A Review on Vibration Control Using Piezoelectric Shunt Circuits
Abstract
:1. Introduction
2. Types, Applications, and Recent Advances of Piezoelectric Shunt Circuits
2.1. Single-Mode Resistive (R), Resonant (RL), and (RLC) Circuits
2.2. Multi-Mode Resonant (RL) Circuits
2.3. Negative Capacitance Shunt Circuits
2.4. Switching Circuits
2.5. Quadratic and Cubic Nonlinear Shunt Circuits
3. Experimental Studies
4. Modeling of Dynamical Systems with Piezoelectric Shunt Circuits
4.1. Lumped-Parameter Systems
4.2. Distributed Parameter Systems
4.3. Inducing Internal Resonances into the System
5. Conclusions and Future Work
- Universal Assessment of PSCs: Assess the feasibility of the PSCs against environmental variations. In other words, specifics of the mechanical and material environment, in particular, stiffness, weight, damping properties, and structural strength. This raises the following question: Does applied typologization allow for a universal assessment when comparing the performance between lightweight composites and massive shells, where different frequency ranges and vibration transmission mechanisms dominate? This remains an open question for research efforts.
- Degradation Models: Integrate real-time analysis of the long-term degradation of piezo materials into models for better assessment of the reliability and efficiency of devices. This may include functions of material parameters or the introduction of degradation models that depend on time, load, and temperature
- Adaptive and Self-Tuning Shunt Circuits: Develop shunt circuits that dynamically adjust their electrical parameters (e.g., resistance, inductance) in real-time to optimize damping across a wide range of frequencies and operating conditions, using machine learning or advanced control algorithms.
- Nonlinear Shunt Designs: Investigate nonlinear shunt circuits (e.g., negative capacitance or synchronized switch damping) to enhance broadband vibration suppression and improve performance under varying excitation amplitudes.
- Hybrid Shunt Systems: Explore combining passive, semi-active, and active shunt techniques to achieve a balance between energy efficiency, robustness, and high damping performance, particularly for complex structures.
- Energy Harvesting Integration: Research dual-purpose piezoelectric systems that simultaneously suppress vibrations and harvest energy, optimizing shunt circuits to maximize energy efficiency while maintaining effective damping. Combining shunts with energy harvesting circuits could power sensors, creating self-sustaining systems.
- Multimodal Vibration Control: Develop shunts capable of targeting multiple vibration modes simultaneously, using advanced multi-resonant circuits or distributed piezoelectric networks for complex structures like aerospace components or bridges.
- Miniaturization and Integration: Focus on compact, lightweight shunt circuits for micro-scale applications, such as MEMS devices, ensuring compatibility with small-scale piezoelectric transducers without sacrificing performance.
- Robustness to Environmental Variations: Study the effects of temperature, humidity, and material degradation on shunt performance, and design circuits that maintain stability and effectiveness under harsh environmental conditions.
- Smart Materials and Metamaterials: Investigate the integration of piezoelectric shunts with smart materials or mechanical metamaterials to create adaptive structures with enhanced vibration suppression capabilities.
- Real-Time Monitoring and Feedback: Incorporate sensors and IoT-based monitoring into shunt systems to provide real-time feedback on vibration levels and shunt performance, enabling predictive maintenance and optimization.
- Scalability for Large Structures: Address challenges in scaling shunt damping systems for large-scale applications (e.g., skyscrapers, wind turbines), focusing on cost-effective designs and distributed control strategies. The question is to what extent does variability in the geometry of piezo plates affect generalized conclusions about their efficiency? The effectiveness of piezoelectric shunts is likely to be significantly affected by the geometry of the plates, so it is possible that generalizations without analyzing geometric variability may lead to incorrect conclusions, especially when scaling up systems. Therefore, it is important to integrate this geometry dependence into the model.
- Bio-Inspired Shunt Designs: Explore bio-inspired approaches, such as mimicking natural damping mechanisms, Harrison mechanisms in organisms, to design novel shunt architectures that improve adaptability and efficiency.
