Impact of Parent Rock and Land Use on the Distribution and Enrichment of Soil Selenium in Typical Subtropical Karst Regions of Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Chemical Analysis
2.4. Calculation of Topographic Parameters
2.5. Quality Control
2.6. Statistical Analysis
3. Result
3.1. Total Se in Soil and Soil Physicochemical Properties
3.2. Topographic Parameters
4. Discussion
4.1. Differences in Soil Se Content Across Parent Rock Types and Land Use Categories
4.2. Influence of Soil Physicochemical Properties on Total Se in Soils Derived from Different Parent Rocks
4.3. Influence of Soil Physicochemical Properties on Total Se in Soils Under Different Land Uses in Limestone Regions
4.4. Influence of Topographic Factors on Total Se Under Different Parent Materials and Land Uses in Limestone Regions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Y.; Zeng, Z.; Yang, Q.; Zhao, J.; Yang, Y.; Hu, Y. Advances in research on the mechanisms of selenium uptake, transformation, and physiological functions in plants. Chin. J. Appl. Ecol. 2016, 27, 4067–4076. [Google Scholar] [CrossRef]
- Afton, S.E.; Catron, B.; Caruso, J.A. Elucidating the Selenium and Arsenic Metabolic Pathways Following Exposure to the Non-Hyperaccumulating Chlorophytum Comosum, Spider Plant. J. Exp. Bot. 2009, 60, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.A.D.S.; Namorato, F.A.; Guilherme, L.R.G.; Silva, M.L.D.S.; Liu, J.; Li, L. Glutathione Is Involved in Selenium Detoxification and Suppresses the Selenate-Induced SULTR1;1 Gene Expression in Plants. Environ. Exp. Bot. 2023, 213, 105424. [Google Scholar] [CrossRef]
- Li, Z.; Liang, D.; Peng, Q.; Cui, Z.; Huang, J.; Lin, Z. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma 2017, 295, 69–79. [Google Scholar] [CrossRef]
- Pi, K.; Van Cappellen, P.; Tong, L.; Gan, Y.; Wang, Y. Loss of Selenium from Mollisol Paddy Wetlands of Cold Regions: Insights from Flow-through Reactor Experiments and Process-Based Modeling. Environ. Sci. Technol. 2023, 57, 6228–6237. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, Y.; Huang, B.; Zhang, H. Source Apportionment of Selenium and Influence Factors on Its Bioavailability in Intensively Managed Greenhouse Soil: A Case Study in the East Bank of the Dianchi Lake, China. Ecotoxicol. Environ. Safe 2019, 170, 238–245. [Google Scholar] [CrossRef]
- Chen, N.; Zhao, C.; Zhang, T. Selenium Transformation and Selenium-Rich Foods. Food Biosci. 2021, 40, 100875. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, J.; Zhang, S.; Ma, S.; Li, B.; Long, J.; Fan, J.; Luo, K. Distribution Characteristics and Main Influencing Factors of Selenium in Surface Soil of Natural Selenium-Rich Area: A Case Study in Langao County, China. Environ. Geochem. Health 2021, 43, 333–346. [Google Scholar] [CrossRef]
- Nie, X.; Luo, D.; Ma, H.; Wang, L.; Yang, C.; Tian, X.; Nie, Y. Different Effects of Selenium Speciation on Selenium Absorption, Selenium Transformation and Cadmium Antagonism in Garlic. Food Chem. 2024, 443, 138460. [Google Scholar] [CrossRef]
- Rayman, M.P. Food-Chain Selenium and Human Health: Emphasis on Intake. Br. J. Nutr. 2008, 100, 254–268. [Google Scholar] [CrossRef]
