Use of Invasive Acacia Biomass to Produce Biochar and Solid Biofuels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Mass Yield
2.2. Moisture Content
2.3. Density
2.4. Fixed Carbon, Volatile Matter, Ash, and pH
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nunes, L.J.R.; Meireles, C.I.R.; Pinto Gomes, C.J.; Almeida Ribeiro, N.M.C. Historical Development of the Portuguese Forest: The Introduction of Invasive Species. Forests 2019, 10, 974. [Google Scholar] [CrossRef]
- Spanish Law—Ley 42/2007, de 13 de Diciembre, del Patrimonio Natural y de la Biodiversidad (of Natural Heritage and Biodiversity). BOE n. 299. 14/12/2007. Jefatura del Estado. Available online: https://www.boe.es/eli/es/l/2007/12/13/42/con (accessed on 8 August 2024).
- Executive Order—Real Decreto 630/2013, de 2 de Agosto, Por el que se Regula el Catálogo Español de Especies Exóticas Invasoras (Regulating the Spanish Catalogue of Invasive Alien Species). BOE n. 185. 03/08/2013. Ministerio de Agricultura, Alimentación y Medio Ambiente. Available online: https://www.boe.es/eli/es/rd/2013/08/02/630/con (accessed on 4 September 2024).
- Legal Order—Orden TED/1126/2020, de 20 de Noviembre, por la que se Modifica el Anexo del Real Decreto 139/2011, de 4 de Febrero, Para el Desarrollo del Listado de Especies Silvestres en Régimen de Protección Especial y del Catálogo Español de Especies Amenazadas, y el Anexo del Real Decreto 630/2013, de 2 de Agosto, por el que se Regula el Catálogo Español de Especies Exóticas Invasoras (List of Wild Species under Special Protection and the Spanish Catalogue of Endangered Species and Spanish Catalogue of Invasive Species). BOE n. 314. 01/12/2020. Pag. 108167–108171. Available online: https://www.boe.es/eli/es/o/2020/11/20/ted1126 (accessed on 4 September 2024).
- Andreu, J.; Vilalta, J.P. Análisis del estado de invasión por especies exóticas en Cataluña. In Gestión de Especies Exóticas Invasoras: Compartiendo Problemas Comunes, Buscando Soluciones Comunes: Notas Científicas, 4° Congreso Nacional sobre Especies Exóticas Invasoras" EEI 2012"; Serie Técnica N° 5; Grupo Especialista en Invasiones Biológicas: León, France, 2012; pp. 9–12. [Google Scholar]
- MITECO—Ministerio para la Transición Ecológica y el Reto Demográfico. 2024. Catálogo Español de Especies Exóticas Invasoras (Spanish Catalogue of Invasive Species). Available online: https://www.miteco.gob.es/es/biodiversidad/temas/conservacion-de-especies/especies-exoticas-invasoras/ce_eei_flora.html (accessed on 18 September 2024).
- Anthos. Sistema de Información de las Plantas de España (Information System of the Plants of Spain). Real Jardín Botánico. CSIC-Fund. Biodivers. 2012. Available online: http://www.anthos.es (accessed on 15 January 2025).
