Seasonal Changes in Body Composition, Jump, Sprint, and Agility Performance Among Elite Female Handball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Measurements
2.3.1. Body Composition
2.3.2. Jump Performance (CMJ, CMJA, SJ)
2.3.3. Linear Sprint (Running 0–30 m)
2.3.4. Agility Test
Zig-Zag Test
Slalom Test
2.4. Data Analysis
3. Results
3.1. Body Composition
3.2. Jump Performance
3.3. Linear Sprint Ability
3.4. Agility Performance
4. Discussion
4.1. Practical Implications
4.2. Study Limits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Florin, T.D.; Adrian, G.; Marco, C.; Daniele, S.; Sara, B.; Christina, T.; Panos, P. Strategies and best practices for international handball development. Ovidius Univ. Ann. Ser. Phys. Educ. Sport/Sci. Mov. Health 2023, 23, 515–520. [Google Scholar]
- Granli, A. Optimizing Physical Performance During the Competitive Season for Female Handball Players: A Comparative Study on the Effects of High-Load Strength Training Versus Power and Plyometric Training. Master’s Thesis, University of Agder, Kristiansand, Norway, 2023. [Google Scholar]
- Wagner, H.; Fuchs, P.; Fusco, A.; Fuchs, P.; Bell, J.W.; von Duvillard, S.P. Physical performance in elite male and female team-handball players. Int. J. Sports Physiol. Perform. 2019, 14, 60–67. [Google Scholar] [CrossRef]
- Stankovic, M.; Djordjevic, D.; Trajkovic, N.; Milanovic, Z. Effects of high-intensity interval training (HIIT) on physical performance in female team sports: A systematic review. Sports Med. Open. 2023, 9, 78. [Google Scholar] [CrossRef]
- Hammami, M.; Gaamouri, N.; Cherni, Y.; Gaied, S.; Chelly, M.S.; Hill, L.; Knechtle, B. Effects of complex strength training with elastic band program on repeated change of direction in young female handball players: Randomized control trial. Int. J. Sports Sci. Coach. 2022, 17, 1396–1407. [Google Scholar] [CrossRef]
- Jeličić, M.; Jelaska, G.; Stanković, M.; Čaprić, I. Exploring interactions between performance and efficiency among junior female basketball players: A canonical analysis approach. J. Phys. Educ. Sport 2023, 23, 2246–2251. [Google Scholar] [CrossRef]
- Bojić, I.; Pavlović, L. Correlation between coordination and situational-motor abilities of young female handball players. Res. Phys. Educ. Sport Health 2015, 4, 110–114. [Google Scholar]
- Śliż, M.; França, C.; Martins, F.; Marszałek, P.; Gouveia, É.R.; Przednowek, K. Psychomotor abilities, body composition and training experience of elite and sub-elite handball players. Appl. Sci. 2025, 15, 176. [Google Scholar] [CrossRef]
- Luteberget, L.S.; Trollerud, H.P.; Spencer, M. Physical demands of game-based training drills in women’s team handball. J. Sports Sci. 2018, 36, 592–598. [Google Scholar] [CrossRef]
- Kolodziej, M.; Schmidt, M.; Jaitner, T. Seasonal variations of performance parameters in female elite handball. In Proceedings of the 21st Annual Congress of the European College of Sport Science (ECSS), Vienna, Austria, 6–9 July 2016. [Google Scholar]
- Hermassi, S.; Laudner, K.; Schwesig, R. Playing level and position differences in body characteristics and physical fitness performance among male team handball players. Front. Bioeng. Biotechnol. 2019, 7, 149. [Google Scholar] [CrossRef]