- Ma, J.; Cui, X.; Liang, Q.; Hu, W.; Huang, B. Characteristics and influencing factors of selenium content in soil and crops in a typical selenium-rich black soil area of Northeast China: A case study of Hailun City. Soils 2024, 56, 1101–1110. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Li, H.; Wang, L.; Liao, X.; Wang, J.; Kong, C. Effects of Topography and Soil Properties on Soil Selenium Distribution and Bioavailability (Phosphate Extraction): A Case Study in Yongjia County, China. Sci. Total Environ. 2018, 633, 240–248. [Google Scholar] [CrossRef]
- Zhu, Y.; Guan, Q.; Kong, L.; Yang, R.; Wang, W.; Jin, Y.; Liu, X.; Qu, J. Overlooked Mechanism of Pb Immobilization on Montmorillonite Mediated by Dissolved Organic Matter in Manure Compost. Environ. Pollut. 2023, 316, 120706. [Google Scholar] [CrossRef]
- Li, M.; Yang, B.; Xu, K.; Zheng, D.; Tian, J. Distribution of Se in the Rocks, Soil, Water and Crops in Enshi County, China. Appl. Geochem. 2020, 122, 104707. [Google Scholar] [CrossRef]
- Simon, A.; Wilhelmy, M.; Klosterhuber, R.; Cocuzza, E.; Geitner, C.; Katzensteiner, K. A System for Classifying Subsolum Geological Substrates as a Basis for Describing Soil Formation. Catena 2021, 198, 105026. [Google Scholar] [CrossRef]
- Wilson, M.J. The Importance of Parent Material in Soil Classification: A Review in a Historical Context. Catena 2019, 182, 104131. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Z.; Filippelli, G.M.; Ji, J.; Ji, W.; Liu, X.; Wang, L.; Yu, T.; Wu, T.; Zhuo, X.; et al. Distribution and Secondary Enrichment of Heavy Metal Elements in Karstic Soils with High Geochemical Background in Guangxi, China. Chem. Geol. 2021, 567, 120081. [Google Scholar] [CrossRef]
- Kunli, L.; Lirong, X.; Jian’an, T.; Douhu, W.; Lianhua, X. Selenium Source in the Selenosis Area of the Daba Region, South Qinling Mountain, China. Environ. Geol. 2004, 45, 426–432. [Google Scholar] [CrossRef]
- Deng, H.; Yu, Y.-J.; Sun, J.-E.; Zhang, J.-B.; Cai, Z.-C.; Guo, G.-X.; Zhong, W.-H. Parent Materials Have Stronger Effects than Land Use Types on Microbial Biomass, Activity and Diversity in Red Soil in Subtropical China. Pedobiologia 2015, 58, 73–79. [Google Scholar] [CrossRef]
- Özdemir, N.; Askin, T. Effects of Parent Material and Land Use on Soil Erodibility. J. Plant Nutr. Soil Sci. 2003, 166, 774–776. [Google Scholar] [CrossRef]
- Tu, C.-L.; He, T.-B.; Liu, C.-Q.; Lu, X.-H. Effects of Land Use and Parent Materials on Trace Elements Accumulation in Topsoil. J. Environ. Qual. 2013, 42, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Quang, T.D.; Tran, T.A.T.; Zhou, F.; Yang, W.; Wang, M.; Song, W.; Liang, D. Effect of Selenium-Enriched Organic Material Amendment on Selenium Fraction Transformation and Bioavailability in Soil. Chemosphere 2018, 199, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Lu, L.; Tang, J.; Chen, H.; Li, D.; Liu, Y. Parent Material Modulates Land Use Effects on Soil Selenium Bioavailability in a Selenium-Enriched Region of Southwest China. Geoderma 2020, 376, 114554. [Google Scholar] [CrossRef]
- Xiao, X.; Niyogi, D.; Ojima, D. Changes in Land Use and Water Use and Their Consequences on Climate, Including Biogeochemical Cycles Preface. Glob. Planet. Change 2009, 67, IV. [Google Scholar]