- Cheney, C.; Esler, K.J.; Foxcroft, L.C.; Van Wilgen, N.J. Scenarios for the management of invasive Acacia species in a protected area: Implications of clearing efficacy. J. Environ. Manag. 2019, 238, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, S.; Acuña-Alonso, C.; Álvarez, X. Identification of Acacia invasive species in protected areas of Spain using PlanetScope high-resolution satellite images and machine learning models in time series: An important action for protective management of forests. For. Ecol. Manag. 2025, 586, 122696. [Google Scholar] [CrossRef]
- Carneiro, M.; Moreira, R.; Gominho, J.; Fabiao, A. Could control of invasive acacias be a source of biomass for energy under mediterranean conditions? Chem. Eng. Trans. 2014, 37, 187–192. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Feng, Y. The effects of biochar addition on soil physicochemical properties: A review. Catena 2021, 202, 105284. [Google Scholar] [CrossRef]
- Bahng, M.; Mukarakate, C.; Robichaud, D.J.; Nimlos, M.R. Current technologies for analysis of biomass thermochemical processing: A review. Anal. Chim. Acta 2009, 651, 117–138. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, W.; Colin, B.; Pétrissans, A.; Lopes Quirino, R.; Pétrissans, M. Thermodegradation characterization of hardwoods and softwoods in torrefaction and transition zone between torrefaction and pyrolysis. Fuel 2022, 310, 122281. [Google Scholar] [CrossRef]
- Singh, S.; Prajapati, A.K.; Chakraborty, J.P.; Mondal, M.K. Adsorption potential of biochar obtained from pyrolysis of raw and torrefied Acacia nilotica towards removal of methylene blue dye from synthetic wastewater. Biomass Convers. Biorefinery 2023, 13, 6083–6104. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Liu, Z.; Quek, A.; Kent Hoekman, S.; Balasubramanian, R. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 2013, 103, 943–949. [Google Scholar] [CrossRef]
- Yu, F.; Deng, S.; Chen, P.; Liu, Y.; Wan, Y.; Olson, A.; Kittelson, D.; Ruan, R. Physical and Chemical Properties of Bio-Oils from Microwave Pyrolysis of Corn Stover. Appl. Biochem. Biotecnol. 2007, 137, 957–970. [Google Scholar] [CrossRef]
- Downie, A.; Munroe, P.; Cowie, A.; Van Zieten, L.; Lau, D.M.S. Biochar as a Geoengineering Climate Solution: Hazard Identification and Risk Management. Crit. Rev. Environ. Sci. Technol. 2012, 42, 225–250. [Google Scholar] [CrossRef]
- Downie, A.; Van Zwieten, L. Biochar: A Coproduct to Bioenergy from Slow-Pyrolysis Technology. In Advance Biofuels and Bioproducts; Lee, J., Ed.; Springer: New York, NY, USA, 2013; pp. 97–117. [Google Scholar] [CrossRef]
- Chen, D.; Yin, L.; Wang, H.; He, P. Pyrolysis technologies for municipal solid waste: A review. Waste Manag. 2014, 34, 2466–2486. [Google Scholar] [CrossRef]
- Jha, S.; Nanda, S.; Acharya, B.; Dalai, A.K. A Review of Thermochemical Conversion of Waste Biomass to Biofuels. Energies 2022, 15, 6352. [Google Scholar] [CrossRef]
- Ouyang, P.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Luo, Y.; Ma, Y. Integrating biochar and bacteria for sustainable remediation of metal-contaminated soils. Biochar 2023, 5, 63. [Google Scholar] [CrossRef]
- Wijitkosum, S. Biochar derived from agricultural wastes and wood residues for sustainable agricultural and environmental applications. Int. Soil Water Conserv. Res. 2022, 10, 335–341. [Google Scholar] [CrossRef]
- Sohi, S.P.; Lopez-Capel, E.; Krull, E.; Bol, R. Biochar, climate change and soil: A review to guide future research. CSIRO. Land Water Sci. Rep. Ser. 2009, 25, 17–31. [Google Scholar]
- Chen, W.; Wang, C.; Ong, H.C.; Show, P.L.; Hsieh, T. Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 2019, 258, 116168. [Google Scholar] [CrossRef]
- Gheorghe, C.; Marculescu, C.; Badea, A.; Dinca, C.; Apostol, T. Effect of pyrolysis conditions on bio-char production from biomass. In Proceedings of the 3rd WSEAS International Conference on Renewable Energy Sources, University of La Laguna, Tenerife, Canary Islands, Spain, 1–3 July 2009; pp. 239–241, ISBN 978-960-474-093-2. Available online: https://www.researchgate.net/profile/Tiberiu-Apostol/publication/266179244_Effect_of_Pyrolysis_Conditions_on_Bio-Char_Production_from_Biomass/links/54b7c4d60cf28faced606f00/Effect-of-Pyrolysis-Conditions-on-Bio-Char-Production-from-Biomass.pdf (accessed on 13 May 2025).
- Pituya, P.; Sriburi, T.; Wijitkosum, S. Optimization of Biochar Preparation from Acacia Wood for Soil Amendment. Eng. J. 2017, 21, 99–105. [Google Scholar] [CrossRef]
- Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. Recent advances in utilization of biochar. Renew. Sustain. Energy Rev. 2015, 42, 1055–1064. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Lehmann, J.J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Routledge: London, UK, 2009; p. 902. ISBN 9781003297673. [Google Scholar] [CrossRef]
- Campbell, R.M.; Anderson, N.M.; Daugaard, D.E.; Naughton, H.T. Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty. Appl. Energy 2018, 230, 330–343. [Google Scholar] [CrossRef]
- González-Prieto, Ó.; Ortíz Torres, L.; Vázquez Torres, A. Comparison of waste biomass from pine, eucalyptus, and Acacia and the biochar elaborated using pyrolysis in a simple double chamber biomass reactor. Appl. Sci. 2024, 14, 1851. [Google Scholar] [CrossRef]
- EBC (2012–2022). European Biochar Certificate—Guidelines for Sustainable Production of Biochar. European Biochar Foundation (EBC), Arbaz, Switzerland. Version 10.1 from 10th Jan 2022. Available online: http://european-biochar.org (accessed on 23 June 2024).