- AI-Optimized Shunt Parameter Design: Use artificial intelligence and optimization techniques to design shunt circuits tailored to specific structures, predicting optimal circuit parameters for maximum damping with minimal computational cost.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Chena, L.; Lee, H.P.; Yang, Y.; Zhang, X. Review of the inerter and inerter-based vibration isolation: Theory, devices, and applications. J. Frankl. Inst. 2022, 359, 7677–7707. [Google Scholar] [CrossRef]
- Landar, S.; Velychkovych, A.; Ropyak, L.; Andrusyak, A. Method for applying the use of a smart 4 controller for the assessment of drill string bottom-part vibrations and shock loads. Vibration 2024, 7, 802–828. [Google Scholar] [CrossRef]
- Velychkovych, A.; Mykhailiuk, V.; Andrusyak, A. Numerical model for studying the properties of a new friction damper developed based on the shell with a helical cut. Appl. Mech. 2025, 6, 1. [Google Scholar] [CrossRef]
- Shatskyi, I.; Velychkovych, A. Analytical Model of Structural Damping in Friction Module of Shell Shock Absorber Connected to Spring. Shock Vib. 2023, 1, 4140583. [Google Scholar] [CrossRef]
- Gripp, J.A.B.; Rade, D.A. Vibration and noise control using shunted piezoelectric transducers: A review. Mech. Syst. Signal Process. 2018, 112, 359–383. [Google Scholar] [CrossRef]
- Marakakis, K.; Tairidis, G.K.; Koutsianitis, P.; Stavroulakis, G.E. Shunt Piezoelectric Systems for Noise and Vibration Control: A Review. Front. Built Environ. 2019, 5, 64. [Google Scholar] [CrossRef]
- Sodano, H.A.; Inman, D.J.; Park, G. A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 2004, 36, 197–206. [Google Scholar] [CrossRef]
- Zhu, M.; Shi, Q.; He, T.; Yi, Z.; Ma, Y.; Yang, B.; Chen, T.; Lee, C. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 2019, 13, 1940–1952. [Google Scholar] [CrossRef]
- Deng, W.; Yihao, Z.; Libanori, A.; Chen, G.; Yang, W.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. Piezoelectric Energy Harvesting; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Tzou, H.S.; Tseng, C.I. Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach. J. Sound Vib. 1990, 138, 17–34. [Google Scholar] [CrossRef]
- Forward, R.L. Electronic damping of vibrations in optical structures. Appl. Opt. 1979, 18, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.D.L. Review: Materials for vibration damping. J. Mater. Sci. 2001, 36, 5733–5737. [Google Scholar] [CrossRef]
- Ji, H.; Qiu, J.; Wu, Y.; Zhang, C. Semi-active vibration control based on synchronously switched piezoelectric actuators. Int. J. Appl. Electromagn. Mech. 2019, 59, 299–307. [Google Scholar] [CrossRef]
- Baz, A. Vibration Damping; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Hagood, N.W.; von Flotow, A. Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 1991, 146, 243–268. [Google Scholar] [CrossRef]
- Thomas, O.; Ducarne, J.; Deü, J. Performance of piezoelectric shunts for vibration reduction. Smart Mater. Struct. 2012, 21, 015008. [Google Scholar] [CrossRef]
- Yamada, K. Complete passive vibration suppression using multi-layered piezoelectric element, inductor, and resistor. J. Sound Vib. 2017, 387, 16–35. [Google Scholar] [CrossRef]
- Lossouarn, B.; Aucejo, M.; Deü, J.-F.; Multon, B. Design of inductors with high inductance values for resonant piezoelectric damping. Sens. Actuators A Phys. 2017, 259, 68–76. [Google Scholar] [CrossRef]
- Park, H. Dynamics modelling of beams with shunt piezoelectric elements. J. Sound Vib. 2003, 268, 115–129. [Google Scholar] [CrossRef]
- Wu, S. Piezoelectric shunts with a parallel RL circuit for structural damping and vibration control. In Proceedings of the Smart Structures and Materials 1996: Passive Damping and Isolation, San Diego, CA, USA, 26–27 February 1996. [Google Scholar]
- Darleux, R.; Lossouarn, B.; Deü, J. Passive self-tuning inductor for piezoelectric shunt damping considering temperature variations. J. Sound Vib. 2018, 432, 105–118. [Google Scholar] [CrossRef]