- Cherubin, M.R.; Franco, A.L.C.; Cerri, C.E.P.; Karlen, D.L.; Pavinato, P.S.; Rodrigues, M.; Davies, C.A.; Cerri, C.C. Phosphorus Pools Responses to Land-Use Change for Sugarcane Expansion in Weathered Brazilian Soils. Geoderma 2016, 265, 27–38. [Google Scholar] [CrossRef]
- Potthast, K.; Hamer, U.; Makeschin, F. Land-Use Change in a Tropical Mountain Rainforest Region of Southern Ecuador Affects Soil Microorganisms and Nutrient Cycling. Biogeochemistry 2012, 111, 151–167. [Google Scholar] [CrossRef]
- Anguelov, G.; Anguelova, I. Assessment of Land-Use Effect on Trace Elements Concentrations in Soil Solution from Ultisols in North Florida. Agric. Ecosyst. Environ. 2009, 130, 59–66. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Habibullah-Al-Mamun, M.; Raknuzzaman, M. Trace Elements in Different Land Use Soils of Bangladesh and Potential Ecological Risk. Environ. Monit. Assess. 2015, 187, 587. [Google Scholar] [CrossRef]
- Plak, A.; Bartminski, P. The Impact of Land Use on the Organic and Inorganic Selenium Content in Soils Developed from Loess. J. Elem. 2017, 22, 1463–1474. [Google Scholar] [CrossRef]
- Yanai, J.; Mizuhara, S.; Yamada, H. Soluble Selenium Content of Agricultural Soils in Japan and Its Determining Factors with Reference to Soil Type, Land Use and Region. Soil Sci. Plant Nutr. 2015, 61, 312–318. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, B.; Hong, W.; Shen, X.; Han, Y. Characteristics of selenium content in arable land and study on selenium-rich crops in Dejiang County, Guizhou Province. Guizhou Geol. 2020, 37, 298–304. [Google Scholar]
- Zhang, T.; Zhou, W.; Mang, S.; Zhang, Q. Investigation and distribution characteristics of selenium-rich arable land in the agricultural demonstration zone of Libo County, Guizhou Province. West. Prospect. Eng. 2022, 34, 182–185+190. [Google Scholar]
- Yang, Z.; Zhou, W.; Luo, Y.; Pu, Q.; Linghu, D.; Song, X. Distribution characteristics and controlling factors of selenium in arable soil in Zhenyuan County, Guizhou Province. Geoscience 2021, 35, 434–442. [Google Scholar] [CrossRef]
- Shang, J.; Luo, W.; Wu, G.; Xu, L.; Gao, J.; Kong, P.; Bi, X.; Cheng, Z. Spatial distribution of Se in soils from different land use types and its influencing factors within the Yanghe Watershed, China. Huan Jing Ke Xue 2015, 36, 301–308. [Google Scholar]
- Tan, J.A.; Zhu, W.Y.; Wang, W.Y.; Li, R.B.; Hou, S.F.; Wang, D.C.; Yang, L.S. Selenium in Soil and Endemic Diseases in China. Sci. Total Environ. 2002, 284, 227–235. [Google Scholar] [CrossRef]
- Tolu, J.; Thiry, Y.; Bueno, M.; Jolivet, C.; Potin-Gautier, M.; Le Hecho, I. Distribution and Speciation of Ambient Selenium in Contrasted Soils, from Mineral to Organic Rich. Sci. Total Environ. 2014, 479, 93–101. [Google Scholar] [CrossRef]
- Xing, K.; Zhou, S.; Wu, X.; Zhu, Y.; Kong, J.; Shao, T.; Tao, X. Concentrations and Characteristics of Selenium in Soil Samples from Dashan Region, a Selenium-Enriched Area in China. Soil Sci. Plant Nutr. 2015, 61, 889–897. [Google Scholar] [CrossRef]