- Quicker, P.; Biokohle Weber, K. Herstellung, Eigenschaften und Verwendung von Biomassekarbonisaten; Springer: Wiesbaden, Germany, 2016. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- UNE-EN ISO 18134-3; Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 3: Moisture in General Analysis Sample (ISO 18134-3:2023). AENOR, Spanish Association for Standardization and Certification: Madrid, Spain, 2024.
- UNE-EN ISO 17828; Solid Biofuels—Determination of Bulk Density (ISO 17828:2015). AENOR, Spanish Association for Standardization and Certification: Madrid, Spain, 2016.
- UNE-EN ISO 18123; Solid Biofuels—Determination of the Content of Volatile Matter (ISO 18123:2023). AENOR, Spanish Association for Standardization and Certification: Madrid, Spain, 2024.
- UNE-EN ISO 18122; Solid Biofuels—Determination of Ash Content (ISO 18122:2022). AENOR, Spanish Association for Standardization and Certification: Madrid, Spain, 2023.
- UNE-EN 13037; Soil Improvers and Growing Media—Determination of pH. AENOR, Spanish Association for Standardization and Certification: Madrid, Spain, 2012.
- Wang, C.; Zhang, W.; Qiu, X.; Xu, C. Hydrothermal treatment of lignocellulosic biomass towards low-carbon development: Production of high-value-added bioproducts. EnergyChem 2024, 6, 100133. [Google Scholar] [CrossRef]
- Basu, P. Chapter 3—Biomass Characteristics. In Biomass Gasification, Pyrolysis and Torrefaction, 3rd ed.; Basu, P., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 49–91. [Google Scholar] [CrossRef]
- Basu, P. Chapter 4—Torrefaction. In Biomass Gasification, Pyrolysis and Torrefaction, 3rd ed.; Basu, P., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 93–154. [Google Scholar] [CrossRef]
- Ahmed, A.; Bakar MS, A.; Azad, A.K.; Sukri, R.S.; Phusunti, N. Intermediate pyrolysis of Acacia cincinnata and Acacia holosericea species for bio-oil and biochar production. Energy Convers. Manag. 2018, 176, 393–408. [Google Scholar] [CrossRef]
- Kumar, M.; Gupta, R.C.; Sharma, T. Effects of carbonisation conditions on the yield and chemical composition of Acacia and Eucalyptus wood chars. Biomass Bioenergy 1992, 3, 411–417. [Google Scholar] [CrossRef]
- Ronsse, F.; van Hecke, S.; Dickinson, D.; Prins, W. Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. Glob. Change Biol. Bioenergy 2013, 5, 104–115. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Zhao, X.; Wang, S.; Xing, G. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy Fuels 2013, 27, 5890–5899. [Google Scholar] [CrossRef]
- Lian, W.; Yang, L.; Joseph, S.; Shi, W.; Bian, R.; Zheng, J.; Li, L.; Shan, S.; Pan, G. Utilization of biochar produced from invasive plant species to efficiently adsorb Cd (II) and Pb (II). Bioresour. Technol. 2020, 317, 124011. [Google Scholar] [CrossRef]
- Ortiz Torres, L. Producción de Biocombustibles Solidos de Alta Densidad en España. Boletín Inf. CIDEU 2008, 5, 107–123. [Google Scholar]
- Ortiz Torres, L. Procesos de Densificación de la Biomasa Forestal; De Mecanización, G., Ed.; GAMESAL: Pontevedra, Spain, 2003; ISBN 84-95046-25-3. [Google Scholar]
