Application of Electrical Resistivity Tomography Method Combined with Cross-Well Seismic Computed Tomography Method in Karst Detection in Complex Urban Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Geological Setting in Study Area
2.2. Methods
2.2.1. Electrical Resistivity Tomography Method
2.2.2. Cross-Well Seismic Computed Tomography Method
3. Results
3.1. Electrical Resistivity Tomography Results
3.2. Cross-Well Seismic Computed Tomography Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adler, S. The Great Society Subway: A History of the Washington Metro. J. Am. Hist. 2007, 93, 1281–1282. [Google Scholar] [CrossRef]
- Soriguera, F.; Martínez, I.; Sala, M.; Menéndez, M. Effects of low speed limits on freeway traffic flow. Transp. Res. Part C Emerg. Technol. 2017, 77, 257–274. [Google Scholar] [CrossRef]
- Wey, W.-M.; Zhang, H.; Chang, Y. Alternative transit-oriented development evaluation in sustainable built environment planning. Habitat Int. 2016, 55, 109–123. [Google Scholar] [CrossRef]
- Xue, Y.; Cao, X.; Ai, Y.; Xu, K.; Zhang, Y. Primary Air Pollutants Emissions Variation Characteristics and Future Control Strategies for Transportation Sector in Beijing, China. Sustainability 2020, 12, 4111. [Google Scholar] [CrossRef]
- Cui, Q.; Shen, S.; Xu, Y.; Wu, H.; Yin, Z. Mitigation of geohazards during deep excavations in karst regions with caverns: A case study. Eng. Geol. 2015, 195, 16–27. [Google Scholar] [CrossRef]
- Liao, S.; Liu, J.; Wang, R.; Li, Z. Shield tunneling and environment protection in Shanghai soft ground. Tunn. Undergr. Space Technol. 2009, 24, 454–465. [Google Scholar] [CrossRef]
- Sturk, R.; Olsson, L.; Johansson, J. Risk and decision analysis for large underground projects, as applied to the Stockholm Ring Road tunnels. Tunn. Undergr. Space Technol. 1996, 11, 157–164. [Google Scholar] [CrossRef]
- Xiong, C.H. Guangzhou Metro 8,9-line Distribution of Karst and the Impact of the Project. Guangdong Archit. Civ. Eng. 2014, 21, 59–62. [Google Scholar] [CrossRef]
- Xue, Y.; Li, X.; Li, G.; Qiu, D.; Gong, H.; Kong, F. An analytical model for assessing soft rock tunnel collapse risk and its engineering application. Geomech. Eng. 2020, 23, 441–454. [Google Scholar] [CrossRef]
- Zhang, Q.; Tian, S.; Mo, Y.; Dong, X.; Hao, S. An expert system for prediction of Karst disaster in excavation of tunnels or underground structures through a carbonate rock area. Tunn. Undergr. Space Technol. 1993, 8, 373–378. [Google Scholar] [CrossRef]
- Fan, Y.S.; Zhang, Y.T. Analysis of main methods and difficulties of cavern survey in Wuhan metro. Resour. Environ. Eng. 2017, 31, 60–65. [Google Scholar] [CrossRef]
- Han, M.; Li, Z.; Mei, G.; Bao, X.; Jia, J.; Liu, L.; Li, Y. Characteristics of subway excavation in soft soil and protective effects of partition wall on the historical building and pile foundation building. Bull. Eng. Geol. Environ. 2022, 81, 307. [Google Scholar] [CrossRef]
- Zhong, S.; Wang, R. New landsonar method for survey of ground in busy town, karst caves in mountain and sea bottom on water. J. Eng. Geol. 2013, 21, 422–432. [Google Scholar]
- Stirbys, A.F.; Radwanski, Z.R.; Proctor, R.J.; Escandon, R.F. Los Angeles metro rail project–geologic and geotechnical design and construction constraints. Eng. Geol. 1999, 51, 203–224. [Google Scholar] [CrossRef]
- Liu, R.; Sun, H.; Qin, J.; Zheng, Z. A multi-geophysical approach to assess potential sinkholes in an urban area. Eng. Geol. 2023, 318, 107100. [Google Scholar] [CrossRef]
- Guo, D.D.; Zhao, L.H.; Gao, Z.J. High-density electrical method used in the application of karst collapse. Ground Water 2011, 33, 108–110. [Google Scholar]
