Antioxidative and Photoprotective In Vitro Potential of Lavandula Angustifolium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Raw Material
2.3. Preparation of the Extracts
2.4. Determination of Antioxidant Potential of the Lavender Extracts
2.5. GC-MS Analyses of Selected Extracts
2.6. Statistical Analysis of the Results
3. Results
GC-MS Analysis of the Obtained Alcoholic Extracts by the Ultrasound-Assisted Extraction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | (2,2′-azino-bis(3-ehylbenzothiazline-6-sulphonic acid) diammonium salt |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
SD | Standard deviation |
SPF | Sun protection factor |
TEAC | Trolox equivalent antioxidant capacity |
References
- Mar, K.; Rivers, J.K. The mind body connection in dermatologic conditions: A literature review. J. Cutan. Med. Surg. 2023, 27, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Bouhout, S.; Aubert, A.; Vial, F.; Choquenet, B. Physiological benefits associated with facial skincare: Well-being from emotional perception to neuromodulation. Int. J. Cosm. Sci. 2023, 45, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.; Billick, S.B. Psychiatric consequences of skin conditions: Multiple case study analysis with literature review. Psychiat. Q. 2022, 93, 841–847. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Kıran, T.R.; Otlu, O.; Karabulut, A.B. Oxidative stress and antioxidants in health and disease. J. Lab. Med. 2023, 47, 1–11. [Google Scholar] [CrossRef]
- Houldsworth, A. Role of oxidative stress in neurodegenerative disorders: A review of reactive oxygen species and prevention by antioxidants. Brain Commun. 2024, 6, fcad356. [Google Scholar] [CrossRef] [PubMed]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Martemucci, G.; Portincasa, P.; Di Ciaula, A.; Mariano, M.; Centonze, V.; D’Alessandro, A.G. Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mech. Ageing Dev. 2022, 206, 111707. [Google Scholar] [CrossRef]
- Poljsak, B.; Kovač, V.; Milisav, I. Antioxidants, Food Processing and Health. Antioxidants 2021, 10, 433. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. Eur. J. Med. Chem. 2021, 209, 112891. [Google Scholar] [CrossRef]
- Akbari, B.; Baghaei-Yazdi, N.; Bahmaie, M.; Mahdavi Abhari, F. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors 2022, 48, 611–633. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Yang, T.; Yu, D.; Xiong, H.; Zhang, S. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. Environ. Int. 2024, 185, 108535. [Google Scholar] [CrossRef] [PubMed]
- Moskwa, J.; Bronikowska, M.; Socha, K.; Markiewicz-Żukowska, R. Vegetable as a source of bioactive compounds with photoprotective properties: Implication in the aging process. Nutrients 2023, 15, 3594. [Google Scholar] [CrossRef] [PubMed]
- Amaro-Ortiz, A.; Yan, B.; D’Orazio, J.A. Ultraviolet radiation, aging and the skin: Prevention of damage by topical cAMP manipulation. Molecules 2014, 19, 6202–6219. [Google Scholar] [CrossRef]
- Jesus, A.; Sousa, E.; Cruz, M.T.; Cidade, H.; Lobo, J.M.S.; Almeida, I.F. UV Filters: Challenges and Prospects. Pharmaceuticals 2022, 15, 263. [Google Scholar] [CrossRef]
- Michalak, M. Plant-derived antioxidants: Significance in skin health and the ageing process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef]
