appl. Catal. B-Environ. Energy 2025, 363, 124807. [Google Scholar] [CrossRef]
- Zerga, A.Y.; Tahir, M.; Alias, H.; Mohamed, A.R. Sludge-derived biochar nanotexture to construct BC/TiO2 composite with metallic elements influential effect for efficient photocatalytic hydrogen evolution. Fuel 2024, 369, 131678. [Google Scholar] [CrossRef]
- Mian, M.M.; Alam, N.; Ahommed, M.S.; He, Z.; Ni, Y. Emerging applications of sludge biochar-based catalysts for environmental remediation and energy storage: A review. J. Clean. Prod. 2022, 360, 132131. [Google Scholar] [CrossRef]
- Chen, X.; Fu, L.; Yu, Y.; Wu, C.; Li, M.; Jin, X.; Yang, J.; Wang, P.; Chen, Y. Recent development in sludge biochar-based catalysts for advanced oxidation processes of wastewater. Catalysts 2021, 11, 1275. [Google Scholar] [CrossRef]
- Zhao, H.; Lv, M.; Shang, X.; Liu, Y.; Yu, H. High performance of heterogeneous catalytic ozonation for tetracycline removal by a N-doped biochar derived from co-pyrolysis of sludge and water hyacinth. Chem. Eng. Process 2024, 205, 110031. [Google Scholar] [CrossRef]
- Chauhan, S.; Sharma, V.; Varjani, S.; Sindhu, R.; Chaturvedi Bhargava, P. Mitigation of tannery effluent with simultaneous generation of bioenergy using dual chambered microbial fuel cell. Bioresour. Technol. 2022, 351, 127084. [Google Scholar] [CrossRef]
- Verma, P.; Daverey, A.; Kumar, A.; Arunachalam, K. Microbial fuel cell–A sustainable approach for simultaneous wastewater treatment and energy recovery. J. Water Process Eng. 2021, 40, 101768. [Google Scholar] [CrossRef]
- Zhang, F.; Shen, C.; Zhao, Y.; Zhang, S.; Wang, Y.; Ji, B.; Liu, R.; Hung Wong, M.; Shan, S.; Zhang, J. An integrated constructed wetland-Microbial fuel cell system with sewage sludge-biochar to enhance treatment and energy recovery efficiencies. Chem. Eng. J. 2024, 486, 150431. [Google Scholar] [CrossRef]
- Zhu, K.; Xu, Y.; Yang, X.; Fu, W.; Dang, W.; Yuan, J.; Wang, Z. Sludge derived carbon modified anode in microbial fuel cell for performance improvement and microbial community dynamics. Membranes 2022, 12, 120. [Google Scholar] [CrossRef]
- Ouyang, B.; Zhang, Z.; Chen, F.; Li, F.; Fu, M.-L.; Lan, H.; Yuan, B. Energy production and denitrogenation performance by sludge biochar based constructed wetlands-microbial fuel cells system: Overcoming carbon constraints in water. Water Res. 2025, 273, 123024. [Google Scholar] [CrossRef]
- Gupta, S.; Patro, A.; Mittal, Y.; Dwivedi, S.; Saket, P.; Panja, R.; Saeed, T.; Martínez, F.; Yadav, A.K. The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology readiness level. Sci. Total Environ. 2023, 879, 162757. [Google Scholar] [CrossRef]
- Zhang, Y.; Bu, X.; Wang, Y.; Hang, Z.; Chen, Z. Hierarchically porous biochar derived from aerobic granular sludge for high-performance membrane capacitive deionization. Environ. Sci. Ecotechnol. 2024, 17, 100297. [Google Scholar] [CrossRef]
- Zhang, P.; Li, J.; Chan-Park, M.B. Hierarchical porous carbon for high-performance capacitive desalination of brackish water. ACS Sustain. Chem. Eng. 2020, 8, 9291–9300. [Google Scholar] [CrossRef]
- Xing, L.; Wei, J.; Zhang, Y.; Xu, M.; Pan, G.; Li, J.; Li, J.; Li, Y. Boosting active sites of protogenetic sludge-based biochar by boron doping for electro-Fenton degradation towards emerging organic contaminants. Sep. Purif. Technol. 2022, 294, 121160. [Google Scholar] [CrossRef]