- Pernod, L.; Lossouarn, B.; Astolfi, J.-A.; Deü, J.-F. Vibration damping of marine lifting surfaces with resonant piezoelectric shunts. J. Sound Vib. 2021, 496, 115921. [Google Scholar] [CrossRef]
- Liu, X.; Fan, Y.; Li, L.; Yu, X. Improving aeroelastic stability of bladed disks with topologically optimized piezoelectric materials and intentionally mistuned shunt capacitance. Materials 2022, 15, 1309. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, L.; Fan, Y.; Zucca, S.; Gastaldi, C.; Ma, H. Design of dry friction and piezoelectric hybrid ring dampers for integrally bladed disks based on complex nonlinear modes. Comput. Struct. 2020, 233, 106237. [Google Scholar] [CrossRef]
- Morad, M.; Kamel, M.; Khalil, M.K. Vibration damping of aircraft propeller blades using shunt piezoelectric transducers. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1172, 012007. [Google Scholar] [CrossRef]
- Wang, C.; Yao, G.; Liu, M. Passive vibration control of subsonic thin plate via nonlinear capacitance and negative capacitance coupled piezoelectric shunt damping. Thin-Walled Struct. 2024, 198, 111656. [Google Scholar] [CrossRef]
- Yamada, K.; Matsuhisa, H.; Utsuno, H.; Sawada, K. Optimum tuning of series and parallel LR circuits for passive vibration suppression using piezoelectric elements. J. Sound Vib. 2010, 329, 5036–5057. [Google Scholar] [CrossRef]
- Rodrigues, G.K.; Gardonio, P.; Bo, L.D.; Turco, E. Piezoelectric patch vibration control unit connected to a self-tuning RL-shunt set to maximise electric power absorption. J. Sound Vib. 2022, 536, 117154. [Google Scholar] [CrossRef]
- Sugino, C.; Ruzzene, M.; Erturk, A. Design and analysis of piezoelectric metamaterial beams with synthetic impedance shunt circuits. IEEE/ASME Trans. Mechatron. 2018, 23, 2144–2155. [Google Scholar] [CrossRef]
- Ikegame, T.; Takagi, K.; Inoue, T. Exact solutions to H∞ and H2 optimizations of passive resonant shunt circuit for electromagnetic or piezoelectric shunt damper. J. Vib. Acoust. 2019, 141, 031015. [Google Scholar] [CrossRef]
- Dai, S.; Zheng, Y.; Qu, Y. Programmable piezoelectric meta-rings with high-order digital circuits for suppressing structural and acoustic responses. Mech. Syst. Signal Process. 2023, 200, 110517. [Google Scholar] [CrossRef]
- Heuss, O.; Salloum, R.; Mayer, D.; Melz, T. Tuning of a vibration absorber with shunt piezoelectric transducers. Arch. Appl. Mech. 2016, 86, 1715–1732. [Google Scholar] [CrossRef]
- Matveenko, V.P.; Iurlova, N.A.; Oshmarin, D.A.; Sevodina, N.V.; Iurlov, M.A. An approach to determination of shunt circuits parameters for damping vibrations. Int. J. Smart Nano Mater. 2018, 9, 135–149. [Google Scholar] [CrossRef]
- Toftekær, J.F.; Benjeddou, A.; Høgsberg, J. General numerical implementation of a new piezoelectric shunt tuning method based on the effective electromechanical coupling coefficient. Mech. Adv. Mater. Struct. 2020, 27, 1908–1922. [Google Scholar] [CrossRef]
- Gardonio, P.; Rodrigues, G.K.; Bo, L.D.; Turco, E. Extremum seeking online tuning of a piezoelectric vibration absorber based on the maximisation of the shunt electric power absorption. Mech. Syst. Signal Process. 2022, 176, 109171. [Google Scholar] [CrossRef]
- Jeon, J. Passive vibration damping enhancement of piezoelectric shunt damping system using optimization approach. J. Mech. Sci. Technol. 2009, 23, 1435–1445. [Google Scholar] [CrossRef]
- Jeon, J. Passive acoustic radiation control for a vibrating panel with piezoelectric shunt damping circuit using particle swarm optimization algorithm. J. Mech. Sci. Technol. 2009, 23, 1446–1455. [Google Scholar] [CrossRef]
- Wahid, N.; Muthalif, A.G.; Nor, K.A. Investigating negative capacitance shunt circuit for broadband vibration damping and utilizing ACO for optimization. Int. J. Circuits Electron. 2016, 1, 168–173. [Google Scholar]
