Application of Electrical Resistivity Tomography Method Combined with Cross-Well Seismic Computed Tomography Method in Karst Detection in Complex Urban Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting in Study Area
2.2. Methods
2.2.1. Electrical Resistivity Tomography Method
2.2.2. Cross-Well Seismic Computed Tomography Method
3. Results
3.1. Electrical Resistivity Tomography Results
3.2. Cross-Well Seismic Computed Tomography Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adler, S. The Great Society Subway: A History of the Washington Metro. J. Am. Hist. 2007, 93, 1281–1282. [Google Scholar] [CrossRef]
- Soriguera, F.; Martínez, I.; Sala, M.; Menéndez, M. Effects of low speed limits on freeway traffic flow. Transp. Res. Part C Emerg. Technol. 2017, 77, 257–274. [Google Scholar] [CrossRef]
- Wey, W.-M.; Zhang, H.; Chang, Y. Alternative transit-oriented development evaluation in sustainable built environment planning. Habitat Int. 2016, 55, 109–123. [Google Scholar] [CrossRef]
- Xue, Y.; Cao, X.; Ai, Y.; Xu, K.; Zhang, Y. Primary Air Pollutants Emissions Variation Characteristics and Future Control Strategies for Transportation Sector in Beijing, China. Sustainability 2020, 12, 4111. [Google Scholar] [CrossRef]
- Cui, Q.; Shen, S.; Xu, Y.; Wu, H.; Yin, Z. Mitigation of geohazards during deep excavations in karst regions with caverns: A case study. Eng. Geol. 2015, 195, 16–27. [Google Scholar] [CrossRef]
- Liao, S.; Liu, J.; Wang, R.; Li, Z. Shield tunneling and environment protection in Shanghai soft ground. Tunn. Undergr. Space Technol. 2009, 24, 454–465. [Google Scholar] [CrossRef]
- Sturk, R.; Olsson, L.; Johansson, J. Risk and decision analysis for large underground projects, as applied to the Stockholm Ring Road tunnels. Tunn. Undergr. Space Technol. 1996, 11, 157–164. [Google Scholar] [CrossRef]
- Xiong, C.H. Guangzhou Metro 8,9-line Distribution of Karst and the Impact of the Project. Guangdong Archit. Civ. Eng. 2014, 21, 59–62. [Google Scholar] [CrossRef]
- Xue, Y.; Li, X.; Li, G.; Qiu, D.; Gong, H.; Kong, F. An analytical model for assessing soft rock tunnel collapse risk and its engineering application. Geomech. Eng. 2020, 23, 441–454. [Google Scholar] [CrossRef]
- Zhang, Q.; Tian, S.; Mo, Y.; Dong, X.; Hao, S. An expert system for prediction of Karst disaster in excavation of tunnels or underground structures through a carbonate rock area. Tunn. Undergr. Space Technol. 1993, 8, 373–378. [Google Scholar] [CrossRef]
- Fan, Y.S.; Zhang, Y.T. Analysis of main methods and difficulties of cavern survey in Wuhan metro. Resour. Environ. Eng. 2017, 31, 60–65. [Google Scholar] [CrossRef]
- Han, M.; Li, Z.; Mei, G.; Bao, X.; Jia, J.; Liu, L.; Li, Y. Characteristics of subway excavation in soft soil and protective effects of partition wall on the historical building and pile foundation building. Bull. Eng. Geol. Environ. 2022, 81, 307. [Google Scholar] [CrossRef]
- Zhong, S.; Wang, R. New landsonar method for survey of ground in busy town, karst caves in mountain and sea bottom on water. J. Eng. Geol. 2013, 21, 422–432. [Google Scholar]
- Stirbys, A.F.; Radwanski, Z.R.; Proctor, R.J.; Escandon, R.F. Los Angeles metro rail project–geologic and geotechnical design and construction constraints. Eng. Geol. 1999, 51, 203–224. [Google Scholar] [CrossRef]
- Liu, R.; Sun, H.; Qin, J.; Zheng, Z. A multi-geophysical approach to assess potential sinkholes in an urban area. Eng. Geol. 2023, 318, 107100. [Google Scholar] [CrossRef]
- Guo, D.D.; Zhao, L.H.; Gao, Z.J. High-density electrical method used in the application of karst collapse. Ground Water 2011, 33, 108–110. [Google Scholar]