- Pradhan, P.; Mahajani, S.M.; Arora, A. Production and utilization of fuel pellets from biomass: A review. Fuel Process. 2018, 181, 215–232. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod. Biorefin. 2011, 5, 683–707. [Google Scholar] [CrossRef]
- Ibitoye, S.E.; Loha, C.; Mahamood, R.M.; Jen, T.C.; Alam, M.; Sarkar, I.; Das, P.; Akinlabi, E.T. An overview of biochar production techniques and applications in iron and steel industries. Bioresour. Bioprocess. 2024, 11, 65. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumara, P.S.; Saravanana, A.; Joshibaa, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
Materials | Mass Yield (%) | Losses (%) | Pyrolysis Means Temperature (°C) | Pyrolysis Time (>300 °C) (min) | Fixed Carbon (%) |
---|---|---|---|---|---|
D-biochar-wood | 52.0 | 48.0 | 401.4 ± [44.93] | 60 | 66.0 ± [2.86] |
D-biochar-branch/leaf | 59.0 | 51.0 | 321.5 ± [49.06] | 367 | 51.0 ± [3.84] |
M-biochar-wood | 46.0 | 54.0 | 460.0 ± [79.70] | 60 | 66.8 ± [3.80] |
M-biochar-branch/leaf | 25.0 | 75.0 | 450.9 ± [82.04] | 110 | 61.0 ± [4.36] |
Elaborated Products | ||||||
---|---|---|---|---|---|---|
Material | Moisture Content (%) | Bulk Density (kg/m3) | pH (%) | Volatile Matter (%) | Ash (%) | Fixed Carbon (%) |
D-biochar-wood | anhydrous | 162.4 ± [11.46] | 8.0 ± [0.14] | 31.6 ± [1.52] | 2.39 ± [1.55] | 66.0 ± [2.86] |
D-biochar-branch/leaf | 192.0 ± [0.57] | 7.5 ± [0.00] | 46.3 ± [1.94] | 3.07 ± [1.88] | 51.0 ± [3.84] | |
M-biochar-wood | anhydrous | 159.9 ± [1.27] | 9.5 ± [0.16] | 21.5 ± [3.92] | 11.75 ± [9.90] | 66.8 ± [3.80] |
M-biochar-branch/leaf | 150.9 ± [2.12] | 8.1 ± [0.04] | 34.0 ± [0.76] | 4.96 ± [3.60] | 61.0 ± [4.36] |
Groups | SD | Diff. | +/− Limits | F-Ratio | LSD Anova p-Value | Levene p-Value |
---|---|---|---|---|---|---|
D-wood and M-wood | 0.20 | 0.253454 | 4.80 | 0.0936 | 0.274577 | |
D-branch/leaf and M-branch/leaf | −0.55 | 0.646184 | 5.58 | 0.0774 | 0.157484 | |
D-wood and D-branch/leaf | * | −2.25 | 0.646184 | 93.46 | 0.0006 | 0.157484 |
M-wood and M-branch/leaf | * | −3.00 | 0.253454 | 1080.00 | 0.0000 | 0.274577 |
D-Biochar-wood and M-Biochar-wood | −0.86 | 22.60290 | 0.01 | 0.9203 | 0.454108 | |
D-Biochar-branch/leaf and M-Biochar-branch/leaf | * | −10.31 | 9.35910 | 9.36 | 0.0377 | 0.941239 |
D-Biochar-wood and D-Biochar-branch/leaf | * | 15.23 | 7.69322 | 30.22 | 0.0053 | 0.807901 |
M-Biochar-wood and M-Biochar-branch/leaf | 5.78 | 23.2228 | 0.48 | 0.5271 | 0.526589 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Prieto, Ó.; Ortiz Torres, L. Use of Invasive Acacia Biomass to Produce Biochar and Solid Biofuels. Appl. Sci. 2025, 15, 5755. https://doi.org/10.3390/app15105755
González-Prieto Ó, Ortiz Torres L. Use of Invasive Acacia Biomass to Produce Biochar and Solid Biofuels. Applied Sciences. 2025; 15(10):5755. https://doi.org/10.3390/app15105755
Chicago/Turabian StyleGonzález-Prieto, Óscar, and Luis Ortiz Torres. 2025. "Use of Invasive Acacia Biomass to Produce Biochar and Solid Biofuels" Applied Sciences 15, no. 10: 5755. https://doi.org/10.3390/app15105755
APA StyleGonzález-Prieto, Ó., & Ortiz Torres, L. (2025). Use of Invasive Acacia Biomass to Produce Biochar and Solid Biofuels. Applied Sciences, 15(10), 5755. https://doi.org/10.3390/app15105755