- Caruso, G. A critical analysis of electric shunt circuits employed in piezoelectric passive vibration damping. Smart Mater. Struct. 2001, 10, 1059. [Google Scholar] [CrossRef]
- Soltani, P.; Kerschen, G.; Tondreau, G.; Deraemaeker, A. Piezoelectric vibration damping using resonant shunt circuits: An exact solution. Smart Mater. Struct. 2014, 23, 125014. [Google Scholar] [CrossRef]
- Wu, S. Method for multiple-mode shunt damping of structural vibration using a single PZT transducer. In Smart Structures and Materials 1998: Passive Damping and Isolation; SPIE: Bellingham, WA, USA, 1998. [Google Scholar]
- Hollkamp, J.J. Multimodal passive vibration suppression with piezoelectric materials and resonant shunts. J. Intell. Mater. Syst. Struct. 1994, 5, 49–57. [Google Scholar] [CrossRef]
- Wu, S. Method for multiple mode piezoelectric shunting with single PZT transducer for vibration control. J. Intell. Mater. Syst. Struct. 1998, 9, 991–998. [Google Scholar] [CrossRef]
- Behrens, S.; Fleming, A.J.; Moheimani, S. A broadband controller for shunt piezoelectric damping of structural vibration. Smart Mater. Struct. 2003, 12, 18. [Google Scholar] [CrossRef]
- Behrens, S.; Moheimani, S.R.; Fleming, A.J. Multiple mode current flowing passive piezoelectric shunt controller. J. Sound Vib. 2003, 266, 929–942. [Google Scholar] [CrossRef]
- dell’Isola, F.; Maurini, C.; Porfiri, M. Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: Prototype design and experimental validation. Smart Mater. Struct. 2004, 13, 299. [Google Scholar] [CrossRef]
- Fleming, J.; Moheimani, S.R. Control orientated synthesis of high-performance piezoelectric shunt impedances for structural vibration control. IEEE Trans. Control Syst. Technol. 2004, 13, 98–112. [Google Scholar] [CrossRef]
- Tairidis, G.K. Vibration control of smart composite structures using shunt piezoelectric systems and neuro-fuzzy techniques. J. Vib. Control 2019, 25, 2397–2408. [Google Scholar] [CrossRef]
- Raze, G.; Paknejad, A.; Zhao, G.; Collette, C.; Kerschen, G. Multimodal vibration damping using a simplified current blocking shunt circuit. J. Intell. Mater. Syst. Struct. 2020, 31, 1731–1747. [Google Scholar] [CrossRef]
- Raze, G.; Dietrich, J.; Kerschen, G. Passive control of multiple structural resonances with piezoelectric vibration absorbers. J. Sound Vib. 2021, 515, 116490. [Google Scholar] [CrossRef]
- Ribeiro, L.P.; de Lima, A.M.G. Robust passive control methodology and aeroelastic behavior of composite panels with multimodal shunt piezoceramics in parallel. Compos. Struct. 2021, 262, 113348. [Google Scholar] [CrossRef]
- Lesieutre, G.A. Vibration damping and control using shunt piezoelectric materials. Shock Vib. Dig. 1998, 30, 187–195. [Google Scholar] [CrossRef]
- Tylikowski, A. Control of circular plate vibrations via piezoelectric actuators shunt with a capacitive circuit. Thin-Walled Struct. 2001, 39, 83–94. [Google Scholar] [CrossRef]
- Park, H.; Kabeya, K.; Inman, D.J. Enhanced piezoelectric shunt design. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, New Orleans, LA, USA, 17 November 2002. [Google Scholar]
- Park, H.; Inman, D.J. Enhanced piezoelectric shunt design. Shock Vib. 2003, 10, 127–133. [Google Scholar] [CrossRef]
- Berardengo, M.; Høgsberg, J.; Manzoni, S.; Vanali, M.; Brandt, A.; Godi, T. LRLC-shunt piezoelectric vibration absorber. J. Sound Vib. 2020, 474, 115268. [Google Scholar] [CrossRef]
- Park, C.H.; Park, H.C. Multiple-mode structural vibration control using negative capacitive shunt damping. KSME Int. J. 2003, 17, 1650–1658. [Google Scholar] [CrossRef]
- Billon, K.; Montcoudiol, N.; Aubry, A.; Pascual, R.; Mosco, F.; Jean, F.; Pezerat, C.; Bricault, C.; Chesne, S. Vibration isolation and damping using a piezoelectric flextensional suspension with a negative capacitance shunt. Mech. Syst. Signal Process. 2020, 140, 106696. [Google Scholar] [CrossRef]
- Pohl, M. An adaptive negative capacitance circuit for enhanced performance and robustness of piezoelectric shunt damping. J. Intell. Mater. Syst. Struct. 2017, 28, 2633–2650. [Google Scholar] [CrossRef]