- Fristrup, B.; Krustrup, P.; Petz, A.K.; Bencke, J.; Zebis, M.K.; Aagaard, P. Effects of off-season heavy-load resistance training on lower limb mechanical muscle function and physical performance in elite female team handball players. J. Funct. Morphol. Kinesiol. 2024, 9, 268. [Google Scholar] [CrossRef]
- Stanković, M.; Đorđević, D.; Aleksić, A.; Lazić, A.; Lilić, A.; Čaprić, I.; Trajković, N. The relationship between jump performance, speed and COD speed in elite female soccer players. Facta Univ. Ser. Phys. Educ. Sport 2022, 20, 47–59. [Google Scholar] [CrossRef]
- Chirosa-Ríos, L.J.; Chirosa-Ríos, I.J.; Martínez-Marín, I.; Román-Montoya, Y.; Vera-Vera, J.F. The role of the specific strength test in handball performance: Exploring differences across competitive levels and age groups. Sensors 2023, 23, 5178. [Google Scholar] [CrossRef]
- Papaevangelou, E.; Papadopoulou, Z.; Mandroukas, A.; Michaildis, Y.; Nikolaidis, P.T.; Margaritelis, N.V.; Metaxas, T.I. Changes in Anthropometric Characteristics and Isokinetic Muscle Strength in Elite Team Sport Players during an Annual Training Cycle. Sci 2023, 5, 43. [Google Scholar] [CrossRef]
- Cavedon, V.; Zancanaro, C.; Milanese, C. Anthropometric prediction of DXA-measured body composition in female team handball players. PeerJ 2018, 6, e5913. [Google Scholar] [CrossRef] [PubMed]
- Bojić, I.; Živković, M.; Kocić, M.; Veličković, M.; Milenković, D. Differences in explosive strength of elite female handball players during the competition season. Facta Univ. Ser. Phys. Educ. Sport 2020, 17, 601–608. [Google Scholar] [CrossRef]
- Bojić, I.; Stojiljković, N.; Valdevit, Z.; Veličković, M.; Nikolić, D. Change in speed, agility and body composition of top-ranked female handball players during the playing season. Facta Univ. Ser. Phys. Educ. Sport 2020, 17, 515–522. [Google Scholar] [CrossRef]
- Milanese, C.; Piscitelli, F.; Lampis, C.; Zancanaro, C. Effect of a competitive season on anthropometry and three-compartment body composition in female handball players. Biol. Sport 2012, 29, 199–204. [Google Scholar] [CrossRef]
- Karcher, C.; Buchheit, M. On-court demands of elite handball, with special reference to playing positions. Sports Med. 2014, 44, 797–814. [Google Scholar] [CrossRef]
- García-Sánchez, C.; Navarro, R.M.; Karcher, C.; de la Rubia, A. Physical demands during official competitions in elite handball: A systematic review. Int. J. Environ. Res. Public Health 2023, 20, 3353. [Google Scholar] [CrossRef]
- Gorostiaga, E.M.; Granados, C.; Ibañez, J.; González-Badillo, J.J.; Izquierdo, M. Effects of an entire season on physical fitness changes in elite male handball players. Med. Sci. Sports Exerc. 2006, 38, 357–366. [Google Scholar] [CrossRef]
- Parpa, K.; Katanic, B.; Michaelides, M. Seasonal variation and the effect of the transition period on physical fitness parameters in youth female soccer players. Sports 2024, 12, 84. [Google Scholar] [CrossRef] [PubMed]
- Stanković, M.; Trajković, N.; Mačak, D.; Đorđević, D.; Lazić, A.; Milanović, Z. Effects of linear and change of direction high-intensity interval training on physical performance of elite female soccer players. Biol. Sport 2024, 41, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Markovic, G.; Dizdar, D.; Jukic, I.; Cardinale, M. Reliability and factorial validity of squat and countermovement jump tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar] [PubMed]