- van Schoor, M. Detection of sinkholes using 2D electrical resistivity imaging. J. Appl. Geophys. 2002, 50, 393–399. [Google Scholar] [CrossRef]
- Tarik, L.; Benamara, A.; Chaibi, M.; Tarik, M.; Hritta, D.; Bouhali, K. Application and comparison of very low frequency electromagnetic and electrical resistivity techniques to investigate a Karstic Region: A case study of EL Hajeb Municipality, Morocco. J. Appl. Geophys. 2023, 215, 105121. [Google Scholar] [CrossRef]
- Jianjun, G.; Zhang, Y.X.; Xiao, L. An application of the high-density electrical resistivity method for detecting slide zones in deep-seated landslides in limestone areas. J. Appl. Geophys. 2020, 177, 104013. [Google Scholar] [CrossRef]
- Al-fares, W.; Bakalowicz, M.; Guérin, R.; Dukhan, M. Analysis of the karst aquifer structure of the Lamalou area (Hérault, France) with ground penetrating radar. J. Appl. Geophys. 2002, 51, 97–106. [Google Scholar] [CrossRef]
- Beres, M.; Luetscher, M.; Olivier, R. Integration of ground-penetrating radar and microgravimetric methods to map shallow caves. J. Appl. Geophys. 2001, 46, 249–262. [Google Scholar] [CrossRef]
- Azwin, I.N.; Saad, R.; Nordiana, M. Applying the Seismic Refraction Tomography for Site Characterization. APCBEE Procedia 2013, 5, 227–231. [Google Scholar] [CrossRef]
- Duan, C.; Yan, C.; Xu, B.; Zhou, Y. Crosshole seismic CT data field experiments and interpretation for karst caves in deep foundations. Eng. Geol. 2017, 228, 180–196. [Google Scholar] [CrossRef]
- Liu, Y.; Ng, Y.C.H.; Zhang, Y.; Yang, P.; Ku, T. Incorporating geotechnical and geophysical investigations for underground obstruction detection: A case study. Undergr. Space 2023, 11, 116–129. [Google Scholar] [CrossRef]
- Li, T.; Peng, T.; Guo, Y. Application of cross-hole seismic computerized tomography technology to karst caves survey. Hydrogeol. Eng. Geol. 2009, 36, 127–130. [Google Scholar]
- Hiltunen Dennis, R.; Dunn Patrick, W. Seismic Crosshole Tomography Studies of Foundation Sites in Karst Terrance. In Underground Construction and Ground Movement; American Society of Civil Engineers: Reston, VA, USA, 2012. [Google Scholar]
- Ardestani, V. Detecting, delineating and modeling the connected solution cavities in a dam site via microgravity data. Acta Geod. Geophys. 2013, 48, 123–138. [Google Scholar] [CrossRef]
- Xue, G.; Li, X. The technology of TEM tunnel prediction imaging. Chin. J. Geophys. 2008, 51, 894–900. [Google Scholar]
- Danielsen, J.E.; Auken, E.; Jørgensen, F.; Søndergaard, V.; Sørensen, K.I. The application of the transient electromagnetic method in hydrogeophysical surveys. J. Appl. Geophys. 2003, 53, 181–198. [Google Scholar] [CrossRef]
- Amanatidou, E.; Vargemezis, G.; Tsourlos, P. Combined application of seismic and electrical geophysical methods for karst cavities detection: A case study at the campus of the new University of Western Macedonia, Kozani, Greece. J. Appl. Geophys. 2021, 196, 104499. [Google Scholar] [CrossRef]
- Arifin, M.H.; Jamaluddin, T.A.; Husin, H.; Ismail, A.; Abbas, A.A.; Nordin, M.N.M.; Baioumy, H.; Kayode, J.S.; Ismail, N.; Othman, N.A.; et al. Comparison of geological mapping with electrical resistivity and ground penetration radar methods for rock fractured system study. Chiang Mai J. Sci. 2016, 43, 1346–1357. [Google Scholar]
- Carbonel, D.; Rodríguez Tribaldos, V.; McCalpin, J.; Linares, R.; Roqué, C.; Zarroca, M.; Guerrero, J.; Sasowsky, I. Evaluation of trenching, ground penetrating radar (GPR) and electrical resistivity tomography (ERT) for sinkhole characterization. Earth Surf. Process. Landf. 2014, 39, 214–227. [Google Scholar] [CrossRef]