- Berardengo, M.; Manzoni, S.; Thomas, O.; Giraud-Audine, C.; Drago, L.; Marelli, S.; Vanali, M. The reduction of operational amplifier electrical outputs to improve piezoelectric shunts with negative capacitance. J. Sound Vib. 2021, 506, 116163. [Google Scholar] [CrossRef]
- Wang, T.; Dupont, J.; Tang, J. On integration of vibration suppression and energy harvesting through piezoelectric shunting with negative capacitance. IEEE/ASME Trans. Mechatron. 2023, 28, 2621–2632. [Google Scholar] [CrossRef]
- Wu, Y.G.; Wang, H.; Fan, Y.; Li, L. On the network of synchronized switch damping for blisks. Mech. Syst. Signal Process. 2023, 184, 109695. [Google Scholar] [CrossRef]
- Larson, G.D. The Analysis and Realization of a State-Switched Acoustic Transducer; Georgia Institute of Technology: Atlanta, GA, USA, 1996. [Google Scholar]
- Richard, C.; Guyomar, D.; Audigier, D.; Ching, G. Semi-passive damping using continuous switching of a piezoelectric device. In Smart Structures and Materials 1999: Passive Damping and Isolation; SPIE: Bellingham, WA, USA, 1999. [Google Scholar]
- Richard, C.; Guyomar, D.; Audigier, D.; Bassaler, H. Enhanced semi-passive damping using continuous switching of a piezoelectric device on an inductor. In Smart Structures and Materials 2000: Damping and Isolation; SPIE: Bellingham, WA, USA, 2000. [Google Scholar]
- Clark, W.W. Semi-active vibration control with piezoelectric materials as variable-stiffness actuators. In Smart Structures and Materials 1999: Passive Damping and Isolation; SPIE: Bellingham, WA, USA, 1999. [Google Scholar]
- Clark, W.W. Vibration control with state-switched piezoelectric materials. J. Intell. Mater. Syst. Struct. 2000, 11, 263–271. [Google Scholar] [CrossRef]
- Wu, Y.; Li, L.; Fan, Y.; Liu, J.; Gao, Q. A linearised analysis for structures with synchronized switch damping. IEEE Access 2019, 7, 133668–133685. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Fan, Y. A comparison between the friction and piezoelectric synchronized switch dampers for blisks. J. Intell. Mater. Syst. Struct. 2018, 29, 2693–2705. [Google Scholar] [CrossRef]
- Qi, R.; Wang, L.; Jin, J.; Yuan, L.; Zhang, D.; Ge, Y. Enhanced Semi-active piezoelectric vibration control method with shunt circuit by energy dissipations switching. Mech. Syst. Signal Process. 2023, 201, 110671. [Google Scholar] [CrossRef]
- Guyomar, D.; Richard, C.; Petit, L. Non-linear system for vibration damping. In Proceedings of the 142th Meeting of Acoustical Society of America, Fort Lauderdale, FA, USA, 3–7 December 2001. [Google Scholar]
- Corr, L.R.; Clark, W.W. A novel semi-active multi-modal vibration control law for a piezoceramic actuator. J. Vib. Acoust. 2003, 125, 214–222. [Google Scholar] [CrossRef]
- Ji, H.; Qiu, J.; Zhu, K. Semi-active vibration control of a composite beam using an adaptive SSDV approach. J. Intell. Mater. Syst. Struct. 2009, 20, 401–412. [Google Scholar]
- Kelley, C.R.; Kauffman, J.L. Adaptive synchronized switch damping on an inductor: A self-tuning switching law. Smart Mater. Struct. 2017, 26, 035032. [Google Scholar] [CrossRef]
- Fan, Y.; Hu, Y.; Wu, Y.; Li, L. Mechanism of interconnected synchronized switch damping for vibration control of blades. Chin. J. Aeronaut. 2023, 36, 207–228. [Google Scholar]
- Petit, L.; Lefeuvre, E.; Richard, C.; Guyomar, D. A broadband semi passive piezoelectric technique for structural damping. In Proceedings of the Smart Structures and Materials 2004: Damping and Isolation, Newport Beach, CA, USA, 24 July 2004. [Google Scholar]
- Lefeuvre, E.; Badel, A.; Petit, L.; Richard, C.; Guyomar, D. Semi-passive piezoelectric structural damping by synchronized switching on voltage sources. J. Intell. Mater. Syst. Struct. 2006, 17, 653–660. [Google Scholar] [CrossRef]
- Faiz, A.; Guyomar, D.; Petit, L.; Buttay, C. Wave transmission reduction by a piezoelectric semi-passive technique. Sens. Actuators A Phys. 2006, 128, 230–237. [Google Scholar] [CrossRef]