- Hu, Z.; Xiong, X.; Bu, J.; Xiao, C.; Zhang, J. Form, Bioavailability, and Influencing Factors of Soil Selenium in Subtropical Karst Regions of Southwest China. Appl. Sci. 2024, 14, 5192. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, X.; Jiang, X.; Zhao, L.; Zhang, L. Interference sources and elimination methods in the determination of selenium in soils and fluvial sediments by atomic fluorescence spectrometry. Rock Miner. Anal. 2019, 38, 333–340. [Google Scholar] [CrossRef]
- BEVEN, K.J.; KIRKBY, M.J. A Physically Based, Variable Contributing Area Model of Basin Hydrology / Un Modèle à Base Physique de Zone d’appel Variable de l’hydrologie Du Bassin Versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Moore, I.; Burch, G.; Mackenzie, D. Topographic Effects on the Distribution of Surface Soil-Water and the Location of Ephemeral Gullies. Trans. ASAE 1988, 31, 1098–1107. [Google Scholar] [CrossRef]
- Jenson, S.; Domingue, J. Extracting Topographic Structure from Digital Elevation Data for Geographic Information-System Analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- Rana, S. Terrain Analysis: Principles and Applications. Environ. Plan. B-Plan. Des. 2002, 29, 152–153. [Google Scholar]
- Moore, I.; Grayson, R.; Ladson, A. Digital Terrain Modeling—A Review of Hydrological, Geomorphological, and Biological Applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Fordyce, F. Selenium Geochemistry and Health. Ambio 2007, 36, 94–97. [Google Scholar] [CrossRef]
- Li, B.; Pan, B.; Han, J. A discussion on the basic types of terrestrial landforms in China and their classification criteria. Quat. Res. 2008, 28, 535–543. [Google Scholar]
- Yang, Z.; Yu, T.; Hou, Q.; Yang, Y.; Fu, Y.; Zhao, X. Geochemical characteristics of selenium in farmland soils of Hainan Island. Geoscience 2012, 26, 837–849. [Google Scholar]
- Yamada, H.; Kamada, A.; Usuki, M.; Yanai, J. Total Selenium Content of Agricultural Soils in Japan. Soil Sci. Plant Nutr. 2009, 55, 616–622. [Google Scholar] [CrossRef]
- Lin, Z.; Zhou, Z.; Zhang, X.; Yang, G. Characteristics and genesis of selenium-rich cultivated soils in the Camellia oleifera demonstration zone of Yuping, Guizhou Province. Acta Geol. Sichuan 2022, 42, 123–127. [Google Scholar]
- Xi, Y.; Yin, Q. Geochemical characteristics and influencing factors of selenium in surface cultivated soils in Jianhe County, Guizhou Province. Inn. Mong. Coal Econ. 2022, 14, 178–180. [Google Scholar] [CrossRef]
- Dhillon, K.S.; Dhillon, S.K. Adsorption-Desorption Reactions of Selenium in Some Soils of India. Geoderma 1999, 93, 19–31. [Google Scholar] [CrossRef]
- Frost, R.R.; Griffin, R.A. Effect of pH on Adsorption of Arsenic and Selenium from Landfill Leachate by Clay Minerals. Soil Sci. Soc. Am. J. 1977, 41, 53–57. [Google Scholar] [CrossRef]
- Anderson, T.; Domsch, K. The Metabolic Quotient for Co2 (Qco2) as a Specific Activity Parameter to Assess the Effects of Environmental-Conditions, Such as Ph, on the Microbial Biomass of Forest Soils. Soil Biol. Biochem. 1993, 25, 393–395. [Google Scholar] [CrossRef]
- Andersson, S.; Nilsson, S.I. Influence of pH and Temperature on Microbial Activity, Substrate Availability of Soil-Solution Bacteria and Leaching of Dissolved Organic Carbon in a Mor Humus. Soil Biol. Biochem. 2001, 33, 1181–1191. [Google Scholar] [CrossRef]