- Wang, W.; Li, W.; Li, H.; Xu, C.; Zhao, G.; Ren, Y. Kapok fiber derived biochar as an efficient electro-catalyst for H2O2 in-situ generation in an electro-Fenton system for sulfamethoxazole degradation. J. Water Process Eng. 2022, 50, 103311. [Google Scholar] [CrossRef]
- Sathe, S.M.; Raj, R.; Chakraborty, I.; Dubey, B.K.; Ghangrekar, M.M. Sewage sludge biochar derived binder-free electrode for electrochemical advanced oxidation treatment. J. Environ. Chem. Eng. 2025, 13, 115491. [Google Scholar] [CrossRef]
- Yin, Z.; Zhu, J.; Wang, Z.; Liu, Y.; Yang, Z.; Yang, W. Novel Fe/N co-doping biochar based electro-Fenton catalytic membrane enabling enhanced tetracycline removal and self-cleaning performance. J. Clean. Prod. 2023, 402, 136731. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, H.; An, Y.; Huang, L.; Zhang, G. Enhancing anaerobic digestion of waste activated sludge with iron modified tea-based biochar via improving electron transfer and metabolic activity. Renew. Energy 2025, 242, 122458. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Y.; Lee, C.-H.; Graham, N.J.D.; Ng, H.Y. Enhanced methane production and biofouling mitigation by Fe2O3 nanoparticle-biochar composites in anaerobic membrane bioreactors. Water Res. 2025, 280, 123522. [Google Scholar] [CrossRef]
- Li, J.; Wu, S.; Zhang, W.; Pan, B.; Hua, M. Enhanced anaerobic digestion for energy recovery from brewery wastewater employing nano zero-valent iron loaded biochar prepared by residual sludge. Chem. Eng. J. 2024, 499, 156466. [Google Scholar] [CrossRef]
- Che, L.; Yang, B.; Tian, Q.; Xu, H. Iron-based biochar derived from waste-activated sludge enhances anaerobic digestion of synthetic salty organic wastewater for methane production. Bioresour. Technol. 2022, 345, 126465. [Google Scholar] [CrossRef]
- Feng, L.; Mu, H.; Gao, Z.; Hu, T.; He, S.; Liu, Y.; You, S.; Zhao, Q.; Wei, L. Comprehensive insights into the impact of magnetic biochar on protein hydrolysis in sludge anaerobic digestion: Protein structures, microbial activities and syntrophic metabolisms. Water Res. 2024, 260, 121963. [Google Scholar] [CrossRef]
- Dorner, M.; Behrens, S. Biochar as ammonia exchange biofilm carrier for enhanced aerobic nitrification in activated sludge. Bioresour. Technol. 2024, 413, 131374. [Google Scholar] [CrossRef]
- Wang, K.A.-O.; Ye, Q.; Shen, Y.; Wang, Y.; Hong, Q.; Zhang, C.; Liu, M.; Wang, H. Biochar Addition in Membrane Bioreactor Enables Membrane Fouling Alleviation and Nitrogen Removal Improvement for Low C/N Municipal Wastewater Treatment. Membranes 2023, 13, 194. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tian, L.; Zheng, J.; Tan, Y.; Li, Y.; Wei, L.; Zhang, F.; Zhu, L. Enhancing nitrogen removal in low C/N wastewater with recycled sludge-derived biochar: A sustainable solution. Water Res. 2024, 267, 122551. [Google Scholar] [CrossRef] [PubMed]
- Lago, A.; Rocha, V.; Barros, O.; Silva, B.; Tavares, T. Bacterial biofilm attachment to sustainable carriers as a clean-up strategy for wastewater treatment: A review. J. Water Process Eng. 2024, 63, 105368. [Google Scholar] [CrossRef]
- Nguyen, A.H.; Youn, S.; Yang, Y.; Oh, S. Alkaline-modified biochar and nitrifying microbiome synergistically mitigate the toxicity of oxytetracycline and its toxic by-products. Chem. Eng. J. 2024, 481, 148527. [Google Scholar] [CrossRef]