- Darrall-Jones, J.D.; Jones, B.; Roe, G.; Till, K. Reliability and usefulness of linear sprint testing in adolescent rugby union and league players. J. Strength Cond. Res. 2016, 30, 1359–1364. [Google Scholar] [CrossRef]
- Vieira, F.; Veiga, V.; Carita, A.I.; Petroski, E.L. Morphological and physical fitness characteristics of under-16 Portuguese male handball players with different levels of practice. J. Sports Med. Phys. Fit. 2013, 53, 169–176. [Google Scholar]
- Lockie, R.G.; Schultz, A.B.; Callaghan, S.J.; Jeffriess, M.D.; Berry, S.P. Reliability and validity of a new test of change-of-direction speed for field-based sports: The change-of-direction and acceleration test (CODAT). J. Sports Sci. Med. 2013, 12, 88–94. [Google Scholar]
- Sporiš, G.; Milanović, L.; Jukić, I.; Omrčen, D.; Molinuevo, J.S. The effect of agility training on athletic power performance. Kinesiology 2010, 41, 65–72. [Google Scholar]
- Sporis, G.; Jukic, I.; Milanovic, L.; Vucetic, V. Reliability and factorial validity of agility tests for soccer players. J. Strength Cond. Res. 2010, 24, 679–686. [Google Scholar] [CrossRef]
- Clauss, M.; Gérard, P.; Mosca, A.; Leclerc, M. Interplay between exercise and gut microbiome in the context of human health and performance. Front. Nutr. 2021, 8, 637010. [Google Scholar] [CrossRef]
- Holmes, C.J.; Racette, S.B. The utility of body composition assessment in nutrition and clinical practice: An overview of current methodology. Nutrients 2021, 13, 2493. [Google Scholar] [CrossRef]
- Banjevic, B.; Zarkovic, B.; Katanic, B.; Jabucanin, B.; Popovic, S.; Masanovic, B. Morphological characteristics and situational precision of U15 and U16 elite male players from Al-Ahli Handball Club (Bahrein). Sports 2022, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Molina-López, J.; Planells, E. Nutrition and hydration for handball. In Handball Sports Medicine; Springer: Berlin/Heidelberg, Germany, 2018; pp. 81–101. [Google Scholar] [CrossRef]
- Alcaraz, P.E.; Marín-Cascales, E.; Blazevich, A.J.; Freitas, T.T.; Donti, O.; Spyrou, K.; Bogdanis, G.C. SCS 6th Annual Meeting—EEVFA—11th International Congress of Biochemistry and Physiology of Exercise, Athens, Greece, 2023. Sports 2024, 12, 126. [Google Scholar] [CrossRef] [PubMed]
- Darragi, M.; Zouhal, H.; Bousselmi, M.; Karamti, H.M.; Clark, C.C.T.; Laher, I.; Hackney, A.C.; Granacher, U.; Zouita, A.B.M. Effects of in-season strength training on physical fitness and injury prevention in North African elite young female soccer players. Sports Med.-Open 2024, 10, 94. [Google Scholar] [CrossRef]
- Akbar, S.; Kim Geok, S.; Bashir, M.; Jazaily Bin Mohd, N.N.; Luo, S.; He, S. Effects of different exercise training on physical fitness and technical skills in handball players: A systematic review. J. Strength Cond. Res. 2024, 38, e695–e705. [Google Scholar] [CrossRef] [PubMed]
- Aouichaoui, C.; Krichen, S.; Tounsi, M.; Ammar, A.; Tabka, O.; Chatti, S.; Zaouali, M.; Zouch, M.; Trabelsi, Y. Reference values of physical performance in handball players aged 13–19 years: Taking into account their biological maturity. Clin. Pract. 2024, 14, 305–326. [Google Scholar] [CrossRef]
- Harper, D.J.; McBurnie, A.J.; Santos, T.D.; Eriksrud, O.; Evans, M.; Cohen, D.D.; Rhodes, D.; Carling, C.; Kiely, J. Biomechanical and neuromuscular performance requirements of horizontal deceleration: A review with implications for random intermittent multi-directional sports. Sports Med. 2022, 52, 2321–2354. [Google Scholar] [CrossRef]