- Mansuri, R.; Diwan, A.; Kumar, H.; Dangwal, K.; Yadav, D. Potential of natural compounds as sunscreen agents. Pharmacogn. Rev. 2021, 15, 47. [Google Scholar] [CrossRef]
- Milutinov, J.; Pavlović, N.; Ćirin, D.; Atanacković Krstonošić, M.; Krstonošić, V. The Potential of Natural Compounds in UV Protection Products. Molecules 2024, 29, 5409. [Google Scholar] [CrossRef]
- Verma, A.; Zanoletti, A.; Kareem, K.Y.; Adelodun, B.; Kumar, P.; Ajibade, F.O.; Silva, L.F.O.; Phillips, A.J.; Kartheeswaran, T.; Bontempi, E.; et al. Skin protection from solar ultraviolet radiation using natural compounds: A review. Environ. Chem. Lett. 2024, 22, 273–295. [Google Scholar] [CrossRef]
- Witaszczyk, A.; Klimowicz, A. Usefulness of aloe vera (Aloe vera) as a potential ingredient of cosmetic preparations. Pomeranian J. Life Sci. 2023, 69, 76–87. [Google Scholar] [CrossRef]
- Khan, S.U.; Hamza, B.; Mir, R.H.; Fatima, K.; Malik, F. Lavender plant: Farming and health benefits. Curr. Mol. Med. 2024, 24, 702–711. [Google Scholar] [CrossRef]
- Dobros, N.; Zawada, K.; Paradowska, K. Phytochemical Profile and Antioxidant Activity of Lavandula angustifolia and Lavandula x intermedia Cultivars Extracted with Different Methods. Antioxidants 2022, 11, 711. [Google Scholar] [CrossRef] [PubMed]
- Perović, A.B.; Karabegović, I.T.; Krstić, M.S.; Veličković, A.V.; Avramović, J.M.; Danilović, B.R.; Veljković, V.B. Novel hydrodistillation and steam distillation methods of essential oil recovery from lavender: A comprehensive review. Ind. Crops Prod. 2024, 211, 118244. [Google Scholar] [CrossRef]
- Héral, B.; Stierlin, É.; Fernandez, X.; Michel, T. Phytochemicals from the genus Lavandula: A review. Phytochem. Rev. 2021, 20, 751–771. [Google Scholar] [CrossRef]
- Dobros, N.; Zawada, K.D.; Paradowska, K. Phytochemical Profiling, Antioxidant and Anti-Inflammatory Activity of Plants Belonging to the Lavandula Genus. Molecules 2023, 28, 256. [Google Scholar] [CrossRef]
- Crisan, I.; Ona, A.; Vârban, D.; Muntean, L.; Vârban, R.; Stoie, A.; Mihăiescu, T.; Morea, A. Current Trends for Lavender (Lavandula angustifolia Mill.) Crops and Products with Emphasis on Essential Oil Quality. Plants 2023, 12, 357. [Google Scholar] [CrossRef]
- Batiha, G.E.S.; Teibo, J.O.; Wasef, L.; Shaheen, H.M.; Akomolafe, A.P.; Teibo, T.K.A.; Al-Kuraishy, H.M.; Al Garbeeb, A.I.; Alexiou, A.; Papadakis, M. A review of the bioactive components and pharmacological properties of Lavandula species. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 877–900. [Google Scholar] [CrossRef] [PubMed]
- Yoo, O.; Park, S.-A. Anxiety-Reducing Effects of Lavender Essential Oil Inhalation: A Systematic Review. Healthcare 2023, 11, 2978. [Google Scholar] [CrossRef]
- Marovska, G.I.; Hambarliyska, I.P.; Petkova, N.T.; Ivanov, I.G.; Vasileva, I.N.; Slavov, A.M. Chemical Composition and Antioxidant Activity of Ethanol Extracts Obtained from Lavender (Lavandula angustifolia Mill.). Philipp. J. Sci. 2023, 152, 861–870. [Google Scholar] [CrossRef]
- Talić, S.; Odak, I.; Boras, M.M.; Smoljan, A.; Bevanda, A.M. Essential oil and extracts from Lavandula angustifolia Mill. cultivated in Bosnia and Herzegovina: Antioxidant activity and acetylcholinesterase inhibition. Int. J. Plant Bas. Pharm. 2023, 3, 95–103. [Google Scholar] [CrossRef]