- van Schoor, M. Detection of sinkholes using 2D electrical resistivity imaging. J. Appl. Geophys. 2002, 50, 393–399. [Google Scholar] [CrossRef]
- Tarik, L.; Benamara, A.; Chaibi, M.; Tarik, M.; Hritta, D.; Bouhali, K. Application and comparison of very low frequency electromagnetic and electrical resistivity techniques to investigate a Karstic Region: A case study of EL Hajeb Municipality, Morocco. J. Appl. Geophys. 2023, 215, 105121. [Google Scholar] [CrossRef]
- Jianjun, G.; Zhang, Y.X.; Xiao, L. An application of the high-density electrical resistivity method for detecting slide zones in deep-seated landslides in limestone areas. J. Appl. Geophys. 2020, 177, 104013. [Google Scholar] [CrossRef]
- Al-fares, W.; Bakalowicz, M.; Guérin, R.; Dukhan, M. Analysis of the karst aquifer structure of the Lamalou area (Hérault, France) with ground penetrating radar. J. Appl. Geophys. 2002, 51, 97–106. [Google Scholar] [CrossRef]
- Beres, M.; Luetscher, M.; Olivier, R. Integration of ground-penetrating radar and microgravimetric methods to map shallow caves. J. Appl. Geophys. 2001, 46, 249–262. [Google Scholar] [CrossRef]
- Azwin, I.N.; Saad, R.; Nordiana, M. Applying the Seismic Refraction Tomography for Site Characterization. APCBEE Procedia 2013, 5, 227–231. [Google Scholar] [CrossRef]
- Duan, C.; Yan, C.; Xu, B.; Zhou, Y. Crosshole seismic CT data field experiments and interpretation for karst caves in deep foundations. Eng. Geol. 2017, 228, 180–196. [Google Scholar] [CrossRef]
- Liu, Y.; Ng, Y.C.H.; Zhang, Y.; Yang, P.; Ku, T. Incorporating geotechnical and geophysical investigations for underground obstruction detection: A case study. Undergr. Space 2023, 11, 116–129. [Google Scholar] [CrossRef]
- Li, T.; Peng, T.; Guo, Y. Application of cross-hole seismic computerized tomography technology to karst caves survey. Hydrogeol. Eng. Geol. 2009, 36, 127–130. [Google Scholar]
- Hiltunen Dennis, R.; Dunn Patrick, W. Seismic Crosshole Tomography Studies of Foundation Sites in Karst Terrance. In Underground Construction and Ground Movement; American Society of Civil Engineers: Reston, VA, USA, 2012. [Google Scholar]
- Ardestani, V. Detecting, delineating and modeling the connected solution cavities in a dam site via microgravity data. Acta Geod. Geophys. 2013, 48, 123–138. [Google Scholar] [CrossRef]
- Xue, G.; Li, X. The technology of TEM tunnel prediction imaging. Chin. J. Geophys. 2008, 51, 894–900. [Google Scholar]
- Danielsen, J.E.; Auken, E.; Jørgensen, F.; Søndergaard, V.; Sørensen, K.I. The application of the transient electromagnetic method in hydrogeophysical surveys. J. Appl. Geophys. 2003, 53, 181–198. [Google Scholar] [CrossRef]
- Amanatidou, E.; Vargemezis, G.; Tsourlos, P. Combined application of seismic and electrical geophysical methods for karst cavities detection: A case study at the campus of the new University of Western Macedonia, Kozani, Greece. J. Appl. Geophys. 2021, 196, 104499. [Google Scholar] [CrossRef]
- Arifin, M.H.; Jamaluddin, T.A.; Husin, H.; Ismail, A.; Abbas, A.A.; Nordin, M.N.M.; Baioumy, H.; Kayode, J.S.; Ismail, N.; Othman, N.A.; et al. Comparison of geological mapping with electrical resistivity and ground penetration radar methods for rock fractured system study. Chiang Mai J. Sci. 2016, 43, 1346–1357. [Google Scholar]
- Carbonel, D.; Rodríguez Tribaldos, V.; McCalpin, J.; Linares, R.; Roqué, C.; Zarroca, M.; Guerrero, J.; Sasowsky, I. Evaluation of trenching, ground penetrating radar (GPR) and electrical resistivity tomography (ERT) for sinkhole characterization. Earth Surf. Process. Landf. 2014, 39, 214–227. [Google Scholar] [CrossRef]