- Taberner, M.; Spencer, N.; Murphy, B.; Antflick, J.; Cohen, D.D. Progressing on-court rehabilitation after injury: The control-chaos continuum adapted to basketball. J. Orthop. Sports Phys. Ther. 2023, 53, 498–509. [Google Scholar] [CrossRef]
- Lijewski, M.; Burdukiewicz, A.; Pietraszewska, J.; Andrzejewska, J.; Stachoń, A. Asymmetry of Muscle Mass Distribution and Grip Strength in Professional Handball Players. Int. J. Environ. Res. Public Health 2021, 18, 1913. [Google Scholar] [CrossRef]
- Zemková, E.; Zapletalová, L. The role of neuromuscular control of postural and core stability in functional movement and athlete performance. Front. Physiol. 2022, 13, 796097. [Google Scholar] [CrossRef]
- Lara-Cobos, D.; Martínez-Aranda, L.M.; Sanz-Matesanz, M.; Cuadrado-Peñafiel, V.; Ortega-Becerra, M. Effects of the surface type on the sprint force–velocity–power profile of female beach handball top-level players. Appl. Sci. 2024, 14, 2952. [Google Scholar] [CrossRef]
- Mikalonytė, R.; Paulauskas, R.; Abade, E.; Figueira, B. Correction: Effects of small-sided games vs. simulated match training on physical performance of youth female handball players. PLoS ONE 2024, 19, e0316740. [Google Scholar] [CrossRef] [PubMed]
- Farley, J.B.; Stein, J.; Keogh, J.W.L.; Woods, C.T.; Milne, N. The relationship between physical fitness qualities and sport-specific technical skills in female, team-based ball players: A systematic review. Sports Med.-Open 2020, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Hammami, M.; Gaamouri, N.; Aloui, G.; Shephard, R.J.; Chelly, M.S. Effects of a complex strength-training program on athletic performance of junior female handball players. Int. J. Sports Physiol. Perform. 2019, 14, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Dos’Santos, T.; McBurnie, A.; Thomas, C.; Jones, P.A.; Harper, D. Attacking agility actions: Match play contextual applications with coaching and technique guidelines. Strength Cond. J. 2022, 44, 102–118. [Google Scholar] [CrossRef]
- Kovacikova, Z.; Zemková, E. The effect of agility training performed in the form of competitive exercising on agility performance. Res. Q. Exerc. Sport 2020, 92, 271–278. [Google Scholar] [CrossRef]
Variables | Handball Players |
---|---|
Age | 21.98 ± 1.22 |
Body Height | 173.18 ± 7.17 |
Body Mass | 66.69 ± 8.90 |
BMI | 22.15 ± 1.66 |
Day | Morning Session | Evening Session |
---|---|---|
Monday | Aerobic conditioning (60–70% HRmax); Emphasis on recovery and endurance volume | Technical-tactical drills in motion (ball handling, passing, coordination under load) |
Tuesday | High-intensity training (explosive power, agility, speed, specific endurance) or Strength training (gym session) | Submaximal execution of technical-tactical drills (with and without the ball) |
Wednesday | Position-specific shooting drills Goalkeeper-specific training Individual skill development | High-intensity technical-tactical session (small-sided games, transition play) |
Thursday | Rest or optional recovery (e.g., mobility, stretching, or hydrotherapy) | Tactical systems rehearsal (offensive and defensive schemes, situational play) |
Friday | Group tactical shooting (finishing under pressure, 7-m throws, positional play) | Review of tactical strategies and set plays (match preparation) |
Saturday | Game day | - |