- Gerla, P.J.; Sharif, M.U.; Korom, S.F. Geochemical Processes Controlling the Spatial Distribution of Selenium in Soil and Water, West Central South Dakota, USA. Environ. Earth Sci. 2011, 62, 1551–1560. [Google Scholar] [CrossRef]
- Li, X.; Chang, S.X.; Liu, J.; Zheng, Z.; Wang, X. Topography-Soil Relationships in a Hilly Evergreen Broadleaf Forest in Subtropical China. J. Soils Sediments 2017, 17, 1101–1115. [Google Scholar] [CrossRef]
- Wan, H.-S.; Zhang, W.-C.; Wu, W.; Liu, H.-B. The Controlling Factors of Soil Selenium Content in a Selenium-Deficient Area in Southwest China. Agronomy 2023, 13, 1031. [Google Scholar] [CrossRef]
- Charlet, L.; Scheinost, A.C.; Tournassat, C.; Greneche, J.M.; Géhin, A.; Fernández-Martı´nez, A.; Coudert, S.; Tisserand, D.; Brendle, J. Electron Transfer at the Mineral/Water Interface: Selenium Reduction by Ferrous Iron Sorbed on Clay. Geochim. Cosmochim. Acta 2007, 71, 5731–5749. [Google Scholar] [CrossRef]
- Coppin, F.; Chabroullet, C.; Martin-Garin, A. Selenite Interactions with Some Particulate Organic and Mineral Fractions Isolated from a Natural Grassland Soil. Eur. J. Soil Sci. 2009, 60, 369–376. [Google Scholar] [CrossRef]
- Jordan, N.; Marmier, N.; Lomenech, C.; Giffaut, E.; Ehrhardt, J.-J. Competition between Selenium (IV) and Silicic Acid on the Hematite Surface. Chemosphere 2009, 75, 129–134. [Google Scholar] [CrossRef]
- Di Tullo, P.; Pannier, F.; Thiry, Y.; Le Hecho, I.; Bueno, M. Field Study of Time-Dependent Selenium Partitioning in Soils Using Isotopically Enriched Stable Selenite Tracer. Sci. Total Environ. 2016, 562, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Floor, G.H.; Calabrese, S.; Roman-Ross, G.; D’Alessandro, W.; Aiuppa, A. Selenium Mobilization in Soils Due to Volcanic Derived Acid Rain: An Example from Mt Etna Volcano, Sicily. Chem. Geol. 2011, 289, 235–244. [Google Scholar] [CrossRef]
- Winkel, L.H.E.; Vriens, B.; Jones, G.D.; Schneider, L.S.; Pilon-Smits, E.; Banuelos, G.S. Selenium Cycling Across Soil-Plant-Atmosphere Interfaces: A Critical Review. Nutrients 2015, 7, 4199–4239. [Google Scholar] [CrossRef]
- Bruggeman, C.; Maes, A.; Vancluysen, J. The Interaction of Dissolved Boom Clay and Gorleben Humic Substances with Selenium Oxyanions (Selenite and Selenate). Appl. Geochem. 2007, 22, 1371–1379. [Google Scholar] [CrossRef]
- Andersson, M.; Eggen, O.A.; Jensen, H.; Stampolidis, A.; Bjerkgard, T.; Sandstad, J.S. Geochemistry of Soil in Relation to Air-Borne Geophysical Data and Bedrock Geology in Hattfjelldal, Northern Norway. Nor. J. Geol. 2015, 95, 315–338. [Google Scholar] [CrossRef]
- Vestin, J.L.K.; Nambu, K.; van Hees, P.A.W.; Bylund, D.; Lundstrom, U.S. The Influence of Alkaline and Non-Alkaline Parent Material on Soil Chemistry. Geoderma 2006, 135, 97–106. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, G.; Zhang, M.; Zhan, L.; Liang, X.; Zhang, J.; Sun, Z.; Yong, T.; Tang, Z. Geochemical characteristics and influencing factors of selenium in soils of southern Jiangxi: A case study of the Qingtang–Meijiao area. Geoscience 2018, 32, 1292–1301. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S. Distribution characteristics and influencing factors of selenium in soils of the low- to mid-mountain areas in Danzhai County. South. Land Resour. 2020, 2, 36–40. [Google Scholar]