- Perttu, N.; Persson, L.; Erlström, M.; Elming, S.-Å. Magnetic resonance sounding and radiomagnetotelluric measurements used to characterize a limestone aquifer in Gotland, Sweden. J. Hydrol. 2012, 424–425, 184–195. [Google Scholar] [CrossRef]
- Rossi, G.; Baradello, L.; Bolcato, S.; Bratus, A.; Picotti, S.; Wardell, N. Geophysical Integrated Approach to the Study of an Aquifer In a Karstic Area. In SEG Technical Program Expanded Abstracts 2002; Society of Exploration Geophysicists: Houston, TX, USA, 2002. [Google Scholar]
- Thierry, P.; Debeblia, N.; Bitri, A. Geophysical and geological characterisation of karst hazards in urban environments: Application to Orléans (France). Bull. Eng. Geol. Environ. 2005, 64, 139–150. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Shi, S.; Sun, S.; Ba, X.; Zhang, Y. Fine Exploration and Control of Subway Crossing Karst Area. Appl. Sci. 2019, 9, 2588. [Google Scholar] [CrossRef]
- Ren, D.J.; Shen, S.L.; Cheng, W.C.; Zhang, N.; Wang, Z.F. Geological formation and geo-hazards during subway construction in Guangzhou. Environ. Earth Sci. 2016, 75, 934. [Google Scholar] [CrossRef]
- Meng, Y. Multi-Parameter Monitoring, Early Warning and Risk Prevention of Karst Collapse in Guanghua Basin. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2020. [Google Scholar]
- GB50307-2012; Code for Geotechnical Investigations of Urban Rail Transit. China Planning Press: Beijing, China, 2012.
- He, J.S.; Li, D.Q. Geophysical Exploration Methods for Strong Interference Urban Underground Space. Chin. J. Eng. Geophys. 2022, 19, 559–567. [Google Scholar]
- Tang, Z.G.; Cai, C.F.; Wu, L.J.; Li, W.J. Application of SeismicImaging method and High-Density Electrical Method in Karst Investigation. Constr. Des. Proj. 2024, 140–142. [Google Scholar] [CrossRef]
- Liu, D.X. Research and Application of Forward and Inverse Numerical Simulation of Karst Detection with High Density Electric Method. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2021. [Google Scholar] [CrossRef]
Soil and Rock Mass | Longitudinal Wave Velocity (V)/m/s | Resisvity (p)/Ω·m |
---|---|---|
Regular Range | Regular Range | |
Clay (wet) | 800–2000 | 0.1–100 |
Sand (wet) | 1500–2500 | 50–500 |
Water | 1480 | 0.1–10 |
Limestone (karstified) | 2000–4500 | 50–500 |
Limestone (non-karstified) | 4000–6000 | 100–10,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Fu, J.; Jia, S.; Meng, J. Application of Electrical Resistivity Tomography Method Combined with Cross-Well Seismic Computed Tomography Method in Karst Detection in Complex Urban Environment. Appl. Sci. 2025, 15, 5756. https://doi.org/10.3390/app15105756
Zhang Y, Fu J, Jia S, Meng J. Application of Electrical Resistivity Tomography Method Combined with Cross-Well Seismic Computed Tomography Method in Karst Detection in Complex Urban Environment. Applied Sciences. 2025; 15(10):5756. https://doi.org/10.3390/app15105756
Chicago/Turabian StyleZhang, Yansong, Jianfei Fu, Sanshi Jia, and Jiaqi Meng. 2025. "Application of Electrical Resistivity Tomography Method Combined with Cross-Well Seismic Computed Tomography Method in Karst Detection in Complex Urban Environment" Applied Sciences 15, no. 10: 5756. https://doi.org/10.3390/app15105756
APA StyleZhang, Y., Fu, J., Jia, S., & Meng, J. (2025). Application of Electrical Resistivity Tomography Method Combined with Cross-Well Seismic Computed Tomography Method in Karst Detection in Complex Urban Environment. Applied Sciences, 15(10), 5756. https://doi.org/10.3390/app15105756