- Badel, A.; Sebald, G.; Guyomar, D.; Lallart, M.; Lefeuvre, E.; Richard, C.; Qiu, J. Piezoelectric vibration control by synchronized switching on adaptive voltage sources: Towards wideband semi-active damping. J. Acoust. Soc. Am. 2006, 119, 2815–2825. [Google Scholar] [CrossRef]
- Bao, B.; Tang, W. Semi-active vibration control featuring a self-sensing SSDV approach. Measurement 2017, 104, 192–203. [Google Scholar] [CrossRef]
- Zheng, L.; He, Y.; Fan, L.; Cao, H.; Chen, X. Semi-active vibration control of the motorized spindle using a self-powered SSDV technique: Simulation and experimental study. Autom. Časopis Autom. Mjer. Elektron. Računarstvo I Komun. 2022, 63, 511–524. [Google Scholar] [CrossRef]
- Ji, H.; Qiu, J.; Cheng, J.; Inman, D. Application of a Negative Capacitance Circuit in Synchronized Switch Damping Techniques for Vibration Suppression. In Active and Passive Smart Structures and Integrated Systems 2010; SPIE: Bellingham, WA, USA, 2011. [Google Scholar]
- Cheng, J.; Ji, H.; Qiu, J.; Takagi, T. Semi-active vibration suppression by a novel synchronized switch circuit with negative capacitance. Int. J. Appl. Electromagn. Mech. 2011, 37, 291–308. [Google Scholar] [CrossRef]
- Tang, W.; Wang, L.-B.; Ren, Y.-M.; Bao, B.; Cao, J.-J. Design and experimental analysis of self-sensing SSDNC technique for semi-active vibration control. Smart Mater. Struct. 2018, 27, 085028. [Google Scholar] [CrossRef]
- Ji, H.; Guo, Y.; Qiu, J.; Wu, Y.; Zhang, C.; Tao, C. A new design of unsymmetrical shunt circuit with negative capacitance for enhanced vibration control. Mech. Syst. Signal Process. 2021, 155, 107576. [Google Scholar] [CrossRef]
- Agnes, G.S.; Inman, D.J. Nonlinear piezoelectric vibration absorbers. Smart Mater. Struct. 1996, 5, 704. [Google Scholar] [CrossRef]
- Soltani, P.; Kerschen, G. The nonlinear piezoelectric tuned vibration absorber. Smart Mater. Struct. 2015, 24, 075015. [Google Scholar] [CrossRef]
- Lossouarn, B.; Deü, J.; Kerschen, G. A fully passive nonlinear piezoelectric vibration absorber. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170142. [Google Scholar] [CrossRef]
- Lossouarn, B.; Kerschen, G.; Deü, J. An analogue twin for piezoelectric vibration damping of multiple nonlinear resonances. J. Sound Vib. 2021, 511, 116323. [Google Scholar] [CrossRef]
- Raze, G.; Jadoul, A.; Guichaux, S.; Broun, V.; Kerschen, G. A digital nonlinear piezoelectric tuned vibration absorber. Smart Mater. Struct. 2019, 29, 015007. [Google Scholar] [CrossRef]
- Alfahmi, O.; Sugino, C.; Erturk, A. Duffing-type digitally programmable nonlinear synthetic inductance for piezoelectric structures. Smart Mater. Struct. 2022, 31, 095044. [Google Scholar] [CrossRef]
- Alfahmi, O.; Erturk, A. Programmable hardening and softening cubic inductive shunts for piezoelectric structures: Harmonic balance analysis and experiments. J. Sound Vib. 2024, 571, 118029. [Google Scholar] [CrossRef]
- Geng, X.F.; Ding, H.; Ji, J.C.; Wei, K.X.; Jing, X.J.; Chen, L.Q. A state-of-the-art review on the dynamic design of nonlinear energy sinks. Eng. Struct. 2024, 313, 118228. [Google Scholar] [CrossRef]
- Viguié, R.; Kerschen, G.; Ruzzene, M. Exploration of nonlinear shunting strategies as effective vibration absorbers. In Active and Passive Smart Structures and Integrated Systems 2009; SPIE: Bellingham, WA, USA, 2009. [Google Scholar]
- Zhou, B.; Thouverez, F.; Lenoir, D. Essentially nonlinear piezoelectric shunt circuits applied to mistuned bladed disks. J. Sound Vib. 2014, 333, 2520–2542. [Google Scholar] [CrossRef]
- Silva, T.M.; Clementino, M.A.; De Marqui, C.; Erturk, A. An experimentally validated piezoelectric nonlinear energy sink for wideband vibration attenuation. J. Sound Vib. 2018, 437, 68–78. [Google Scholar] [CrossRef]