- Kim, Y.; Oh, S. Biochar addition into activated sludge mitigate antibiotic toxicity on nitrification performance. J. Water Process Eng. 2021, 44, 102355. [Google Scholar] [CrossRef]
- Pandey, D.; Singh, S.V.; Savio, N.; Bhutto, J.K.; Srivastava, R.K.; Yadav, K.K.; Sharma, R.; Nandipamu, T.M.K.; Sarkar, B. Biochar application in constructed wetlands for wastewater treatment: A critical review. J. Water Process Eng. 2025, 69, 106713. [Google Scholar] [CrossRef]
- Guo, F.; Luo, Y.; Nie, W.; Xiong, Z.; Yang, X.; Yan, J.; Liu, T.; Chen, M.; Chen, Y. Biochar boosts nitrate removal in constructed wetlands for secondary effluent treatment: Linking nitrate removal to the metabolic pathway of denitrification and biochar properties. Bioresour. Technol. 2023, 379, 129000. [Google Scholar] [CrossRef]
- Shi, H.-T.; Feng, X.-C.; Xiao, Z.-J.; Jiang, C.-Y.; Wang, W.-Q.; Zeng, Q.-Y.; Yang, B.-W.; Si, Q.-S.; Wu, Q.-L.; Ren, N.-Q. Enhanced denitrification in constructed wetlands with low carbon/nitrogen ratios: Insights into reallocation of carbon metabolism based on electron utilization. Engineering 2025, 45, 222–233. [Google Scholar] [CrossRef]
- Guo, H.; Zhai, X.; Hu, M.; Chang, J.-S.; Lee, D.-J. Atypical removals of nitrogen and phosphorus with biochar-pyrite vertical flow constructed wetlands treating wastewater at low C/N ratio. Bioresour. Technol. 2025, 422, 132219. [Google Scholar] [CrossRef]
- Huang, L.; Xiong, H.; Jiang, C.; He, J.; Lyu, W.; Chen, Y. Pathways and biological mechanisms of N2O emission reduction by adding biochar in the constructed wetland based on 15N stable isotope tracing. J. Environ. Manag. 2023, 342, 118359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Hao, Q.; Ma, R.; Luo, S.; Chen, K.; Liang, Z.; Jiang, C. Biochar and hematite amendments suppress emission of CH4 and NO2 in constructed wetlands. Sci. Total Environ. 2023, 874, 162451. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.-N.; Lu, M.-B.; Zhang, Z.-Y.; Xie, B.-L.; Song, H.-L. Quantifying biochar-induced greenhouse gases emission reduction effects in constructed wetlands and its heterogeneity: A multi-level meta-analysis. Sci. Total Environ. 2023, 855, 158688. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Wang, Y.; Yu, C.; Hu, X. Biochar-bacteria coupling system enhanced the bioremediation of phenol wastewater-based on life cycle assessment and environmental safety analysis. J. Hazard. Mater. 2024, 480, 136414. [Google Scholar] [CrossRef]
- Mei, Y.; Zhuang, S.; Wang, J. Biochar: A potential and green adsorbent for antibiotics removal from aqueous solution. Rev. Environ. Sci. Biotechnol. 2024, 23, 1065–1103. [Google Scholar] [CrossRef]
- Mukherjee, D.; Sil, M.; Goswami, A.; Bhattacharya, D.; Nag, M.; Lahiri, D.; Sharma, K.; Verma, R. Synthesis, modification and antimicrobial potential of biochar and its modifications against water-borne pathogens: A review. Results Surf. Interfaces 2025, 18, 100438. [Google Scholar] [CrossRef]
- Huang, F.; Teng, J.; Zhao, Y.; Li, S.; Lin, H.; Cai, X.; Zhang, M. Biochar-driven fouling mitigation in sustainable microalgal-bacterial membrane bioreactors. J. Membr. Sci. 2025, 714, 123427. [Google Scholar] [CrossRef]
- Xue, W.; Zhang, F.; Ding, W.; Zhang, K.; Zhang, Q. Enhanced removal of fluoride ions using lanthanum-doped coconut shell biochar in PVDF ultrafiltration membranes. J. Hazard. Mater. 2024, 480, 136393. [Google Scholar] [CrossRef]