- Perttu, N.; Persson, L.; Erlström, M.; Elming, S.-Å. Magnetic resonance sounding and radiomagnetotelluric measurements used to characterize a limestone aquifer in Gotland, Sweden. J. Hydrol. 2012, 424–425, 184–195. [Google Scholar] [CrossRef]
- Rossi, G.; Baradello, L.; Bolcato, S.; Bratus, A.; Picotti, S.; Wardell, N. Geophysical Integrated Approach to the Study of an Aquifer In a Karstic Area. In SEG Technical Program Expanded Abstracts 2002; Society of Exploration Geophysicists: Houston, TX, USA, 2002. [Google Scholar]
- Thierry, P.; Debeblia, N.; Bitri, A. Geophysical and geological characterisation of karst hazards in urban environments: Application to Orléans (France). Bull. Eng. Geol. Environ. 2005, 64, 139–150. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Shi, S.; Sun, S.; Ba, X.; Zhang, Y. Fine Exploration and Control of Subway Crossing Karst Area. Appl. Sci. 2019, 9, 2588. [Google Scholar] [CrossRef]
- Ren, D.J.; Shen, S.L.; Cheng, W.C.; Zhang, N.; Wang, Z.F. Geological formation and geo-hazards during subway construction in Guangzhou. Environ. Earth Sci. 2016, 75, 934. [Google Scholar] [CrossRef]
- Meng, Y. Multi-Parameter Monitoring, Early Warning and Risk Prevention of Karst Collapse in Guanghua Basin. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2020. [Google Scholar]
- GB50307-2012; Code for Geotechnical Investigations of Urban Rail Transit. China Planning Press: Beijing, China, 2012.
- He, J.S.; Li, D.Q. Geophysical Exploration Methods for Strong Interference Urban Underground Space. Chin. J. Eng. Geophys. 2022, 19, 559–567. [Google Scholar]
- Tang, Z.G.; Cai, C.F.; Wu, L.J.; Li, W.J. Application of SeismicImaging method and High-Density Electrical Method in Karst Investigation. Constr. Des. Proj. 2024, 140–142. [Google Scholar] [CrossRef]
- Liu, D.X. Research and Application of Forward and Inverse Numerical Simulation of Karst Detection with High Density Electric Method. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2021. [Google Scholar] [CrossRef]
Soil and Rock Mass | Longitudinal Wave Velocity (V)/m/s | Resisvity (p)/Ω·m |
---|---|---|
Regular Range | Regular Range | |
Clay (wet) | 800–2000 | 0.1–100 |
Sand (wet) | 1500–2500 | 50–500 |
Water | 1480 | 0.1–10 |
Limestone (karstified) | 2000–4500 | 50–500 |
Limestone (non-karstified) | 4000–6000 | 100–10,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Fu, J.; Jia, S.; Meng, J. Application of Electrical Resistivity Tomography Method Combined with Cross-Well Seismic Computed Tomography Method in Karst Detection in Complex Urban Environment. Appl. Sci. 2025, 15, 5756. https://doi.org/10.3390/app15105756
Zhang Y, Fu J, Jia S, Meng J. Application of Electrical Resistivity Tomography Method Combined with Cross-Well Seismic Computed Tomography Method in Karst Detection in Complex Urban Environment. Applied Sciences. 2025; 15(10):5756. https://doi.org/10.3390/app15105756
Chicago/Turabian StyleZhang, Yansong, Jianfei Fu, Sanshi Jia, and Jiaqi Meng. 2025. "Application of Electrical Resistivity Tomography Method Combined with Cross-Well Seismic Computed Tomography Method in Karst Detection in Complex Urban Environment" Applied Sciences 15, no. 10: 5756. https://doi.org/10.3390/app15105756
APA StyleZhang, Y., Fu, J., Jia, S., & Meng, J. (2025). Application of Electrical Resistivity Tomography Method Combined with Cross-Well Seismic Computed Tomography Method in Karst Detection in Complex Urban Environment. Applied Sciences, 15(10), 5756. https://doi.org/10.3390/app15105756