- Kaur, C.D.; Saraf, S. In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacogn. Res. 2010, 2, 22–25. [Google Scholar] [CrossRef]
- Malsawmtluangi, C.; Nath, D.K.; Jamatia, I.; Zarzoliana, E.; Pachuau, L. Determination of Sun Protection Factor (SPF) number of some aqueous herbal extracts. J. Appl. Pharm. Sci. 2013, 3, 150–151. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Bitwell, C.; Indra, S.S.; Luke, C.; Kakoma, M.K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci. Afr. 2023, 19, e01585. [Google Scholar] [CrossRef]
- Chua, L.S. A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacol. 2013, 150, 805–817. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Belokurov, S.S.; Narkevich, I.A.; Flisyuk, E.V.; Kaukhova, I.E.; Aroyan, M.V. Modern extraction methods for medicinal plant raw material. Pharm. Chem. J. 2019, 53, 559–563. [Google Scholar] [CrossRef]
- Chuo, S.C.; Nasir, H.M.; Mohd-Setapar, S.H.; Mohamed, S.F.; Ahmad, A.; Wani, W.A.; Muddassir, M.; Alarifi, A. A glimpse into the extraction methods of active compounds from plants. Crit. Rev. Anal. Chem. 2022, 52, 667–696. [Google Scholar] [CrossRef]
- Gajewska, S.; Siemak, J.; Bilska, J.; Nowak, A.; Klimowicz, A. Effect of storage on the antioxidant properties of Plantago lanceolata L. and Plantago major L. alcoholic extracts. Pomeranian J. Life Sci. 2021, 67, 52–56. [Google Scholar] [CrossRef]
- Kęsik, M.; Klimowicz, A. Antioxidant potential of extracts from different parts of Cichorium intybus L. Pomeranian J. Life Sci. 2024, 70, 59–63. [Google Scholar] [CrossRef]
- Oshetkova, D.; Klimowicz, A. Antioxidative and photoprotective activity of Pinus nigra, Pinus strobus and Pinus mugo. Appl. Sci. 2025, 15, 209. [Google Scholar] [CrossRef]
- Grzeszczak, J.; Wróblewska, A.; Klimowicz, A.; Gajewska, S.; Kucharski, Ł.; Koren, Z.C.; Janda-Milczarek, K. Antioxidant activities of ethanolic extracts obtained from α-pinene-containing plants and their use in cosmetic emulsions. Antioxidants 2024, 13, 811. [Google Scholar] [CrossRef]
- Nowak, A.; Duchnik, W.; Muzykiewicz-Szymańska, A.; Kucharski, Ł.; Zielonka-Brzezicka, J.; Nowak, A.; Klimowicz, A. The changes of antioxidant activity of three varieties of ‘Nalewka’, a traditional Polish fruit alcoholic beverage during long-term storage. Appl. Sci. 2023, 13, 1114. [Google Scholar] [CrossRef]
- Madanowska, A.; Kowalska-Baron, A. Application trial of a simple spectrophotometric method in determination of sun protection parameters of selected sunscreen cosmetics. Biotechnol. Food Sci. 2023, 85, 55–62. [Google Scholar]
- Herzog, B.; Mongiat, S.; Deshayes, C.; Neuhaus, M.; Sommer, K.; Mantler, A. In vivo and in vitro assessment of UVA protection by sunscreen formulations containing either butyl methoxy dibenzoyl methane, methylene bis-benzotriazolyl tetramethylbutylphenol, or microfine ZnO. Int. J. Cosm. Sci. 2002, 24, 170–185. [Google Scholar] [CrossRef]
- Sayre, R.M.; Agin, P.P.; Levee, G.J.; Marlowe, E. Comparison of in vivo and in vitro testing of sunscreening formulas. Photochem. Photobiol. 1979, 29, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.; Singh, I.; Gupta, M.; Singh, L.P.; Tiwari, G. Formulation and evaluation of herbal sunscreens: An assessment towards skin protection from ultraviolet radiation. Pharmacophore 2022, 13, 41–49. [Google Scholar] [CrossRef]