- Yan, B.X.; Yang, Y.H.; Liu, X.T. Character and Trend of Soil Erosion in Black Soil North-Eastern China. Soil Water Conserv. China 2008, 12, 26–31. [Google Scholar]
Step | Heating Time | Target Temperature | Holding Time |
---|---|---|---|
1 | 8 | 100 | 8 |
2 | 8 | 150 | 10 |
3 | 8 | 180 | 25 |
Operational Parameters | Set Value | Working Parameter | Set Value |
---|---|---|---|
Atomizer Height (mm) | 8 | Negative High Voltage (V) | 270 |
Carrier Gas Flow Rate (mL/min) | 300 | Lamp Current (mA) | 60 |
Shield Gas Flow Rate (mL/min) | 600 | Measurement Method | Standard Curve Method |
Reading Time (s) | 11 | Reading Mode | Peak Area |
Standard Error | Limestone (n = 38) | Sandstone (n = 42) | |||
---|---|---|---|---|---|
Paddy Fields (n = 20) | Drylands (n = 18) | Paddy Fields (n = 20) | Drylands (n = 22) | ||
Total Se (mg/kg) | 0.03 | 0.41 | 0.71 | 0.49 | 0.48 |
pH | 0.08 | 6.64 | 6.20 | 5.71 | 5.78 |
SOM (g/kg) | 0.80 | 25.41 | 27.97 | 28.99 | 27.22 |
V (mg/kg) | 2.98 | 95.92 | 124.05 | 111.55 | 111.61 |
Cr (mg/kg) | 2.04 | 75.99 | 94.44 | 89.50 | 89.91 |
Zn (mg/kg) | 1.61 | 86.86 | 94.56 | 99.82 | 101.21 |
Elevation (m) | 25.27 | 765.20 | 930.82 | 997.35 | 1036.27 |
Slope (°) | 1.04 | 17.82 | 17.14 | 12.02 | 16.01 |
TWI | 210.04 | 5.00 | 5.01 | 5.71 | 5.12 |
SPI | 267.67 | 2.42 | 2.30 | 2.35 | 2.44 |
Limestone | Sandstone | ||||||
---|---|---|---|---|---|---|---|
Explanatory Variable | Correlation Coefficient | R2 | p | Explanatory Variable | Correlation Coefficient | R2 | p |
V | 0.776 | 0.71 | <0.01 | SOM | 0.687 | 0.624 | <0.01 |
SOM | 0.444 | 0.82 | <0.01 | V | 0.336 | 0.72 | <0.01 |
Zn | −0.339 | 0.86 | 0.02 | ||||
Elevation | 0.141 | 0.88 | 0.027 | ||||
Paddy Fields in Limestone Regions | Drylands in Limestone Regions | ||||||
Explanatory Variable | Correlation Coefficient | R2 | p | Explanatory Variable | Correlation Coefficient | R2 | p |
SOM | 0.88 | 0.75 | <0.01 | SOM | 0.631 | 0.80 | <0.01 |
V | 0.366 | 0.86 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, C.; Xiong, X.; Bu, J.; Hu, Z.; Zhang, J.; Yang, C.; Huang, Y. Impact of Parent Rock and Land Use on the Distribution and Enrichment of Soil Selenium in Typical Subtropical Karst Regions of Southwest China. Appl. Sci. 2025, 15, 5749. https://doi.org/10.3390/app15105749
Xiao C, Xiong X, Bu J, Hu Z, Zhang J, Yang C, Huang Y. Impact of Parent Rock and Land Use on the Distribution and Enrichment of Soil Selenium in Typical Subtropical Karst Regions of Southwest China. Applied Sciences. 2025; 15(10):5749. https://doi.org/10.3390/app15105749
Chicago/Turabian StyleXiao, Chunshan, Xing Xiong, Jianwei Bu, Zhongquan Hu, Jun Zhang, Chenzhou Yang, and Yinhe Huang. 2025. "Impact of Parent Rock and Land Use on the Distribution and Enrichment of Soil Selenium in Typical Subtropical Karst Regions of Southwest China" Applied Sciences 15, no. 10: 5749. https://doi.org/10.3390/app15105749
APA StyleXiao, C., Xiong, X., Bu, J., Hu, Z., Zhang, J., Yang, C., & Huang, Y. (2025). Impact of Parent Rock and Land Use on the Distribution and Enrichment of Soil Selenium in Typical Subtropical Karst Regions of Southwest China. Applied Sciences, 15(10), 5749. https://doi.org/10.3390/app15105749