Numerical and Experimental Analysis of Cooling System Performance in Induction Hobs: A Comparison of Heatsink Designs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Study
- Airflow Phase:
- Thermal Phase:
2.2. Experimental Study
Bonferroni Confidence Intervals
2.3. Uncertainty Analysis
3. Results
3.1. Design of Experiment (DoE)
3.2. Analysis of Variance (ANOVA)
3.3. Uncertainty Results
3.4. CFD Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Özcan, Z.; Ekici, Ö. Akış Problemleri İçin Lattice Boltzmann Yöntemi ve Uygulamaları. Gazi Univ. J. Sci. Part C Des. Technol. 2016, 4, 115–126. [Google Scholar]
- Théodon, L.; Debayle, J.; Coufort-Saudejaud, C. Morphological characterization of aggregates and agglomerates by image analysis: A systematic literature review. Powder Technol. 2023, 430, 119033. [Google Scholar] [CrossRef]
- Tunçer, O.; Kahraman, S.; Kaynaroğlu, B. Girdap vanesinden geçen akişin piv yöntemi ile incelenmesi. Gazi Üniversitesi Mühendislik Mimar. Fakültesi Derg. 2016, 31, 4. [Google Scholar]
- Kawakami, H.; Llave, Y.; Fukuoka, M.; Sakai, N. CFD analysis of the convection flow in the pan during induction heating and gas range heating. J. Food Eng. 2013, 116, 726–736. [Google Scholar] [CrossRef]
- Kranjc, M.; Zupanic, A.; Miklavcic, D.; Jarm, T. Numerical analysis and thermographic investigation of induction heating. Int. J. Heat Mass Transf. 2010, 53, 3585–3591. [Google Scholar] [CrossRef]
- Hetsroni, G.; Gurevich, M.; Rozenblit, R. Sintered porous medium heat sink for cooling of high-power mini-devices. Int. J. Heat Fluid Flow 2006, 27, 259–266. [Google Scholar] [CrossRef]
- Ozguc, S.; Teague, T.F.; Pan, L.; Weibel, J.A. Experimental study of topology optimized, additively manufactured microchannel heat sinks designed using a homogenization approach. Int. J. Heat Mass Transf. 2023, 209, 124108. [Google Scholar] [CrossRef]
- Teertstra, P.; Culham, J.R.; Yovanovich, M.M. Analytical modeling of forced convection in slotted plate fin heat sinks. In Proceedings of the ASME 1999 International Mechanical Engineering Congress and Exposition, Nashville, TN, USA, 14–19 November 1999. [Google Scholar]
- Gupta, A.; Kumar, M.; Patil, A.K. Enhanced heat transfer in plate fin heat sink with dimples and protrusions. Heat Mass Transf. 2019, 55, 2247–2260. [Google Scholar] [CrossRef]
- Chiang, K.-T. Optimization of the design parameters of parallel-plain fin heat sink module cooling phenomenon based on the Taguchi method. Int. Commun. Heat Mass Transf. 2005, 32, 1193–1201. [Google Scholar] [CrossRef]
- Yin, T.; Xu, Q.; Fang, L.; Zhang, J. Numerical investigation for effects of layout factors on temperature distribution in a raised-floor data center using a three-level full-factorial design. In Proceedings of the 4th International Conference on Energy, Electrical and Power Engineering (CEEPE), Chongqing, China, 23–25 April 2021; pp. 351–355. [Google Scholar]
- Li, Z.-Z.; Cheng, T.-H.; Xuan, D.-J.; Ren, M.; Shen, G.-Y.; Shen, Y.-D. Optimal design for cooling system of batteries using DOE and RSM. Int. J. Precis. Eng. Manuf. 2012, 13, 1641–1645. [Google Scholar] [CrossRef]
- Fu, J.-P.; Cai, J.-J. Numerical investigation and optimisation of heat transfer performance in a vertical sinter cooling packed bed using Taguchi and ANOVA methods. J. Iron Steel Res. Int. 2020, 27, 898–912. [Google Scholar] [CrossRef]
- Sun, H.; Dixon, R. Development of cooling strategy for an air-cooled lithium-ion battery pack. J. Power Sources 2014, 272, 404–414. [Google Scholar] [CrossRef]
- Stewart, T.; Stiver, D.W. Thermal optimization of electronic systems using Design of Experiments based on numerical inputs. In Proceedings of the Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 11 March 2004. [Google Scholar]
- Icoz, T.; Jaluria, Y. Design of cooling systems for electronic equipment using both experimental and numerical inputs. J. Electron. Packag. 2004, 126, 471–478. [Google Scholar] [CrossRef]
- Ploteau, J.P.; Nicolas, V.; Glouannec, P. Numerical and experimental characterization of a batch bread baking oven. Appl. Therm. Eng. 2012, 48, 289–295. [Google Scholar] [CrossRef]