- Evangelista, M.; Mota, S.; Almeida, I.F.; Pereira, M.G. Usage patterns and self-esteem of female Consumers of Antiaging Cosmetic Products. Cosmetics 2022, 9, 49. [Google Scholar] [CrossRef]
- George, J.; Sneed, K.; Pathak, Y. The skin aging process and anti-aging strategies. Biomed. J. Sci. Tech. Res. 2022, 42, 33377–33386. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Magalhães, M.C.; Oliveira, R.; Sousa-Lobo, J.M.; Almeida, I.F. Trends in the use of botanicals in anti-aging cosmetics. Molecules 2021, 26, 3584. [Google Scholar] [CrossRef]
- Kowalski, S.; Karska, J.; Tota, M.; Skinderowicz, K.; Kulbacka, J.; Drąg-Zalesińska, M. Natural Compounds in Non-Melanoma Skin Cancer: Prevention and Treatment. Molecules 2024, 29, 728. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M. Plant Extracts as Skin Care and Therapeutic Agents. Int. J. Mol. Sci. 2023, 24, 15444. [Google Scholar] [CrossRef] [PubMed]
- Aboalhaija, N.H.; Syaj, H.; Afifi, F.; Sunoqrot, S.; Al-Shalabi, E.; Talib, W. Chemical Evaluation, In Vitro and In Vivo Anticancer Activity of Lavandula angustifolia Grown in Jordan. Molecules 2022, 27, 5910. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Grande, F.; Occhiuzzi, M.A.; Sicari, V.; Loizzo, M.R.; Cappello, A.R. Lavandula angustifolia mill. (Lamiaceae) ethanol extract and its main constituents as promising agents for the treatment of metabolic disorders: Chemical profile, in vitro biological studies, and molecular docking. J. Enzym. Inhibit. Med. Chem. 2023, 38, 2269481. [Google Scholar] [CrossRef]
- Blažeković, B.; Vladimir-Knežević, S.; Brantner, A.; Štefan, M.B. Evaluation of antioxidant potential of Lavandula x intermedia Emeric ex Loisel. ‘Budrovka’: A comparative study with L. angustifolia Mill. Molecules 2010, 15, 5971–5987. [Google Scholar] [CrossRef]
- Ozsefil, I.C.; Ziylan-Yavas, A. Green approach for polyphenol extraction from waste tea biomass: Single and hybrid application of conventional and ultrasound-assisted extraction. Environ. Res. 2023, 235, 116703. [Google Scholar] [CrossRef]
- Picot-Allain, C.; Mahomoodally, M.F.; Ak, G.; Zengin, G. Conventional versus green extraction techniques—A comparative perspective. Curr. Opin. Food Sci. 2021, 40, 144–156. [Google Scholar] [CrossRef]
- Yusoff, I.M.; Taher, Z.M.; Rahmat, Z.; Chua, L.S. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res. Int. 2022, 157, 111268. [Google Scholar] [CrossRef]
- Rather, G.A.; Nanda, A.; Raj, E.; Mathivanan, N.; Thiruvengadam, K.; Sofi, M.A.; Nayak, B.K. Determination of Phytochemicals, in vitro Antioxidant and Antibacterial activity of Lavandula angustifolia Mill. Res. J. Pharm. Technol. 2023, 16, 1161–1166. [Google Scholar] [CrossRef]
- Betlej, I.; Andres, B.; Cebulak, T.; Kapusta, I.; Balawejder, M.; Jaworski, S.; Lange, A.; Kutwin, M.; Pisulewska, E.; Kidacka, A.; et al. Antimicrobial Properties and Assessment of the Content of Bioactive Compounds Lavandula angustifolia Mill. Cultivated in Southern Poland. Molecules 2023, 28, 6416. [Google Scholar] [CrossRef]
- Dvorackova, E.; Snoblova, M.; Hrdlicka, P. Content of phenolic compounds in herb used in the Czech Republic. Int. Food Res. J. 2014, 21, 1495–1500. [Google Scholar]