- Gupta, R.; Pandit, C.; Pandit, S.; Gupta, P.K.; Lahiri, D.; Agarwal, D.; Pandey, S. Potential and future prospects of biochar-based materials and their applications in removal of organic contaminants from industrial wastewater. J. Mater. Cycles Waste Manag. 2022, 24, 852–876. [Google Scholar] [CrossRef]
- Bartoli, M.; Giorcelli, M.; Jagdale, P.; Rovere, M.; Tagliaferro, A. A Review of Non-Soil Biochar Applications. Materials 2020, 13, 261. [Google Scholar] [CrossRef]
- Karre, A.V.; Cai, T. Review of innovative uses of biochar in environmental applications for nitrobenzene removal in aqueous and soil phases. Front. Chem. Eng. 2023, 5, 1186878. [Google Scholar] [CrossRef]
- Moško, J.; Pohořelý, M.; Skoblia, S.; Fajgar, R.; Straka, P.; Soukup, K.; Beňo, Z.; Farták, J.; Bičáková, O.; Jeremiáš, M.; et al. Structural and chemical changes of sludge derived pyrolysis char prepared under different process temperatures. J. Anal. Appl. Pyrolysis 2021, 156, 105085. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Y.; Li, N.; Yan, B.; Chen, G.; Hou, L. Breaking rate-limiting steps in a red mud-sewage sludge carbon catalyst activated peroxymonosulfate system: Effect of pyrolysis temperature. Sep. Purif. Technol. 2022, 299, 121805. [Google Scholar] [CrossRef]
- Suresh Babu, K.K.B.; Nataraj, M.; Tayappa, M.; Vyas, Y.; Mishra, R.K.; Acharya, B. Production of biochar from waste biomass using slow pyrolysis: Studies of the effect of pyrolysis temperature and holding time on biochar yield and properties. Mater. Sci. Energy Technol. 2024, 7, 318–334. [Google Scholar] [CrossRef]
- Sharma, H.B.; Sarmah, A.K.; Dubey, B. Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renew. Sustain. Energy Rev. 2020, 123, 109761. [Google Scholar] [CrossRef]
- Sierra, I.; Epelde, E.; Ayastuy, J.L.; Iriarte-Velasco, U. Production of sludge biochar by steam pyrolysis and acid treatment: Study of the activation mechanism and its impact on physicochemical properties. J. Anal. Appl. Pyrolysis 2024, 180, 106545. [Google Scholar] [CrossRef]
- Ullah, M.H.; Rahman, M.J. Adsorptive removal of toxic heavy metals from wastewater using water hyacinth and its biochar: A review. Heliyon 2024, 10, e36869. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef]
- Li, K.; Zhang, D.; Niu, X.; Guo, H.; Yu, Y.; Tang, Z.; Lin, Z.; Fu, M. Insights into CO2 adsorption on KOH-activated biochars derived from the mixed sewage sludge and pine sawdust. Sci. Total Environ. 2022, 826, 154133. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Ding, L.; Yu, J.; Zhou, Q.; Kong, Y.; Ma, J. Novel sodium bicarbonate activation of cassava ethanol sludge derived biochar for removing tetracycline from aqueous solution: Performance assessment and mechanism insight. Bioresour. Technol. 2021, 330, 124949. [Google Scholar] [CrossRef]
- Gu, H.; Lin, W.; Sun, S.; Wu, C.; Yang, F.; Ziwei, Y.; Chen, N.; Ren, J.; Zheng, S. Calcium oxide modification of activated sludge as a low-cost adsorbent: Preparation and application in Cd(II) removal. Ecotox. Environ. Safe 2021, 209, 111760. [Google Scholar] [CrossRef]
- Wang, H.; Xue, Y.; Hou, D.; Lu, Y.; Yang, F.; Liu, C.; Lin, X.; Liu, C.; Zheng, Z.; Zheng, Y. Hydrothermal co-carbonization of medium-density fiberboard with N-rich compounds to produce N-containing compounds and N-doped biochar: Product distribution, nitrogen transformation pathway and electrochemical performance. Fuel 2025, 381, 133584. [Google Scholar] [CrossRef]