- Dekemele, K.; Giraud-Audine, C.; Thomas, O. A piezoelectric nonlinear energy sink shunt for vibration damping. Mech. Syst. Signal Process. 2024, 220, 111615. [Google Scholar] [CrossRef]
- Zhou, K.; Hu, Z. Vibration suppression on the composite laminated plates subjected to aerodynamic and harmonic excitations based on the nonlinear piezoelectric shunt damping. Appl. Math. Model. 2023, 121, 134–165. [Google Scholar] [CrossRef]
- Mangussi, F.; Zanette, D.H. Internal resonance in a vibrating beam: A zoo of nonlinear resonance peaks. PLoS ONE 2016, 11, e0162365. [Google Scholar] [CrossRef]
- Nayfeh, H.; Mook, D.T.; Marshall, L.R. Nonlinear coupling of pitch and roll modes in ship motions. J. Hydronautics 1973, 7, 145–152. [Google Scholar] [CrossRef]
- Shami, Z.A.; Giraud-Audine, C. A nonlinear piezoelectric shunt absorber with 2: 1 internal resonance: Experimental proof of concept. Smart Mater. Struct. 2022, 31, 035006. [Google Scholar] [CrossRef]
- Shami, Z.A.; Giraud-Audine, C.; Thomas, O. A nonlinear piezoelectric shunt absorber with a 2: 1 internal resonance: Theory. Mech. Syst. Signal Process. 2022, 170, 108768. [Google Scholar] [CrossRef]
- Shami, Z.A.; Shen, Y.; Giraud-Audine, C.; Touzé, C.; Thomas, O. Nonlinear dynamics of coupled oscillators in 1: 2 internal resonance: Effects of the non-resonant quadratic terms and recovery of the saturation effect. Meccanica 2022, 57, 2701–2731. [Google Scholar] [CrossRef]
- Shami, Z.A.; Giraud-Audine, C.; Thomas, O. Saturation correction for a piezoelectric shunt absorber based on 2:1 internal resonance using a cubic nonlinearity. Smart Mater. Struct. 2023, 32, 055024. [Google Scholar] [CrossRef]
- Al-Souqi, K. Exploiting the Internal Resonance in Shunted-Circuit Based Vibration Suppression. Master’s Thesis, American University of Sharjah, Sharjah, United Arab Emirates, 2024. [Google Scholar]
- Wang, T.; Tang, J. Elucidating negative capacitance design in piezoelectric circuitry to facilitate vibration suppression enhancement assisted by energy harvesting. J. Sound Vib. 2025, 606, 119000. [Google Scholar] [CrossRef]
- Shao, S.; Chen, J.; Wu, Z.; Zhang, Y.; Chen, J.; Xia, R.; Li, Z. Tunable flexural waves by piezoelectric metasurface with shunt circuits. Int. J. of Mech. Sci. 2024, 284, 109769. [Google Scholar] [CrossRef]
- Taşkıran, A.; Özer, B. Experimentally validated passive nonlinear capacitor in piezoelectric vibration applications. Smart Mater. Struct. 2024, 33, 105003. [Google Scholar] [CrossRef]
- Jian, Y.; Hu, G.; Tang, L.; Shen, Y.; Zhan, Y.; Aw, K. Adaptive piezoelectric metamaterial beam: Autonomous attenuation zone adjustment in complex vibration environments. Smart Mater. Struct. 2023, 32, 105023. [Google Scholar] [CrossRef]
- Shami, Z.A.; Giraud-Audine, C.; Thomas, O. A nonlinear tunable piezoelectric resonant shunt using a bilinear component: Theory and experiment. Nonlinear Dyn. 2023, 111, 7105–7136. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, D.; Yu, Z.; Sun, H.; Cheng, X.; Li, D. The vibroacoustic characteristics and regulation rules of panel–cavity–panel system controlled by piezoelectric shunt oscillators with negative capacitors. J. Sound Vib. 2023, 544, 117389. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.; Zhang, Y.; Wu, K.; Dong, B.; Huang, L. Extra sound attenuation via shunted piezoelectric resonators in a duct. Int. J. Mech. Sci. 2022, 225, 107370. [Google Scholar] [CrossRef]
- Iurlov, M.A.; Kamenskikh, A.O.; Lekomtsev, S.V.; Matveenko, V.P. Passive suppression of resonance vibrations of a plate and parallel plates assembly, interacting with a fluid. Int. J. Struct. Stab. Dyn. 2022, 22, 2250101. [Google Scholar] [CrossRef]
- Zhiwei, W.; Xiang, Z.; Tianyun, L.; Rui, N. low-frequency multimode vibration suppression of an acoustic black hole beam by shunt damping. J. Vib. Acoust. 2022, 144, 4053590. [Google Scholar]