- Bilen, F.; Yıldıran, V.C.; Mayıl, A.S.; Erbaş, O. Cooking Performance Optimization with New Types of Fan Baffles in Domestic Built-in Ovens. In Proceedings of the 8th World Congress on Momentum, Heat and Mass Transfer (MHMT 23), Lisbon, Portugal, 26–28 March 2023. [Google Scholar]
- Chhanwal, N.; Anishaparvin, A.; Indrani, D.; Raghavarao, K.S.M.S.; Anandharamakrishnan, C. Computational fluid dynamics (CFD) modeling of an electrical heating oven for bread-baking process. J. Food Eng. 2010, 100, 452–460. [Google Scholar] [CrossRef]
- Lam, C.K.G.; Bremhorst, K. A modified form of the k-ε model for predicting wall turbulence. J. Fluids Eng. 1981, 103, 456–460. [Google Scholar] [CrossRef]
- Trebunskikh, T.V.; Ivanov, A.V.; Dumnov, G.E. FloEFD simulation of micro-turbine engines. In Proceedings of the Applied Aerodynamics Conference on Modelling & Simulation in the Aerodynamic Design Process, New York, NY, USA, 17–19 July 2012. [Google Scholar]
- Amirabedin, E.; Anık, T.; Karaduman, A. Feasibility of Using CFD Analysis for Improving the Gas Hobs Performance In Terms of Efficiency and Emissions. In Proceedings of the 4th World Congress on Momentum Heat and Mass Transfer, Rome, Italy, 10–12 April 2019. [Google Scholar]
- Kalitzin, G.; Iaccarino, G. Turbulence modeling in an immersed-boundary RANS method. CTR Annu. Briefs 2002, 415–426. [Google Scholar]
Component Name | Component Material | Density [kg/m3] | Specific Heat [J/kgK] | Conduction Coef. [W/mK] |
---|---|---|---|---|
IGBT | Silicon | 2330 | 750 | 125 |
Bottom Tray | PA66 | 1140 | 1670 | 0.25 |
Electronic Board | FR4 | 1850 | 1100 | 0.35 |
Heatsink | Al 6061 | 2700 | 896 | 167 |
Other Electronics | Silicon | 2330 | 750 | 125 |
Experiment Number | Cooler Position | Measurement Type | Probe Freedom |
---|---|---|---|
1 | Angled | Fixed | Fixed |
2 | Perpendicular | Fixed | Free |
3 | In Fan | Fixed | Fixed |
4 | Angled | Free | Free |
5 | In Fan | Free | Free |
6 | In Fan | Free | Fixed |
7 | Angled | Fixed | Free |
8 | Perpendicular | Fixed | Fixed |
9 | Perpendicular | Free | Fixed |
10 | Angled | Free | Fixed |
11 | In Fan | Fixed | Free |
12 | Perpendicular | Free | Free |
Heatsink Position | Measurement Location | Probe Freedom | Measurement 1 (m/s) | Measurement 2 (m/s) | Measurement 3 (m/s) |
---|---|---|---|---|---|
Angled | Fixed | Fixed | 6.14 | 6.19 | 6.12 |
Perpendicular | Fixed | Free | 7.14 | 7.15 | 7.09 |
In Fan | Fixed | Fixed | 8.69 | 9 | 9.24 |
Angled | Free | Free | 5.84 | 5.64 | 5.5 |
In Fan | Free | Free | 10.15 | 10.84 | 8.95 |
In Fan | Free | Fixed | 8.3 | 8.11 | 8.41 |
Angled | Fixed | Free | 6.12 | 6.05 | 6.05 |
Perpendicular | Fixed | Fixed | 7.09 | 7.05 | 7.11 |
Perpendicular | Free | Fixed | 6.8 | 6.88 | 6.9 |
Angled | Free | Fixed | 6.45 | 6.1 | 5.9 |
In Fan | Fixed | Free | 8.54 | 8.35 | 8.25 |
Perpendicular | Free | Free | 7.84 | 7.03 | 6.9 |
Calculation | Point 1 | Point 2 | Point 3 | Point 4 |
---|---|---|---|---|
CFD | 5.94 | 6.88 | 8.06 | 7.98 |
EXP | 6.56 | 7.94 | 7.99 | 8.69 |
Error | −9% | −13% | 1% | −8% |
Calculation | Point 1 | Point 2 | Point 3 |
---|---|---|---|
CFD | 7.43 | 6.71 | 6.54 |
EXP | 6.80 | 6.92 | 6.62 |
Error | 9% | −3% | −1% |
Calculation | Point 1 | Point 2 | Point 3 | Point 4 |
---|---|---|---|---|
CFD | 4.36 | 4.22 | 3.58 | 7.43 |
EXP | 4.63 | 4.40 | 3.51 | 7.02 |
Error | −6% | −4% | 2% | 6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayil, A.S.; Timuralp, C. Numerical and Experimental Analysis of Cooling System Performance in Induction Hobs: A Comparison of Heatsink Designs. Appl. Sci. 2025, 15, 5995. https://doi.org/10.3390/app15115995
Mayil AS, Timuralp C. Numerical and Experimental Analysis of Cooling System Performance in Induction Hobs: A Comparison of Heatsink Designs. Applied Sciences. 2025; 15(11):5995. https://doi.org/10.3390/app15115995
Chicago/Turabian StyleMayil, Ayberk Salim, and Cisil Timuralp. 2025. "Numerical and Experimental Analysis of Cooling System Performance in Induction Hobs: A Comparison of Heatsink Designs" Applied Sciences 15, no. 11: 5995. https://doi.org/10.3390/app15115995
APA StyleMayil, A. S., & Timuralp, C. (2025). Numerical and Experimental Analysis of Cooling System Performance in Induction Hobs: A Comparison of Heatsink Designs. Applied Sciences, 15(11), 5995. https://doi.org/10.3390/app15115995