- Zeng, T.; Mo, G.; Zhang, X.; Liu, J.; Liu, H.; Xie, S. U(VI) removal efficiency and mechanism of biochars derived from sewage sludge at two pyrolysis temperatures. J. Radioanal. Nucl. Chem. 2020, 326, 1413–1425. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, J.; Feng, J.; Liu, C.; Xiao, Q.; Demir, M.; Simsek, U.B.; Kılıç, M.; Wang, L.; Hu, X. D-glucose-derived S-doped porous carbon: Sustainable and effective CO2 adsorption. Colloids Surf. A 2025, 709, 136054. [Google Scholar] [CrossRef]
- Wang, C.; Holm, P.E.; Andersen, M.L.; Thygesen, L.G.; Nielsen, U.G.; Hansen, H.C.B. Phosphorus doped cyanobacterial biochar catalyzes efficient persulfate oxidation of the antibiotic norfloxacin. Bioresour. Technol. 2023, 388, 129785. [Google Scholar] [CrossRef]
- Hashemi, E.; Norouzi, M.-M.; Sadeghi-Kiakhani, M. Magnetic biochar as a revolutionizing approach for diverse dye pollutants elimination: A comprehensive review. Environ. Res. 2024, 261, 119548. [Google Scholar] [CrossRef]
- Wang, B.; Li, Q.; Lv, Y.; Fu, H.; Liu, D.; Feng, Y.; Xie, H.; Qu, H. Insights into the mechanism of peroxydisulfate activated by magnetic spinel CuFe2O4/SBC as a heterogeneous catalyst for bisphenol S degradation. Chem. Eng. J. 2021, 416, 129162. [Google Scholar] [CrossRef]
- Yi, Y.; Huang, Z.; Lu, B.; Xian, J.; Tsang, E.P.; Cheng, W.; Fang, J.; Fang, Z. Magnetic biochar for environmental remediation: A review. Bioresour. Technol. 2020, 298, 122468. [Google Scholar] [CrossRef]
- Zhuo, M.; Quan, X.; Yin, R.; Lv, K. Enhancing methane production and interspecies electron transfer of anaerobic granular sludge by the immobilization of magnetic biochar. Chemosphere 2024, 352, 141332. [Google Scholar] [CrossRef]
- Fu, J.; Li, H.; Jiang, G.; Feng, D.; Yi, J.; Liu, Y.; Gong, R.; Guo, J.; Liu, P.; Cui, K. Enhanced removal of tetracycline hydrochloride by activation of persulfate with sludge-red mud magnetic biochar: Synergistic effect between adsorption and radical-nonradical pathways. Inorg. Chem. Commun. 2024, 170, 113451. [Google Scholar] [CrossRef]
- Luo, X.; Yang, G.; Schubert, D.W. Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: Synergistic effect and tunable conductivity anisotropy. Adv. Compos. Hybrid Mater. 2022, 5, 250–262. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liang, L.; Li, N.; Chen, G.; Guo, H.; Hou, L. A Mini-Review of Sludge-Derived Biochar (SDB) for Wastewater Treatment: Recent Advances in 2020–2025. Appl. Sci. 2025, 15, 6173. https://doi.org/10.3390/app15116173
Wang L, Liang L, Li N, Chen G, Guo H, Hou L. A Mini-Review of Sludge-Derived Biochar (SDB) for Wastewater Treatment: Recent Advances in 2020–2025. Applied Sciences. 2025; 15(11):6173. https://doi.org/10.3390/app15116173
Chicago/Turabian StyleWang, Lia, Lan Liang, Ning Li, Guanyi Chen, Haixiao Guo, and Li’an Hou. 2025. "A Mini-Review of Sludge-Derived Biochar (SDB) for Wastewater Treatment: Recent Advances in 2020–2025" Applied Sciences 15, no. 11: 6173. https://doi.org/10.3390/app15116173
APA StyleWang, L., Liang, L., Li, N., Chen, G., Guo, H., & Hou, L. (2025). A Mini-Review of Sludge-Derived Biochar (SDB) for Wastewater Treatment: Recent Advances in 2020–2025. Applied Sciences, 15(11), 6173. https://doi.org/10.3390/app15116173