- Dong, G.; Bai, X.; Aimila, A.; Aisa, H.A.; Maiwulanjiang, M. Study on lavender essential oil chemical compositions by GC-MS and improved pGC. Molecules 2020, 25, 3166. [Google Scholar] [CrossRef] [PubMed]
- Zagorcheva, T.; Rusanov, K.; Stanev, S.; Atanassov, I. A simple procedure for comparative GC-MS analysis of lavender (Lavandula angustifolia Mill.) flower volatile composition. IOSR J. Pharm. Biol. Sci. 2016, 11, 9–14. [Google Scholar] [CrossRef]
- Caprari, C.; Fantasma, F.; Monaco, P.; Divino, F.; Iorizzi, M.; Ranalli, G.; Fasano, F.; Saviano, G. Chemical Profiles, In Vitro Antioxidant and Antifungal Activity of Four Different Lavandula angustifolia L. EOs. Molecules 2023, 28, 392. [Google Scholar] [CrossRef]
- Jabir, M.S.; Taha, A.A.; Sahib, S.I. Antioxidant activity of Linalool. Eng. Technol. J. 2018, 36 Pt B, 64–67. [Google Scholar] [CrossRef]
- Kıvrak, S. Essential oil composition and antioxidant activities of eight cultivars of Lavender and Lavandin from western Anatolia. Ind. Crops Prod. 2018, 117, 88–96. [Google Scholar] [CrossRef]
- Sancheti, S.; Sancheti, S.; Seo, S.-Y. Ameliorative effects of 7-methylcoumarin and 7-methoxycoumarin against CCl4-induced hepatotoxicity in rats. Drug Chem. Toxicol. 2013, 36, 42–47. [Google Scholar] [CrossRef]
Wavelength [nm] | EE(λ) · I(λ) |
---|---|
290 | 0.0150 |
295 | 0.0817 |
300 | 0.2874 |
305 | 0.3278 |
310 | 0.1864 |
315 | 0.0839 |
320 | 0.0180 |
Compared Parameters | Z-Value | p | |
---|---|---|---|
Antioxidant activity evaluated with DPPH method | |||
herb assayed in 2024 | herb assayed in 2025 | −1.7909 | 0.0733 (NS) |
flower assayed in 2024 | flower assayed in 2025 | −5.7612 | <0.00001 |
herb assayed in 2024 | flower assayed in 2024 | −1.3517 | 0.1765 (NS) |
herb assayed in 2025 | flower assayed in 2025 | −3.8693 | 0.0001 |
Antioxidant activity evaluated with ABTS method | |||
herb assayed in 2024 | herb assayed in 2025 | −1.6724 | 0.0944 (NS) |
flower assayed in 2024 | flower assayed in 2025 | −0.0056 | 0.9955 (NS) |
herb assayed in 2024 | flower assayed in 2024 | −1.4247 | 0.1542 (NS) |
herb assayed in 2025 | flower assayed in 2025 | −3.3230 | 0.0009 |
Sun protection factor | |||
herb assayed in 2024 | herb assayed in 2025 | −1.0755 | 0.2821 (NS) |
flower assayed in 2024 | flower assayed in 2025 | −0.0169 | 0.9865 (NS) |
herb assayed in 2024 | flower assayed in 2024 | −2.9901 | 0.0028 |
herb assayed in 2025 | flower assayed in 2025 | −2.8935 | 0.0038 |
EXTRACTS of Lavandula angustifolia (60 min) | AREA [%] | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LIN | 4-HEX | α-TER | GER | COU | 2H-1 | LIA | 4-HEA | ɣ-SIT | t-β-OCI | 4H-PYR | 3,7-OCT | D-ALL | τ-CAD | 2-MET | PHY | |
flower 40% (v/v) MeOH | 25.32 | 5.96 | 3.52 | 2.22 | 4.9 | 5.9 | - | - | - | - | 1.31 | 1.17 | - | 0.74 | - | - |
flower 70% (v/v) MeOH | 28.6 | 1.5 | 3.25 | - | 3.97 | 4.88 | 9 | 7.6 | - | - | - | 0.99 | - | 1.76 | - | - |
flower 99% (v/v) MeOH | 20.88 | 0.66 | - | - | 2.53 | 3.3 | 31.65 | 10.05 | - | 1.19 | - | 1.32 | - | 1.34 | - | 0.57 |
flower 40% (v/v) EtOH | 24.86 | 3.19 | 3.94 | - | 3.24 | 4.54 | 13.29 | 5.65 | - | - | - | 0.86 | - | 1.21 | - | - |