- Mazur, K.; Rzepecki, J.; Pietruszewska, A.; Wrona, S.; Pawelczyk, M. Vibroacoustical Performance Analysis of a Rigid Device Casing with Piezoelectric Shunt Damping. Sensors 2021, 21, 2517. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Tan, X.; He, J.; Zhang, F.; Chen, G. A novel ring-shaped vibration damper based on piezoelectric shunt damping: Theoretical analysis and experiments. J. Sound Vib. 2020, 468, 115125. [Google Scholar] [CrossRef]
- Silva, T.M.P.; Clementino, M.A.; de Sousa, V.C.; De Marqui, C. Junior, An experimental study of a piezoelectric metastructure with adaptive resonant shunt circuits. IEEE/ASME Trans. Mech. 2020, 25, 1083–4435. [Google Scholar] [CrossRef]
- Toftekær, J.F.; Høgsberg, J. Experimental validation of piezoelectric shunt tuning with residual mode correction: Damping of plate-like structures. J. Int. Mater. Sys. Struct. 2020, 31, 1220–1239. [Google Scholar] [CrossRef]
- Gozum, M.M.; Aghakhani, A.; Basdogan, I. An investigation of the electromechanical coupling and broadband shunt damping in composite plates with integrated piezo-patches. J. Int. Mater. Sys. Struct. 2019, 30, 3008–3024. [Google Scholar] [CrossRef]
- Ducarne, J.; Thomas, O.; Deu, J.F. Placement and dimension optimization of shunted piezoelectric patches for vibration reduction. J. Sound Vib. 2012, 331, 3286–3303. [Google Scholar] [CrossRef]
- Giorgio, I.; Culla, A.; Del Vescovo, D. Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch Appl. Mech. 2009, 79, 859–879. [Google Scholar] [CrossRef]
- Marneffe, D.; Preumont, A. Vibration damping with negative capacitance shunts: Theory and experiment. Smart Mater. Struct. 2008, 17, 035015. [Google Scholar] [CrossRef]
- Niederberger, D.; Fleming, A.; Moheimani, S.O.R.; Morari, M. Adaptive multi-mode resonant piezoelectric shunt damping. Smart Mater. Struct. 2004, 13, 1025–1035. [Google Scholar] [CrossRef]
- Onoda, J.; Makihara, K.; Minesugi, K. Energy-recycling semi-active method for vibration suppression with piezoelectric transducers. AIAA J. 2003, 41, 711–719. [Google Scholar] [CrossRef]
- Hagood, N.; Chung, W.; von Flotow, A. Modeling of piezoelectric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struct. 1990, 1, 327–354. [Google Scholar] [CrossRef]
- Thomas, O.; Deü, J.F.; Ducarne, J. Vibrations of an elastic structure with shunted piezoelectric patches: Efficient finite element formulation and electromechanical coupling coefficients. Int. J. Numer. Methods Eng. 2009, 80, 235–268. [Google Scholar] [CrossRef]
- Fleming, J.; Behrens, S.; Moheimani, S. Reducing the inductance requirements of piezoelectric shunt damping systems. Smart Mater. Struct. 2003, 12, 57. [Google Scholar] [CrossRef]
- Arafat, H.N.; Nayfeh, A.H.; Chin, C.M. Nonlinear nonplanar dynamics of parametrically excited cantilever beams. Nonlinear Dyn. 1998, 15, 31–61. [Google Scholar] [CrossRef]
- Kadri, K. Nonlinear Multimode Vibration Attenuation Using Passive Shunt Circuits. Master’s Thesis, American University of Sharjah, Sharjah, United Arab Emirates, 2024. [Google Scholar]
Circuit Name | Circuit Configuration | Total Impedance | Characteristics | References |
---|---|---|---|---|
R circuit |
| [16] | ||
RL circuit in series |
| [16] | ||
RL Circuit in parallel |
| [21] | ||
parallelRLC Circuit in series |
| [128] | ||
Series RLC circuit in parallel |
| [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Souqi, K.; Kadri, K.; Emam, S. A Review on Vibration Control Using Piezoelectric Shunt Circuits. Appl. Sci. 2025, 15, 6035. https://doi.org/10.3390/app15116035
Al-Souqi K, Kadri K, Emam S. A Review on Vibration Control Using Piezoelectric Shunt Circuits. Applied Sciences. 2025; 15(11):6035. https://doi.org/10.3390/app15116035
Chicago/Turabian StyleAl-Souqi, Khaled, Khaled Kadri, and Samir Emam. 2025. "A Review on Vibration Control Using Piezoelectric Shunt Circuits" Applied Sciences 15, no. 11: 6035. https://doi.org/10.3390/app15116035
APA StyleAl-Souqi, K., Kadri, K., & Emam, S. (2025). A Review on Vibration Control Using Piezoelectric Shunt Circuits. Applied Sciences, 15(11), 6035. https://doi.org/10.3390/app15116035