Sunday | Day off | - |
Variables | I | II | III | IV | V | p | ES | Post-hoc |
---|---|---|---|---|---|---|---|---|
BH | 173.18 ± 7.17 | 173.18 ± 7.17 | 173.18 ± 7.17 | 173.18 ± 7.17 | 173.18 ± 7.17 | - | - | - |
BM | 66.69 ± 8.90 | 66.66 ± 8.42 | 66.70 ± 8.51 | 66.89 ± 8.72 | 68.39 ± 9.58 | 0.103 | 0.507 | / |
BMI | 22.15 ± 1.66 | 21.96 ± 1.38 | 22.38 ± 1.36 | 22.01 ± 1.52 | 22.69 ± 1.79 | 0.180 | 0.437 | / |
%BF | 28.16 ± 4.30 | 28.29 ± 5.78 | 28.24 ± 3.79 | 28.49 ± 3.72 | 29.41 ± 4.19 | 0.254 | 0.387 | / |
%MM | 31.16 ± 2.28 | 31.79 ± 4.44 | 31.11 ± 2.17 | 30.94 ± 2.07 | 30.66 ± 2.23 | 0.351 | 0.333 | / |
SJ | 24.56 ± 3.26 | 25.09 ± 2.74 | 24.79 ± 3.30 | 25.49 ± 2.62 | 25.42 ± 3.45 | 0.733 | 0.168 | / |
CMJ | 26.93 ± 3.37 | 27.34 ± 3.59 | 26.41 ± 3.02 | 27.27 ± 3.18 | 26.82 ± 3.87 | 0.407 | 0.306 | / |
CMJA | 31.76 ± 3.65 | 32.34 ± 3.67 | 31.11 ± 3.13 | 30.90 ± 3.42 | 31.27 ± 4.68 | 0.096 | 0.515 | / |
CMJ right | 12.54 ± 1.96 | 14.00 ± 2.58 | 13.39 ± 1.54 | 14.25 ± 1.78 | 14.59 ± 2.35 | 0.084 | 0.530 | / |
CMJ left | 12.76 ± 1.64 | 13.79 ± 2.47 | 13.44 ± 1.32 | 14.11 ± 1.56 | 15.15 ± 2.37 | 0.011 * | 0.703 | IV > I, V > I |
5 m | 1.26 ± 0.06 | 1.20 ± 0.07 | 1.32 ± 0.06 | 1.21 ± 0.07 | 1.24 ± 0.07 | 0.000 * | 0.904 | I > II, III > II, III > IV |
10 m | 2.09 ± 0.07 | 2.01 ± 0.08 | 2.18 ± 0.10 | 2.06 ± 0.10 | 2.08 ± 0.10 | 0.000 * | 0.872 | I > II, III > I, III > II, III > IV |
30 m | 4.93 ± 0.17 | 4.79 ± 0.16 | 4.97 ± 0.22 | 4.92 ± 0.21 | 4.83 ± 0.22 | 0.110 | 0.499 | / |
Agility | 7.90 ± 0.49 | 7.60 ± 0.44 | 7.54 ± 0.40 | 7.69 ± 0.48 | 7.55 ± 0.54 | 0.162 | 0.451 | / |
Slalom | 8.03 ± 0.33 | 7.25 ± 0.47 | 8.32 ± 0.43 | 8.32 ± 0.38 | 7.62 ± 0.54 | 0.000 * | 0.939 | I > II, III > II, III > V, IV > II, IV > V |
SlalomBall | 8.99 ± 0.64 | 8.15 ± 0.64 | 8.93 ± 0.45 | 8.96 ± 0.56 | 8.41 ± 0.65 | 0.000 * | 0.936 | I > II, I > V, III > II, III > IV, IV > II, IV > V |
Zig-Zag | 5.72 ± 0.32 | 5.64 ± 0.39 | 4.76 ± 0.18 | 5.45 ± 0.27 | 5.70 ± 0.35 | 0.000 * | 0.964 | I > III, II > III, IV > III, V > III |
Zig-ZagBall | 5.98 ± 0.31 | 5.85 ± 0.34 | 5.10 ± 0.38 | 5.86 ± 0.35 | 5.93 ± 0.31 | 0.000 * | 0.940 | I > III, II > III, IV > III, V > III |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanković, M.; Katanić, B.; Govindasamy, K.; Badau, A.; Badau, D.; Masanovic, B.; Bojić, I. Seasonal Changes in Body Composition, Jump, Sprint, and Agility Performance Among Elite Female Handball Players. Appl. Sci. 2025, 15, 5846. https://doi.org/10.3390/app15115846
Stanković M, Katanić B, Govindasamy K, Badau A, Badau D, Masanovic B, Bojić I. Seasonal Changes in Body Composition, Jump, Sprint, and Agility Performance Among Elite Female Handball Players. Applied Sciences. 2025; 15(11):5846. https://doi.org/10.3390/app15115846
Chicago/Turabian StyleStanković, Mima, Borko Katanić, Karuppasamy Govindasamy, Adela Badau, Dana Badau, Bojan Masanovic, and Ivana Bojić. 2025. "Seasonal Changes in Body Composition, Jump, Sprint, and Agility Performance Among Elite Female Handball Players" Applied Sciences 15, no. 11: 5846. https://doi.org/10.3390/app15115846
APA StyleStanković, M., Katanić, B., Govindasamy, K., Badau, A., Badau, D., Masanovic, B., & Bojić, I. (2025). Seasonal Changes in Body Composition, Jump, Sprint, and Agility Performance Among Elite Female Handball Players. Applied Sciences, 15(11), 5846. https://doi.org/10.3390/app15115846