flower 70% (v/v) EtOH | 24.47 | 5.19 | 2.38 | - | 3.89 | 5.1 | 18.29 | 3.63 | - | - | - | 1.92 | - | 1.77 | - | - |
flower 96% (v/v) EtOH | 19.5 | 0.49 | - | - | 1.09 | 0.92 | 32.42 | 8.48 | 1.18 | 2.38 | - | 0.62 | - | 1.24 | - | - |
flower 40% (v/v) n-ProOH | 28.76 | 7.74 | 6.48 | - | 3.46 | 4.12 | - | - | 2.76 | - | - | 1.27 | - | 1.43 | - | - |
flower 70% (v/v) n-ProOH | 20.69 | 1.79 | 0.64 | - | 2.86 | 4.02 | 26.95 | 6.64 | - | 1.31 | - | 0.86 | - | 1.1 | - | - |
flower 99% (v/v) n-ProOH | 17.85 | - | - | - | 1.02 | 1.4 | 30.52 | 8.68 | - | 2.19 | - | 0.91 | - | 1.21 | - | - |
flower 40% (v/v) isoProOH | 25.54 | 7.84 | 4.44 | - | 4.29 | 4.89 | 13.23 | 0.91 | - | - | - | 0.85 | - | 1.4 | - | - |
flower 70% (v/v) isoProOH | 20.59 | 5.28 | 0.92 | - | 3.11 | 3.87 | 26.94 | 3.63 | - | - | - | 1.68 | - | 1.4 | - | 0.68 |
flower 99% (v/v) isoProOH | 19.13 | 0.5 | - | - | - | - | 32.17 | 8.99 | - | 2.41 | - | 2.76 | - | 1.28 | - | - |
herb 40% (v/v) MeOH | - | - | - | - | 15.15 | 29.72 | - | - | - | - | 2.46 | - | - | - | 1.83 | - |
herb 70% (v/v) MeOH | 0.61 | - | - | - | 13.74 | 28.79 | - | - | - | - | 0.75 | - | 2.42 | 2.85 | 1.72 | 1.25 |
herb 99% (v/v) MeOH | - | - | - | - | 10.75 | 17.04 | 0.84 | - | - | - | - | - | 2.88 | 3.44 | 2.2 | 1.4 |
herb 40% (v/v) EtOH | 0.67 | - | - | - | 16.25 | 30.43 | - | - | 1.92 | - | 1.62 | - | - | 1.69 | 2.72 | - |
herb 70% (v/v) EtOH | 0.57 | - | - | - | 13.19 | 28.22 | 0.45 | - | - | - | 0.48 | - | 1.78 | 3.41 | 1.66 | 2.32 |
herb 96% (v/v) EtOH | - | - | - | - | 9.43 | 16.38 | 0.95 | - | 1.75 | - | - | - | 2.07 | 2.76 | 1.55 | 2.35 |
herb 40% (v/v) n-ProOH | 0.54 | - | - | - | 10.2 | 20.33 | 0.34 | - | - | - | - | - | - | 2.93 | 1 | 3.64 |
herb 70% (v/v) n-ProOH | - | - | - | - | 8.39 | 18.22 | 0.48 | - | 1.58 | - | - | - | 1.25 | 2.87 | 1.22 | 2.11 |
herb 99% (v/v) n-ProOH | 0.75 | - | - | - | 4.44 | 7.28 | 0.95 | - | 1.66 | - | - | - | - | 3.69 | 0.66 | 1.82 |
herb 40% (v/v) isoProOH | - | - | - | - | 5.74 | 11.12 | - | - | 4.72 | - | - | - | 1.42 | 2.22 | 0.83 | 1.79 |
herb 70% (v/v) isoProOH | 0.78 | - | - | - | 5.48 | 8.13 | 0.74 | - | 1.86 | - | - | - | - | 2.73 | - | 1.4 |
herb 99% (v/v) isoProOH | 1.06 | - | - | - | 1.46 | 2.97 | 2.11 | - | 2.16 | - | - | - | - | 3.62 | - | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stelmach, M.; Klimowicz, A.; Wróblewska, A.; Oshetkova, D.; Gajewska, S.; Siemak, J. Antioxidative and Photoprotective In Vitro Potential of Lavandula Angustifolium. Appl. Sci. 2025, 15, 6004. https://doi.org/10.3390/app15116004
Stelmach M, Klimowicz A, Wróblewska A, Oshetkova D, Gajewska S, Siemak J. Antioxidative and Photoprotective In Vitro Potential of Lavandula Angustifolium. Applied Sciences. 2025; 15(11):6004. https://doi.org/10.3390/app15116004
Chicago/Turabian StyleStelmach, Magdalena, Adam Klimowicz, Agnieszka Wróblewska, Daria Oshetkova, Sylwia Gajewska, and Joanna Siemak. 2025. "Antioxidative and Photoprotective In Vitro Potential of Lavandula Angustifolium" Applied Sciences 15, no. 11: 6004. https://doi.org/10.3390/app15116004
APA StyleStelmach, M., Klimowicz, A., Wróblewska, A., Oshetkova, D., Gajewska, S., & Siemak, J. (2025). Antioxidative and Photoprotective In Vitro Potential of Lavandula Angustifolium. Applied Sciences, 15(11), 6004. https://doi.org/10.3390/app15116004